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Conventional micelles, composed of simple amphiphiles, exhibit only a few standard mor-
phologies, each characterized by its mean surface curvature set by the amphiphiles. Here we
demonstrate a rational design scheme to construct micelles of more general shape from poly-
meric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single
flexible, linear, block copolymer chain containing two incompatible species arranged in mul-
tiple alternating segments. With suitable segment lengths, the chain exhibits a condensed
spherical configuration in solution, similar to conventional micelles. Our design scheme
posits that further shapes are attained by altering the segment lengths. As a first study
of the power of this scheme, we demonstrate the capacity to produce long-lived micelles
of horseshoe form using conventional bead-spring simulations in two dimensions. Modest
changes in the segment lengths produce smooth changes in the micelle’s shape and stability.

Figure 1. (Color online) Illustration of lock and key
mechanism, adapted from [7]. The enzyme, in yel-
low, is meant to interact specifically with a substrate,
shown in green. To avoid unwanted interactions, the
enzyme has a specific shape to which only a substrate
of complementary shape may bind. More generally,
the term “lock and key mechanism” may refer to any
interaction controlled by shape.

I. INTRODUCTION

Amphiphilic molecules have self-organizing
behavior, which makes them useful for a vari-
ety of applications. One application that has
received much attention is drug delivery using
micelle carriers [1–3]. Among other things, it
is found that the shape of the micelles a↵ects
their drug delivery performance, for example by
altering how much drug can be loaded into the
micelle, where in the body the drug accumulates,
or how long the drug remains in the body [4, 5].
More generally, shape can be used to facilitate or
inhibit interactions, as in the well-known “lock
and key” mechanism [6], shown in Fig. 1. In

fact, the lock and key mechanism has already
been used with dimpled sphere-shaped colloids
to create self-assembled structures [8], and it
would seem straightforward to apply this same
concept to micelles. This paper presents a strat-
egy for influencing the natural shape of a micelle
by controlling the way it is constructed. Specifi-
cally, we demonstrate, through simulation, the
ability to design the shape of a micelle con-
structed from a linear multiblock copolymer by
choosing the lengths of its constituent blocks.
Our strategy is motivated by recent advances
in polymer synthesis allowing for realization of
linear multiblock copolymers with individually
controlled block lengths1.

Much work has been done to study the fac-
tors influencing micelle shape. One line of inves-
tigation is to assume a continuum energy model
for the micelle surface, and study the resulting
ground states and fluctuations [13–16]. To make
contact between the continuum parameters of
these models and the physics of the micelle on
the scale of a single amphiphile, simulations of
suitable structures (bilayers, tethers, etc.) made
out of the micelle’s constituent amphiphiles may

1 While synthesizing such a multiblock copolymer is
by no means trivial, recent experiments [9–12] have
demonstrated synthesis of block copolymers of up to
twenty blocks having dispersities of 1.2 or less, indi-
cating that the state of the art is rapidly advancing
toward, if it has not already achieved, the precision
necessary to reliably create these multiblock copoly-
mers.
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be conducted to determine the continuum pa-
rameters inherent to the amphiphiles (such as
the amphiphile surface density, bending modu-
lus, etc) [17–26]. Instead of investigating the
continuum properties of the micelle shape to
infer geometrical features, micelles of interest
may be directly simulated with a particle-based
model (with either atomic or coarse-grained res-
olution) [27–32]. Additionally, micelle shape can
be studied experimentally [33–36]. In the con-
text of the approaches described in the previous
paragraph, our work falls into the category of
directly simulating the micelle using a particle-
based model. We choose this approach over a
continuum representation for two reasons. First,
we are interested in micelles whose size is on
the order of the amphiphile length, where the
scale of surface fluctuations can be roughly ten
percent of the micelle size [37]. Second, we at-
tempt to resolve average positions of individual
amphiphile junction points. However, unlike the
micelle simulations of [27–32], which study only
the topology or rough shape features such as size
or aspect ratio, this work seeks to obtain precise
control of the micelle shape. Fine shape control
is desirable both because it is a requirement of
the lock and key interactions referenced in [8],
and because it can be used to alter a micelle’s
drug delivery properties. We revisit these appli-
cations in Sec. VE, discussing how the results of
this work may be relevant.

