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Abstract 

We study the self-organization of random collections of elastic filaments that interact adhesively. 

The evolution from an initial fully random quasi-two-dimensional state is controlled by filament 

elasticity, adhesion and inter-filament friction, and excluded volume. Three outcomes are 

possible: the system may remain locked in the initial state, may organize into isolated fiber 

bundles, or may form a stable, connected network of bundles. The range of system parameters 

leading to each of these states is identified. The network of bundles is sub-isostatic and is 

stabilized by pre-stressed triangular features forming at bundle-to-bundle nodes, similar to the 

situation in foams. Inter-fiber friction promotes locking and expands the parametric range of 

non-evolving systems.      

 

  

                                                            
1 Corresponding author. Tel: 1 518 276-2195, E-mail: picuc@rpi.edu. 



2 
 

1. Introduction 

 

Fibrous materials are ubiquitous in biology and the non-living world. Examples of athermal 

networks (whose fiber mechanics is independent of thermal fluctuations) include the 

extracellular matrix, connective tissue, paper and non-wovens. The mechanics of such networks 

was studied extensively [e.g 1,2]. Network models were also used to represent the behavior of 

granular materials [3], open cell cellular structures [4] and glasses [5].  

 Most studies to date refer to cross-linked [e.g. 1,2,6] and non-cross-linked [e.g. 7,8] 

networks whose mechanics is controlled by the fiber properties (fiber bending, , and axial, 

, rigidities), network density, ρ, and the mean coordination number, . In this work we 

study non-cross-linked networks in which filaments interact adhesively. Their behavior is 

qualitatively different from that of other non-cross-linked structures since adhesion re-organizes 

the network.  

This problem is relevant for a broad range of systems. Colloidal interactions produce 

aggregation in particle suspensions [9]. Suspensions of filaments, whether rigid or flexible, 

undergo flocculation as the concentration increases and/or the temperature decreases. The 

formation of filament bundles, followed by organization into a network of bundles was observed 

in dense suspensions of actin [10] and collagen [11], and was discussed theoretically in [12].  

Carbon nanotubes (CNT) interact adhesively and form bundles, which further self-

organize into networks of bundles [13,14]. Buckypaper [14] is entirely stabilized by inter-CNT 

adhesion. The structure of CNT assemblies depends on the bending stiffness of filaments [15], 

the CNT length [16] and, in single-wall CNTs, on bending buckling of CNTs [17]. Buckypaper 

can be stretched to produce CNT yarns, which may replace carbon fiber in structural composites 

[18]. The viscoelastic behavior of such CNT structures is temperature independent, which 

demonstrates their athermal nature [19]. 

Fibrils can be brought together into bundles [20] and larger structures [21,22] by surface 

forces which are longer ranged than adhesion, such as capillary forces. Elastocapillarity controls 

the interaction of liquid-air and liquid-liquid interfaces with elastic structures and produces self-

organization effects similar to those associated with adhesion and discussed here [23,24].  

In this work we study the effect of adhesion on the structure of non-crosslinked networks 

of filaments which are free to move relative to each other. We observe that adhesion drives fiber 
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bundling. We investigate the types of structures that result upon filament bundling and the 

dependence of the resulting configurations on network parameters. We also study the effect of 

inter-fiber friction on the onset of the self-organization process. The results indicate the range of 

controllable network parameters that lead to each of the various types of self-organized 

structures observed both in presence and in absence of inter-fiber friction.  

 

2. Models and methods 

 

To study the effect of adhesion on non-crosslinked fibrous assemblies, we use the bead-spring 

model of polymer physics [15,16,20]. The axial and bending stiffness of filaments are 

represented by harmonic potentials defined by their respective constants, ⁄  and ⁄ , where  is the distance between consecutive beads along the filament, and 

, ,  are the fiber elastic modulus, cross-section area and moment of inertia. Fibers have zero 

torsional stiffness. This is not a limitation since it is known that very little strain energy is stored 

in the torsional mode of fibers in random fiber networks [1]. In addition, curling would be 

observed in simulations if the system would store energy in the torsion mode. All fibers in the 

model have same length, , same diameter, , and . All fibers have circular cross-section. 

Non-bonded interactions are represented with a Lennard-Jones potential of characteristic 

length σ and energy parameter . The potential imposes the excluded volume constraint and 

models the inter-fiber adhesion. The work of adhesion, γ, results as the interaction energy per 

unit length of contact between two parallel, straight fibers in equilibrium.  

Some level of inter-fiber friction is caused by the roughness of filaments associated with 

the discrete nature of the bead-spring representation. To minimize this effect, we increase the 

density of beads along each filament to 4 beads per fiber segment of aspect ratio 1, i.e. 4⁄ . It was determined using pairs of parallel filaments in adhesive contact forced to slide 

against each other axially that, with this axial bead density, the fluctuation of the adhesive energy 

per unit length of filament is only 0.01% of the mean value.  

The three fiber parameters, γ,  and  are uniquely defined by the model parameters σ, 

 and . Parameter  is the equilibrium distance of a bead from the axis of an infinite straight 
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fiber and, for the potentials used, it is 1.063 . Parameter γ is given by 7.11 / . The 

effective fiber modulus is defined by  as 0.3 / .  

The initial, “as-deposited” configuration of the model is generated by depositing fibers of 

length  on a non-frictional support plane, in an area of size L x L, with L > 2L0 in all cases 

such to avoid spurious effects introduced by the periodic boundary conditions. Newly deposited 

fibers lay on top of the previously deposited ones without interpenetration, forming a quasi-two-

dimensional mat structure. Adhesive interactions at contacts insure that the mat retains integrity 

during fiber deposition. Periodic boundary conditions are imposed in the plane of the mat during 

deposition, while traction free (vacuum padding) conditions are applied in the direction 

perpendicular to the mat.  

The as-deposited structures of fibers have random orientations and random positions of 

their centers of mass. It is convenient to describe the initial structure in projection on the support 

plane, projection in which the network resembles a Mikado structure [2,6] characterized by its 

density (total fiber length per unit area), ρ, and the fiber length, L0. The density has units of 

1/length and is related to the mean segment length of the network (segment between two 

contacts) by the Kallmes-Corte relation 2⁄  [25]. We note that the quasi-two-dimensional 

assumption is valid if the mat is sufficiently thin and fibers are sufficiently flexible for the newly 

deposited fibers to make contact with all previously deposited fibers on top of which they fall. A 

conceptual perspective on this issue is discussed in [26]. Once the mat is deposited, the support 

plane is removed and the structure is relaxed at fixed L, by imposing periodic boundary 

conditions in the plane of the mat and zero tractions in the direction perpendicular to the mat. 

The system does not disintegrate by diffusion in the out-of-plane direction due to the adhesion 

between fibers. Further, the system is evolved with molecular dynamics under the same 

boundary conditions, which represent a system of infinite in-plane extent and of constant density. 

In separate simulations we study the effect of static friction between filaments on the 

onset of adhesion-driven self-organization. To this end, an additional attractive potential of well 

depth  is introduced between beads belonging to different fibers, at contacts between filaments 

in the initial network configuration. In absence of this interaction the relative sliding of fibers is 

frictionless since the adhesion energy remains constant. These “stickers” introduce resistance to 

the onset of sliding and an effective maximum unbinding force proportional to / . This 

model does not represent dissipative Coulomb friction, rather it is designed to model static 
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friction between fibers in contact in the as-deposited state. It is used only to determine whether 

adhesion is strong enough to initiate fiber re-arrangement for given . 

 

3. Results and discussion 

3.1 Structural evolution and stabilization of cellular networks of bundles 

In general, the as-deposited system of filaments may be locked in the initial configuration or may 

evolve due to the adhesive forces. Evolving systems self-organize into cellular structures of 

filament bundles or disintegrate forming largely disconnected filament bundles. Figs. 1(a) and 

1(b) show the initial and final stages of an evolution that transforms a Mikado-like initial 

structure, into a cellular structure of filament bundles. A movie showing this evolution is 

presented in the Supplementary material [27]. The movie shows the view perpendicular to the 

plane of the as-deposited mat, similar to Fig. 1. 

  
FIG. 1. Evolution of a network due to fiber adhesion from an initial structure (a) into a cellular 

network of bundles (b). Bundles may merge to form larger bundles (c), may pass each other 

without interacting (d), or may interact forming triangular features (e), such as that in (f). 
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A cellular structure of filament bundles (Fig. 1(b)) is a qualitatively different stochastic 

network which has not been studied so far. In the 2D projection it resembles a Voronoi 

tessellation and all nodes have coordination 3. All network segments are bundles stabilized 

by the adhesive interaction of filaments. Bundles split into two sub-bundles at a node. Nodes can 

move along a segment by bundling or un-bundling. Fig. 1(c) shows three bundles forming two 

nodes. Bundles b1 and b2 are shown moving in the same direction; they may eventually merge 

into a larger bundle. If b1 and b2 move in opposite directions, they can pass each other without 

interaction (Fig. 1(d)) or interact (Fig. 1(e)) forming a triangular feature, Fig. 1(f). These 

triangles are stabilized by the adhesion between bundles and store strain energy.  