A. Shape-design rationale

To obtain this fine shape control we construct
the micelle from one linear multiblock copoly-
mer containing two species of monomer, a solvo-
phobic species that is immiscible with the sol-
vent and a solvophilic species that dissolves well
in the solvent, arranged into segments of judi-
ciously chosen length made purely of one species
or the other. To better explain how the choice of
segment length a↵ects the micelle shape, we view
the multiblock copolymer not as a sequence of
chemically pure homopolymer segments joined
together, but rather as a sequence of diblocks
joined end to end so that the chemically sim-
ilar ends of sequential diblocks are joined. In

hompolymer blocks

diblock diblock diblock

Figure 2. (Color online) Two views of a model
multiblock copolymer. The multiblock contains two
species of monomer beads, shown in red (light gray)
and blue (dark gray), connected by bonds shown in
black. One view of the multiblock is as a collection
of homopolymer blocks. The other view represents
the multiblock as a collection of diblocks joined end
to end.

this view, the ends of each homopolymer seg-
ment correspond to diblock junction points, and
a bond joining sequential diblocks occurs in the
middle of a homopolymer segment. Figure 2 il-
lustrates the two ways of viewing the polymer
chain.

There are two reasons it is advantageous to
view the micelle as a collection of diblocks. The
first is that the applicability to drug delivery ap-
plications cited above, in which the drug carri-
ers are micelles formed from (disconnected) di-
block copolymers, becomes more apparent. The
second reason is that viewing the micelle as a
collection of diblocks having adjustable block
lengths provides a straightforward, theoretically
informed strategy for choosing the multiblock’s
segment lengths. The relationship between the
diblocks’ block lengths and micelle’s shape is de-
termined by the requirement that diblocks pack
e�ciently on the micelle surface. There are two
factors that a↵ect surface packing: the first is the
energetic interactions between the monomers,
and the second is the diblock chain stretching
entropy. Intuition may be gained by considering
the limit of long blocks, where scaling arguments
yield analytic results, as reported in [38]. For
example, one particularly relevant result of [38]
is an analytical expression for the dependence
of the preferred mean curvature of an interface
containing a monolayer of diblocks on the block
lengths. Even though a continuous range of pre-
ferred mean curvature can be achieved by ad-
justing the relative block lengths of a diblock, it
is known that only three shapes can be achieved
by micelles composed of a single species of di-
block: spherical, cylindrical, and bilayer [39] (see
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Figure 3. (Color online) Illustration of micelle shape
dependence on diblock composition. Diblocks with
a very small solvophobic block tend to form highly
curved spherical micelles. Diblocks with a more sym-
metric composition form flat bilayers. The case of
cylindrical micelles is intermediate to these two. Fig-
ure adapted from [40].

Fig. 3).
By contrast, we expect micelles containing

several species of diblock (or, in the alternate
view, multiblocks containing homopolymer seg-
ments of varying lengths) to exhibit a much
larger variety of shapes. The design method for
achieving a desired shape presented in this paper
is to choose the block lengths of the constituent
diblocks so that their associated preferred curva-
tures matches the curvature of the desired shape.
In practice, it is not su�cient to simply choose
a set of block lengths; additionally, the diblock
positions must be controlled so that the desired
curvature is imprinted at the desired location on
the surface. It is exactly for this reason that
the diblocks are joined together into one lin-
ear multiblock copolymer—the added bonds be-
tween the diblocks hinder unwanted movement
across the micelle surface. An illustration of this
shape-design mechanism is given in Fig. 4.

B. Motivation

The micelle shape-design method described
above is one means of creating self-assembled
globular objects of controlled, macromolecular
size. It is useful to contrast this method with
other means of making globules of regulated

form. The first of these is perhaps the most
familiar: crystal growth. Like the micelles we
propose in the this paper, crystals have well-
defined geometrical characteristics (e.g., lattice
planes) that emerge from the local interactions
between their constituents. Another similarity
with micelles is that crystals result from non-
specific interactions resulting from only a few
chemical species. Due to the non-specificity of
the interactions, a crystal may deform (e.g., by
dislocation glide), without losing its natural geo-
metric characteristics, as each atom or molecule
is left in an identical environment after the de-
formation. However, there are many di↵erences
between micelles and crystals. The most im-
portant di↵erence for our purposes is that crys-
tals do not naturally form well-defined finite
shapes; instead, the size of the self-assembled
structure is determined only by the amount of
constituents present. Additionally, the shapes
formed by crystals can be categorized into only
a few classes, further limiting the shape control
that can be achieved through selecting the con-
stituents. Another important di↵erence is that
crystals are solid, and therefore do not have fluc-
tuations.

The second naturally occurring system, per-
haps more similar to our micelles, is a globular
protein. It could be said that globular proteins
are more similar to our micelles because they
both have a well-defined shape and size deter-
mined by their composition. However, unlike the
micelles we propose, the shape of a globular pro-
tein is determined by specific, high-energy, local-
ized interactions between its constituent amino
acids. This leads to the “protein folding prob-
lem”: the folded shape of the protein is di�-
cult to predict from the sequence of amino acids.
If the amino acid sequence is even slightly al-
tered, the shape is often completely destroyed.
Also owing to the specific nature of the inter-
actions, if a protein’s shape is significantly de-
formed, many atoms’ environments become com-
pletely di↵erent, so that the shape is irreversibly
lost. By contrast, the non-specific interactions
responsible for amphiphile aggregation allow for
a smooth dependence of energy on the micelle
configuration, so a perturbed micelle returns to
its equilibrium shape. Also, the simplicity of the



4

non-specific interaction allows for the straight-
forward design strategy described in Sec. IA;
there should be no analogy to the “protein fold-
ing problem” for the micelles we consider. Addi-
tionally, the tight nature of the bonds in proteins
gives a solid-like character leading to low shape
fluctuations, while micelles may have large fluc-
tuations, which may be used, e.g., to regulate
drug delivery or reduce the shape specificity of
lock-and-key interactions.

C. Scope of this paper

In Sec. IA, we described our shape-design
strategy as judiciously selecting block lengths
for diblock copolymers to achieve a desired pre-
ferred curvature profile, and then joining these
diblocks into one multiblock copolymer to con-
strain their positions on the micelle surface. To
organize the following discussion, we distinguish
two challenges associated with this shape-design
mechanism. The first challenge is to determine
which block lengths should be selected for each
diblock on the micelle surface in order for the mi-
celle to spontaneously adopt the desired shape in
thermal equilibrium. We call this the shapability
challenge. The second challenge is to constrain
the diblocks so they keep their intended position-
ing on the micelle surface, which we attempt to
do by joining the diblocks together. We call this
the stability challenge.

Were the diblocks not joined together, there
would be a number of ways the stability chal-
lenge could fail to be met. For example, the
diblocks might di↵use on the surface of the mi-
celle, washing out the intended curvature profile
and leaving only a uniform spontaneous curva-
ture profile in its place. A more extreme example
is for the micelle to divide into two disconnected
pieces. Alternatively, two micelles could merge
into an aggregate containing both constituent
multiblock copolymers. Since we wish to avoid
these situations, we call a micelle “malformed”
if it contains more than one copolymer chain or
a single chain’s constituent diblocks do not have
their intended relative positioning. Conversely,
we call a micelle “well formed” if it is composed
of a single copolymer chain with the diblocks in

their intended positions.

This work is a first study of the proposed
shape-design mechanism and we would like to as-
sess its promise, and so we choose to focus on the
shapability challenge. Accordingly, we avoid the
stability challenge for the time being. Still, to
perform the study of micelle shape needed to ad-
dress the first challenge, we must somehow pro-
duce an ensemble of well-formed micelles. Some
progress can be made by joining the diblocks end
to end, as described in Sec. IA, to form a linear
multiblock copolymer. Indeed, we find that this
scheme causes most simulated micelles to be well
formed. Unfortunately, we find that well-formed
micelles are only metastable, so that over time
the micelle becomes malformed. Nevertheless,
well-formed micelles do constitute a statistical
ensemble (to be explicitly defined in Sec. III C),
and we can analyze the statistics of the thermo-
dynamic ensemble of well-formed micelle shapes.
To determine the appropriate statistical weight
of the well-formed micelles in the presence of
malformed micelles, we take a rejection-sampling
approach: we simply discard any simulation runs
containing malformed micelles. However, with-
out a clear path to ensuring the micelles are
well formed, one may question the usefulness
of this analysis on the grounds that well-formed
micelles are unstable, ultimately becoming mal-
formed, so that the well-formed shapes are ul-
timately irrelevant. To address this concern, we
comment on what measures may be taken to sta-
bilize well-formed micelles in Sec. VC.

The purpose of the paper, then, is to address
the shapability challenge: to show that the equi-
librium micelle shape features can be controlled
by selecting the species of constituent diblocks at
each point on the micelle surface. For simplicity,
we consider a two-dimensional system, and we
restrict our attention to a case study of a shape
with a single concave dimple similar to the one
in Fig. 4. We choose this shape because it is
a minimal example requiring our shape-design
mechanism: while it is simple, it does not arise
as an equilibrium shape of a micelle composed
of diblocks of a single species. While a two-
dimensional model is not directly applicable to
any realizable polymer system, such a model can
nevertheless accurately represent many aspects
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Figure 4. (Color online) Schematic of proposed
mechanism for making micelles of designed shape.
A shape-designed micelle, shown in two dimensions
for simplicity, has a solvophobic interior (shown in
red). At the surface, there are diblocks contain-
ing both solvophobic and solvophilic (shown in blue)
blocks. The interface between the solvophobic and
solvophilic regions is shown in black, and it has a
concave dimple. The inset shows how our shape-
design mechanism gives rise to the designed shape:
regions of the micelle surface where a convex curva-
ture is desired are populated with diblocks having a
larger solvophilic block and consequently preferring
a convex curvature, while regions to be made con-
cave are populated with diblocks containing larger
solvophobic blocks, thereby preferring more concave
curvature. Bonds, indicated in black, connect the di-
blocks end to end forming a multiblock copolymer in
order to fix diblocks in their intended positions.

of the polymer’s behavior. Benefits and limita-
tions of using a two-dimensional model in the
context of this work are discussed in Sec. VD.