To study the effect of network parameters on the self-organized network structure, 

systems with multiple values of these parameters are considered and are evolved. The relevant 

system parameters are , , ,  and . Consider first that the inter-filament friction vanishes. 

The Buckingham π analysis indicates that three independent non-dimensional groups can be 

formed from this set: e.g. ⁄ ,  , and ⁄ . We consider 24 

combinations of these parameters and simulate all corresponding systems. Fig. 2 shows the 

points corresponding to these configurations in the , ,  space. We observe three types of 

structures which are represented in Fig. 2 by the three types of symbols. The crosses correspond 

to configurations that do not evolve and remain in the as-deposited state. Filled squares indicate 

configurations that evolve into stable cellular structures similar to that shown in Fig. 1(b). The 

open circles indicate networks which disintegrate and hence lose connectivity. The plane shown 

in Fig. 2 separates the non-evolving from the evolving structures and is defined by . 

The functional form of this surface is motivated by considerations presented below. This 

representation suggests that the relevant physics can be described in a space with two dimensions 

in which this separation plane is viewed edge-on and appears as a line (Fig. 3). The parameters 

of this space of reduced dimensionality are log  and log Ψ log  2 log  , 

i.e. Ψ ~ . The log  axis, log Ψ  axis (which is 

perpendicular to log ),  and the normal to the separation plane are coplanar. The  log Ψ  

- log  frame is shown schematically in Fig. 2. 
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FIG. 2. Systems without inter-fiber friction considered in simulations shown in the space of non-

dimensional system parameters. The frame log Ψ  - log  used to represent the data in 

Fig. 3 is shown schematically in red.  

 

Parameter Ψ can be rewritten as Ψ ⁄ , where  is the elastocapillarity length 

introduced in [23]. It captures the physics of bending-dominated elasticity in presence of 

adhesive forces [28] and was used in [16,20] to analyze CNT structures. Ψ shows that strong 

adhesion effects result by increasing  and by decreasing the filament diameter. Since ~ , 

decreasing  has a stronger effect than increasing γ, which explains why adhesion effects are 

generally observed with nanofibers [20].  
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FIG. 3. (color online). Map of three possible network states in the plane of non-dimensional 

parameters Ψ  and . For 5.71, the initial network is below the percolation 

threshold. The small Ψ domain labeled “locked” corresponds to structures that do not evolve 

from the initial state and hence do not bundle. This domain is bounded above by the red line of 

equation  Ψ~  which is a particular form of eq. (2) corresponding to the no inter-fiber 

friction case. In presence of friction (quantified by parameter ) this boundary moves up, as 

shown by the set of dashed red lines (eq. 2). For larger Ψ values, systems self-organize in 

networks of fiber bundles (Fig. 1(b)) which are stabilized by triangular features forming at 

network nodes (Fig. 1(f)). At low  these structures loose connectivity and the network 

disintegrates. The crosses, open circles and filled squares indicate cases simulated that lead to 

locked, disintegrated and cellular structures, respectively. The side panels show examples of the 

three types of structures described.  

 

 

 

Figure 3 presents the results in the frame log Ψ  - log  parametric space. For 5.71, the initial state is not a percolated network [29] and hence the present problem is 

not defined. This threshold corresponds to the sol-gel transition observed in thermal suspensions 

of nanorods [12].  
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 For 5.71 and small Ψ, systems do not evolve from the as-deposited state and no 

bundles develop. To understand this situation, consider the initial stage of relaxation at the scale 

of two crossed filaments forming an angle α in the initial state. To enable adhesion (short range 

interaction), the filaments have to bend towards each other by 2⁄  at the crossing point. The 

energy gained is , where y is the length of the resulting segment in contact. The strain energy 

stored in the deforming filaments and the work done against the background friction (if any) are 

the energy expenditures. The rotation and sticking of filaments in the vicinity of the contact point 

must be accommodated either by their axial deformation or by sliding along their contour, which 

happens against the friction forces acting at all contacts of the respective filament with other 

filaments. To evaluate the bending energy, consider a filament segment of length  ( 2⁄  

[25]) which rotates by 2⁄  at both ends, allowing adhesion with contacting filaments at both 

ends. The bending energy stored is 2⁄ . The work performed against friction at 

contact points along the filament is the fiction force, , assumed to be identical at all contacts, 

times the number of contacts, ~ 2⁄ , and times the relative sliding distance of the two 

filaments required by the rotation at contact points: ~ . Therefore, the average of the 

sum of the bending energy and work per filament is 

 Ψ ,       (1) 

where a and b are coefficients of order unity and Ψ  represents the contribution of 

inter-filament friction. For bundling to proceed, the energy gain per filament ⁄  must be 

larger than the energy stored and dissipated. Treating the normalized mean sticking length per 

filament, ⁄ , as a constant smaller than 1, the condition for the onset of system self-

organization becomes:  Ψ Ψ .         (2) 

The relation Ψ~  corresponding to the no friction case (Ψ 0) is shown in Fig. 3 

as the red line bounding above the domain labeled “locked” and in Fig. 2 as the surface 

separating locked and evolving structures. The crosses shown in Figs. 2 and 3 represent 

simulated configurations that remain locked in the initial, “as-deposited” state (Ψ 0).  