In order to show that the shapability chal-
lenge can be met, it is necessary to develop a
formalism for determining a micelle’s equilib-
rium shape features. One must make a quantita-
tive measure of the micelle shape, and determine
a method of averaging in the presence of large
thermal fluctuations. One must also determine
the uncertainty in the average in order to as-
sess the significance of the observed dependence

of the micelle shape on the species of diblocks
on the micelle surface. Additionally, statistical
tests must be performed to determine if the re-
sults accurately represent thermal equilibrium.
The work described in this paragraph requires
considerable e↵ort and accordingly a significant
fraction of this paper is devoted to addressing
these issues.

The remainder of this paper is organized as
follows: In Sec. II, we describe our polymer
model and how this model is simulated, in-
cluding the system of units used and how the
polymeric micelles are represented and initial-
ized in the simulation. In Sec. III, we describe
how micelle shape properties are extracted from
the simulation results, how the uncertainties in
these properties are estimated, how we test that
the results truly represent thermal equilibrium,
and which specific shape features we study. In
Sec. IV, we apply the analysis methods of Sec. III
to micelle simulations, showing that these meth-
ods give self-consistent results and demonstrat-
ing the extent to which our shape-design mech-
anism a↵ects features of the micelle shape. In
Sec. V, we discuss future work suggested by this
research and the implications our results have
for the applications mentioned above.

II. METHOD

In this section, we describe how our micelles
are simulated. A simulation requires an under-
lying physical model specifying, for example, the
degrees of freedom used to represent the system
and the interactions governing the system. To
describe these interactions, and to describe the
behavior of the micelle model more generally,
we choose a system of units for the purposes of
nondimensionalization. With the system of units
and model specified, it is necessary to choose a
method to simulate the model system. Because
the applications we consider in Sec. I concern
micelles in thermodynamic equilibrium at some
finite temperature, the goal of the simulation is
to produce a Boltzmann-distributed ensemble of
micelle configurations. Lastly, we describe how
shape-designed micelles are represented in the
simulation and what initial configuration we give
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them.

A. Model and Simulation Method

Since we expect our shape-design mechanism
ought to apply very generally without regard
to the specific features of a particular chemi-
cal structure, we choose a simple model hav-
ing the minimum content necessary to exhibit
our shape-designed mechanism. Specifically,
we use a coarse-grained two-dimensional bead-
spring model with implicit solvent, similar to
the models used in [41–44]. In our model, a
polymer is represented as a sequence of beads,
each described by only a position and a com-
mon diameter. By “coarse-grained”, we mean
a simulation bead does not represent just a sin-
gle atom or even a single monomer, but rather
several chemical repeat units. Any sequential
pair of beads in the polymer is connected by
a bond represented by a harmonic pair poten-
tial. In addition to these bond potentials, the
beads also interact through a short-range pair
potential. Since the solvent is treated implic-
itly, the nature of the short-range interaction be-
tween two beads depends not only on the mate-
rial composing the two beads, but also on the
solvent. For example, beads representing the
same non-polar hydrocarbon would have a more
attractive pair potential when immersed in a
polar solvent than they would when immersed
in a non-polar solvent. To represent diblocks,
our model has two species of bead: one solvo-
phobic and one solvophilic. The solvophilic-
solvophilic and solvophilic-solvophobic pair
potentials are purely repulsive, while the
solvophobic-solvophobic pair potential has an
additional attractive term. The interaction po-
tentials were chosen with an eye to ease of com-
putation and minimal steric constraint, while
giving a concentrated, strongly immiscible solvo-
phobic phase. No special e↵ort was made to
optimize this potential once a suitable one was
found. Details are given in Appendix A.