The upper region of the map in Fig. 3 corresponds to evolving structures. At low  the 

network disintegrates, while self-organized networks of bundles form at larger . The 

boundary between these two regimes cannot be predicted analytically and is defined 
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approximately based on simulation results. Models with Ψ 0 and various sets of parameters 

are considered and are evolved until stabilization or disintegration. These cases are shown in 

Figs. 2 and 3 with symbols indicating the final state of the system: open circles and filled squares 

correspond to disintegrating and cellular structures, respectively. The side panels of Fig. 3 show 

examples of each structure type.    

Increasing the fiber length  moves any point in the map parallel to the boundary 

between locked and evolving structures, into the cellular range. Increasing the density ρ at 

constant  moves the point to the right. Therefore, cellular structures can be obtained at given γ 

by working with filaments of smaller diameter and larger length, while keeping friction to a 

minimum.  

The results in Fig. 3 apply to a number of nano-fiber systems in which adhesion is 

important. The vertical axis parameter Ψ refers to the fiber properties, while the horizontal axis 

parameter  refers to the network. Keeping  and  arbitrary, it is only possible to compare 

material systems based on their ; note that Ψ~  and / . Parameter  was 

measured [30] for pairs of double wall carbon nanotubes of 2.2 nm diameter to the 1.7 nN. 

Estimates for hydroxyl functionalized carbon nanotubes (CNT) and for carbonyl functionalized 

CNTs are 0.13 nN and 0.24 nN, respectively [30]. The bending rigidity of CNTs does not depend 

strongly on chirality, but varies significantly with the nanotube diameter. For a diameter of 2.2 

nm, 880 nN nm2, while for single wall nanotubes of 0.4 nm diameter, which are circular 

in cross-section, 160 nN nm2 [31]. These values lead to  in the range 20 to 40 nm. 

This very small value of  indicates strong adhesion, which is expected for CNT-CNT 

interaction. Another example is provided by microtubules for which the inter-tube adhesion was 

measured function of the ionic strength of the solution to be in the range 2 10  to  17 10  

nN [32]. With 2 10  nN nm2 [33],  results in the range 10 to 30 μm.   

We observe that cellular structures stop evolving once triangles of fiber bundles form at 

all cell nodes (Figs. 1(b) and 1(f)). These resemble the Plateau triangles known in the physics of 

foams [34]. Plateau triangles form at each junction of three cell walls in the foam, have 

curvilinear triangular section and insure the stability of the foam. While Plateau triangles are 

stabilized by surface tension, the triangular features discussed here are stabilized by the interplay 

of adhesion and bending.  
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 Consider the triangular structure shown in Fig. 4(a) which represents the node 

connecting filament bundles AA’, BB’ and CC’, belonging to a larger network. The structure is 

characterized by the number of filaments in each incoming bundle, ,  and , and the three 

angles,  ,  and . This structure stores adhesion and bending energy. The axial energy of 

the filaments vanishes since these are free to relax in the axial direction. The bending energy is 

stored only in segments AC, AB and BC. All segments store adhesion energy.  

The adhesion energy in a bundle of n filaments per unit length of the bundle is given by 

, where  is the number of binary contacts in the bundle. Harborth [35] has shown 

that the maximum number of contacts in a packing of n congruent circles is 3√12 3. The bending rigidity of a bundle of n filaments is , since fibers are free to slide 

axially. 

Several observations can be made by inspection. Bundles AB, BC and AC forming the 

triangle are loaded in pure bending and hence are arcs of circle. Since these circles must be 

tangent to each other at A, B and C, segments OA, OB and OC are also of equal length. If 

bundles AA’, BB’ and CC’ are straight, the bending moments loading the three edges of the 

triangle are equal.  

This is a pre-stressed, self-equilibrated structure which can be perturbed only by bending 

moments applied at A’, B’ and C’. If segments AA’, BB’ and CC’ are straight, no driving force 

for the evolution of the triangle exists. In all cellular structures simulated to full relaxation the 

cell walls become straight (Fig. 1(b)). Hence, the network stores strain energy only in triangles. 