To meaningfully talk about dimensioned
quantities of our model system, we must estab-
lish a system of units. Due to the abstract, two-
dimensional nature of our model, we do not find

it useful to describe our system in terms of real
units (e.g., Angstroms, nanoseconds, etc.). In-
stead, we pick a set of constants fundamental
to the model itself against which all other quan-
tities will be nondimensionalized. Since we are
ultimately interested in finding the thermal equi-
librium properties of the micelles, a natural unit
of energy is the thermal energy kBT , where kB

is Boltzmann’s constant and T is the temper-
ature of the system being simulated, which, as
shown in Appendix C, is like room temperature
for our model polymer. As we are simulating
polymers, we choose the unit of length to be the
root-mean-square thermal length Ltherm of the
harmonic spring connecting two adjacent beads
(ignoring the close-range pair potential). In two
dimensions, the system has two internal degrees
of freedom, so we find by the equipartition the-
orem that the unit of length Ltherm is given by

kBT =
1

2
kL

2
therm, (1)

where k is the spring constant of the harmonic
potential. To complete our system of units, we
may take our unit of mass to be the bead mass.
For the remainder of this paper, we nondimen-
sionalize all physical quantities using this system
of units.

To determine the average micelle shape re-
sulting from this model, we perform a constant
temperature molecular dynamics simulation us-
ing LAMMPS [45]. Details of the simulation pa-
rameters are discussed in Appendix B. Having
described the model and the simulation method,
it is necessary to show that our choices of pa-
rameters for both the model (e.g., parameters
governing the bead pair potentials) and simu-
lation method result in the simulated polymer
behaving similar to typical real, physical poly-
mers at room temperature; this is the purpose
of Appendix C.

B. Micelle design

We now describe how our model is applied
to demonstrate our shape-design mechanism.
Specifically, we discuss how the shape-designed
micelle is represented in the simulation. Recall
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that the goal of this paper is to create a micelle
with a concave dimple by constructing it from
multiple diblock species. In Sec. I C, we iden-
tified two challenges in achieving this goal: the
shapability challenge of selecting diblock species
to produce the desired shape, and the stability
challenge of ensuring the diblocks have their in-
tended positioning over the micelle surface.

First, we describe how the shapability chal-
lenge is addressed in our model. For simplicity,
we construct the micelle using just two diblock
compositions. A diblock composition is char-
acterized by the number of its solvophilic and
solvophobic beads, denoted next and nint, respec-
tively. As explained earlier, we expect a diblock
containing relatively more solvophilic beads to
prefer a more convex curvature, and a diblock
containing relatively more solvophobic beads to
prefer a more concave curvature. For a prag-
matic measure of the relative prevalence of ei-
ther species of bead in a diblock, we introduce
the “asymmetry ratio” r of a diblock, given by:

r =
next � nint

next + nint
. (2)

The asymmetry ratio is zero for diblocks having
an equal number of solvophobic and solvophilic
beads, and it is 1 or �1 for polymers made
purely out of solvophilic or solvophobic beads
respectively. We expect a positive correlation
between the asymmetry ratio of a diblock and
its preferred curvature. Therefore to implement
our shape-design mechanism, we should position
higher asymmetry ratio diblocks (we call these
diblocks “solvophilic-rich”) along the most of the
surface of the micelle, and lower asymmetry ra-
tio diblocks (we call these diblocks “solvophobic-
rich”) where the dimple is intended to be.

In addition to the diblocks, we add one more
ingredient to the micelle: a solvophobic ho-
mopolymer chain, which we call a “core seg-
ment”. The number of beads in the core seg-
ment gives an additional degree of control over
the size of the micelle, which, as will be shown in
Sec. IVB, a↵ects other properties of interest. In
our simulations, we chose specific block lengths
for the core segment and the diblocks; these are
given in Sec. IV.

Next, we describe how the stability challenge

•••

•••

core segment

solvophobic-rich diblocks

solvophilic-rich diblocks

Figure 5. (Color online) Schematic of multiblock
bond architecture. The disks in the top row and the
red (light gray) disks from the bottom rows repre-
sent solvophobic beads, while blue (dark gray) disks
represent solvophilic beads. Black segments rep-
resent bonds between beads. The multiblock be-
gins with a core segment composed of solvophobic
beads shown in tan (top of schematic). To this seg-
ment solvophobic-rich diblocks, outlined in black as
in Fig. 6, are successively attached end to end. Lastly
solvophilic-rich diblocks are attached end to end. The
“•••” symbols represent further diblocks not shown.

is addressed. We constrain the diblock positions
by introducing additional bonds joining all the
diblocks and the core segment together into a
single linear multiblock copolymer, with the di-
blocks joined end to end. It remains to spec-
ify the order of the core segment and the two
species of diblocks within the multiblock copoly-
mer. The core segment appears on one end of the
multiblock, followed first by all the solvophobic-
rich diblocks and then by the solvophilic-rich
diblocks as illustrated schematically in Fig. 5.
An example of a micelle formed by a multiblock
copolymer so constructed is shown in Fig. 6.

C. Simulation initialization

To begin a molecular dynamics simulation of
a micelle, an initial configuration is required. If
the simulation is to address the central ques-
tion of this paper as outlined in Sec. I C, there
are two requirements the initial configuration
must satisfy. First, because we are interested
in studying only well-formed micelles, which are
only metastable, the initial configuration must
be well formed. Indeed, if our multiblock copoly-
mer is initialized in a less favorable configuration
(say, a random walk or linear configuration), we
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Figure 6. (Color online) Illustration of how a mi-
celle designed to have a dimple is constructed in our
model. The micelle contains both species of beads
present in our model: solvophobic, shown in red
(light gray) or tan (darker gray beads in the micelle
interior), and solvophilic, shown in blue (dark gray
beads along the micelle surface). The micelle con-
sists of a long “core segment” of solvophobic beads
shown in tan (darker gray beads in the micelle in-
terior), and a collection of diblocks. There are two
species of diblocks: a “solvophobic-rich” species with
two solvophilic beads and thirteen solvophobic beads
(outlined with black), and a “solvophilic-rich” species
with four solvophilic beads and twelve solvophobic
beads. These diblocks are joined end to end. The
dimple is intended to appear in the region occupied
by the solvophobic-rich diblocks, as shown (indeed,
the above configuration was taken from a simulation).

find that it does not self-assemble into a well-
formed configuration during the course of a sim-
ulation, consistent with the results of [46]. Sec-
ond, because we are interested in showing that a
dimpled shape occurs spontaneously in thermal
equilibrium, the initial configuration should not
be biased toward creating a dimple.

To satisfy these two requirements, we initial-
ize the micelle in a well-formed circular config-
uration, shown in Fig. 7. We now describe the
process of generating this configuration in more
detail. We begin by initializing the core segment

Figure 7. (Color online) Initial relaxed configura-
tion of simulated model shape-designed micelle, as
described in the text. Color coding is as in Fig. 6.
The resulting micelle configuration has the intended
topology and surface diblock ordering, but is not bi-
ased toward its intended dimpled shape.

as a random walk starting at the origin with
step length similar to the average bond length.
Next, each diblock is initialized in a straight line
pointing away from the origin. The solvopho-
bic ends of each diblock are evenly spaced on
a circle centered at the origin, whose area is
equal to the area occupied by the core segment
as calculated from the equilibrium homopolymer
density. After this configuration is constructed,
a conjugate gradient minimization of the mi-
celle energy is performed to relax any extreme
forces that may arise due to unnaturally large
bond stretching or bead overlaps. The relaxed
configuration produced by the energy minimiza-
tion determines the initial bead positions for the
molecular dynamics simulation. Since we per-
form molecular dynamics, the initial velocities
must be specified in addition to the initial po-
sitions. These initial velocities are drawn from
a Boltzmann distribution having the same tem-
perature as the simulation thermostat. In this
initialization scheme, there are two sources of
randomness which ultimately lead to variable re-
sults from the otherwise deterministic simulation
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procedure: the first is the random initial veloc-
ities just discussed; the second is the random
initial configuration of the core segment.

III. ANALYSIS

In this section we discuss how the informa-
tion from a molecular dynamics simulation is
analyzed. Since the goal of this work is to cre-
ate single-polymer micelles of a designed shape,
one goal of the analysis is to determine the av-
erage micelle shape from the simulation output.
In Sec. III A, we devote significant e↵ort toward
just defining what we mean by shape and how to
determine the average of an ensemble of strongly
fluctuating shapes. Besides the average shape,
another quantity of interest is the shape fluctua-
tions. In Sec. III B, we describe how we estimate
these fluctuations, and how we use this estimate
to determine the uncertainty in the mean shape.

The material in Secs. III A and III B deals
with the analysis of a single simulation’s out-
put, but in practice the output of many simula-
tions are combined. Since well-formed micelles
are only metastable, simulation results are often
discarded as mentioned in Sec. I C. In Sec. III C,
we specify the exact criteria used to discard
a simulation’s results. Section IIID describes
how the remaining results are combined to ob-
tain a best estimate of the quantities of inter-
est. In Sec. III E, we describe how the results
of these independent simulations can be cross-
checked against each other to validate the sta-
tistical analysis mentioned above. Finally, in
Sec. III F, we define two scalar properties—one
characterizing the average shape and one, the
shape fluctuation—in order to distill the geomet-
ric features we are most interested in.