Figure 4(b) shows a pair of such triangles isolated from one of the cellular structures. To 

demonstrate its stability, this structure was fully relaxed while applying no tractions at the free 

ends of bundles, and its configuration remained essentially unchanged. This can be understood 

considering that the structure in Fig. 4(b) is not loaded by the rest of the network when connected 

to the structure to which it belongs. 

Another possible evolution mode is fiber diffusion along its contour. Reptation is driven 

here only by the difference in chemical potential between the filament ends. Consider a filament 

diffusing from B’ to C’, which would lead to the variation of  and  and hence to the change 

of the triangle shape. The filament has to bend in region BC, which represents a significant 

energetic barrier for reptation. Furthermore, mechanically forcing two triangles against each 

other leads to mutual distortion which requires substantial energy expenditure. We conclude that 
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cellular networks are stabilized by such triangles and, once the cell walls become straight, the 

entire network stops evolving.  

 

 

 
FIG. 4. (a) Triangular structure forming the node connecting bundles AA’, BB’ and CC’ of a 

larger network. (b) Structure containing 2 triangles isolated from a larger cellular network.  

 

3.2 Effect of inter-fiber friction 

 

Inter-fiber friction has a marked effect on the boundary separating locked and evolving 

structures. This boundary is defined by simulations in which the initial stages of system 

evolution are observed. The as-deposited structure is allowed to evolve under the action of 

adhesion, and the angles between crossing fibers are monitored. If the relative position of fibers 

at contact points does not change, the system is considered “locked.” The boundary shown by the 

continuous red line in Fig. 3 corresponds to the case with no friction, Ψ 0, i.e. 0. The 
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crosses in Fig. 3 indicate cases with 0, which were simulated and correspond to locked 

configurations.  

For cases with Ψ 0, i.e. 0, the boundary moves up; these boundaries are shown with 

dashed lines in Fig. 3 for several values of . Figure 5 shows the simulation data points defining 

the position of the dashed lines in Fig. 3. Three columns of data points are shown for each of 

three  values. These correspond to ⁄ 1.7, 2.5, 3.9 and define the blue, red and 

green dashed boundaries in Fig. 5, respectively. The columns labeled with the same  value 

are shifted horizontally for clarity. The blue square data point at the top of each column 

represents an evolving structure corresponding to the respective  and ⁄ . Hence, 

the dashed lines are positioned between the uppermost cross and the corresponding square data 

point of each column.  

For Ψ 0, the boundary is represented by eq. 2: Ψ Ψ . Rewriting this 

expression by using the definition of Ψ , leads to:  log Ψ log 2 log log 1 ,     (3) 

with  being a numerical coefficient. The last term in eq. (3), log 1 , 

represents the deviation of the dashed lines in  Fig. 5 from the continuous red line (representing Ψ 0) for cases with 0. For small deviations, , which indicates 

that ~ ⁄  and ~ , which agrees with the numerical results shown in Fig. 5.  
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FIG. 5. Data points defining the position of the boundary between locked and evolving 

structures for cases with inter-fiber friction. For each of the 3 indicated values of , the three 

columns of data correspond to 3 values of ⁄ , and each defines a boundary shown by 

the dashed lines. The blue square data point at the upper end of each column shows an evolving 

structure.  

 

The analysis indicated that inter-filament friction restricts the onset of system evolution. 

Since Ψ ~ , increasing the filament length at constant  (or ) moves this boundary up. This 

effect is strong and may effectively lock realistic structures in the as-deposited state even at 

small  values.  

 

4. Conclusions 

Similar to elasto-capillarity, adhesion drives the self-organization of filamentary structures. In 

this work we study the structures that result from this process and the effect of inter-fiber friction 

on self-organization. We observe that if adhesion is weak or/and the bending rigidity of fibers is 

large (large elasto-capillarity length), the fibrous structure remains locked in the initial 

configuration. Strong adhesion and/or small fiber bending rigidity promote system evolution. 

The boundary between locked and evolving structures is defined in terms of a parameter 

quantifying the inter-fiber friction. Friction expands the parametric domain of locked structures. 
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Evolving structures either disintegrate or stabilize in the form of cellular networks of fiber 

bundles. This new type of network is sub-isostatic and is stabilized by triangular features that 

form at all network nodes. This stabilization mechanism is purely adhesive in nature and does 

not require inter-fiber friction. These results provide a broad physical picture relevant for a large 

number of fibrous materials ranging from carbon nanotube networks to biological structures.   
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