A. Average shape from simulation run

In this section, we introduce a quantitative
representation of micelle shape, and we define,
after giving some motivation, a formula for find-
ing the average of a set of micelle shapes. As
a simulation runs, it records information about
the micelle configuration at regular intervals of
simulation time. Since we are only interested in

the shape of the micelle, we do not record the
position of every bead. Instead, we record only
the location of the junction points: the midpoint
of two beads that are adjacent along the poly-
mer backbone but have opposite solvophobicity.
A micelle has only as many junction points as di-
blocks it was constructed from. For the remain-
der of this paper, we define the term “micelle
shape” to mean the ordered sequence of junc-
tion points. As such, a micelle shape has the
mathematical form

=
�
r1, r2, . . . , rn, . . . , rNj

�
, (3)

where Nj is the number of junction points
in the micelle, and each rn is itself a two-
dimensional spatial vector representing the nth
junction point’s position:

rn = (rn1, rn2) . (4)

Since we are interested only in the relative
positions of the junction points, and not overall
translations of the shape, we assume without loss
of generality that each shape is geometrically
centered at the origin so that

NjX

n=1

rn = 0. (5)

A micelle simulation outputs a time series of
micelle shapes; however, the statistical informa-
tion of interest can be summarized by just the
average micelle shape and the fluctuations about
this average. The process of obtaining this aver-
age contains some subtlety. For example, a sim-
ple arithmetic average will not su�ce because
the arithmetic average of a micelle shape and the
same shape rotated by 180� is a micelle shape
with every junction point at the origin. Instead,
since the shapes are merely di↵erent by rota-
tions, these two shapes should be considered the
same, so that the average would somehow give
the same shape back again.

We define an appropriate average in two
steps: first we introduce a metric giving the true
di↵erence between two shapes, then we define
the average of a set of shapes to be the shape
that minimizes the sum of these di↵erences.
To define the metric, we first define an “ex-
trinsic” di↵erence metric �ext( , ) between two
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shapes and as the sum of square di↵er-
ences of corresponding position components. In-
troducing some notation, this di↵erence may be
written as

�ext( , ) = ( � )2 , (6)

where the square 2 of a shape is given by the
dot product · of the shape with itself, and
the dot product of two shapes is defined as the
sum of dot products of corresponding junction
points:

· =

NjX

n=1

an · bn. (7)

An illustration of this distance metric is given in
Fig. 8a.

The di↵erence metric�ext has a shortcoming:
it has a nonzero value when evaluated on two
shapes di↵ering only by a rotation. Since there is
no natural frame in which the shapes are defined,
we desire a metric which is insensitive to rotation
of either of its arguments. To this end, we define
an “intrinsic” di↵erence metric �int defined as
the minimum of �ext with respect to rotations
of one of its arguments. The action of a spatial
rotation

R✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
(8)

on a shape is defined junction point by junction
point:

(R✓ )n = R✓ (rn) . (9)

Then the intrinsic di↵erence �int has been de-
fined by

�int( , ) = min
✓

�ext (R✓ , ) . (10)

An illustration of the intrinsic di↵erence �int is
given in Fig. 8b.

It can be shown2 that the angle ✓̌ minimiz-
ing Eq. (10) is the signed angle that the two-

2 The proof is simple. �ext in Eq. (10) is minimized when
(R✓ ) · is maximized. Now, R✓ may be written as
cos ✓ + ^ sin ✓. Using this representation, the prod-

uct (R✓ )· can be transformed into a two-dimensional
dot product (cos ✓, sin ✓) · ( · , ^ ). This product
is maximized when the unit vector (cos ✓, sin ✓) points
in the direction of ( · , ^ ), hence Eq. (11). With
no more e↵ort, we see that the maximum value of the
dot product is the length of the same vector, leading
to Eq. (14).

-2 2

-2

(a)

-2 2

2

(b)

Figure 8. (Color online) Illustration of the di↵erence
metrics �ext, defined in Eq. (6) and �int defined in
Eq. (10). In (a), two shapes, and are shown,
together with the displacement vectors �r1, �r2,
and�r3 connecting corresponding vertices of the two
shapes. As specified by Eq. (5), both shapes are geo-
metrically centered on the origin. The di↵erence�ext

is given by the sum of square lengths of these vectors:
�ext( , ) =

P3
i=1 �r2i . In (b) the same two shapes

are shown, except is rotated about the origin by the
angle ✓̌ that minimizes �ext. Consequently, the dis-
placement vectors �ri are clearly smaller here than
in (a). The intrinsic di↵erence �int is defined as this
minimum value of �ext.

dimensional vector

( · , ^ ) (11)

makes with the vector (1, 0), where the wedge
product of two shapes is defined by

^ = (^ ) · , (12)

and where the wedge ^ of a shape is simply
the result of rotating it by ⇡/2:

^ = R⇡/2 . (13)
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Thus e.g., if = , then · is positive and
^ = 0, so that ✓̌ = 0. Indeed if and

are any two aligned shapes, so that ✓̌ = 0, then
· must be positive and ^ must be zero.

If instead = ^ , then · = 0 and ^ is
positive, so that ✓̌ = +⇡/2. It can be shown
that the intrinsic di↵erence between two shapes
can be calculated explicitly as

�int( , ) = 2 + 2 � 2
q

( · )2 + ( ^ )2.
(14)

If the shape is then rotated by the mini-
mizing angle ✓̌, then we say has been aligned
with . (In general we will use a “ˇ” to indi-
cate that a quantity has been somehow aligned.)
We note that, somewhat counter-intuitively, the
relationship of being aligned is not transitive: if
is aligned with , and is aligned with some

third shape c, is typically not aligned with c.
Having defined the appropriate notion of

shape di↵erence, we now define the average. Ow-
ing to the nontransitivity of alignment, the defi-
nition is more involved than might be expected:
it is not possible to simply align all the shapes
with each other and then do a simple average,
because, as stated above, it is typically impossi-
ble for even three shapes to be pairwise aligned
with each other. Instead, given a time series of
Ns simulated shape samples ↵, ↵ = 1, 2, . . . , Ns,
we define their average ¯ as the shape that min-
imizes the sum of �int with the samples3:

¯ = argmin
NsX

↵=1

�int ( , ↵) . (15)

Because �int is defined only up to rotations, this
definition of ¯ is defined only up to rotation. The
rotational degree of freedom can be fixed e.g. by
making the first junction point r̄1 lie on the pos-
itive x axis. Once a choice of orientation of ¯
has been made, the orientation of each sample

↵ can be fixed by aligning it with ¯; we denote
this aligned shape sample ˇ↵. This method of
averaging is illustrated in Fig. 9. To justify our

3 We use argmin to represent the operation of finding
the argument which minimizes a function. That is, if
x⇤ = argmin

x
f(x), then f(x⇤) is the minimum value of

f .

-2 -1 1

-2

-1

1

2

Figure 9. (Color online) Illustration of the average
¯ of three shapes 1, 2, and 3. The original i

are not shown; instead, the result ˇi of aligning i

with ¯ is shown. For definiteness, we have fixed the
otherwise arbitrary orientation of ¯ by positioning its
first junction point on the x axis.

choice of this method of averaging, we show in
Appendix D that it is equivalent to another nat-
ural method of averaging.

B. Shape variance from simulation run

In addition to the average micelle shape, we
have stated that the shape fluctuations can be
used to control the micelle’s interactions. The
fluctuations are characterized by a 2Nj ⇥ 2Nj

variance matrix ⌃, defined by

⌃ =
1

Ns � 1

NsX

↵=1

(ˇ↵ � ¯)⌦ (ˇ↵ � ¯) , (16)

where the tensor product ⌦ gives the 2Nj ⇥
2Nj second rank tensor that acts on a shape
according to the rule ( ⌦ ) · = ( · ).

These shape fluctuations limit the precision
to which the mean shape ¯ is determined. Natu-
rally, one wants to be able to quantify this preci-
sion. Indeed, to convincingly show that the mi-
celle’s shape depends on its composition, as we
indeed set out to do, we must show that the vari-
ability in the mean shapes cannot be explained
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only by the uncertainty caused by the limited
precision of the simulation technique. Conse-
quently, it is necessary to estimate this uncer-
tainty in the mean shape. A naive estimate for
the variance matrix ⌃̄ representing the degree of
uncertainty in ¯ is ⌃/Ns. However, this would
underestimate the uncertainty since the shape
samples are correlated. If the system was de-
scribed by a single correlation time of ⌧ sam-
pling intervals, then the correlations could be ac-
counted for by using the estimate ⌃⌧/Ns. How-
ever, to make matters more complicated, there is
no single correlation time describing the correla-
tions in the sample. Typically we find large scale
cooperative fluctuations have longer correlation
times than high wavenumber fluctuations.

To address this complication, we find the au-
tocorrelation time of each fluctuation mode inde-
pendently, as we now describe in more detail. A
mode m` is an eigenvector of the variance matrix
⌃. This eigenvector has a corresponding eigen-
value ⌃`, so that

⌃ =

2NjX

`=1

⌃`m` ⌦ m`. (17)

(To fix the ordering of the m` with respect to `,
we arrange them in decreasing order of ⌃`.) For
each `, we define time series of mode amplitudes
A`↵ given by

A`↵ = (ˇ↵ � ¯) · m`. (18)

Under su�cient simplifying assumptions, the
mode amplitudes A`↵ may be used to estimate
the uncertainty in ¯, following canonical meth-
ods [47]. Specifically, this estimate of uncer-
tainty assumes that the mode amplitudes A`↵

are su�ciently small that shape fluctuates as
a harmonic system in thermal equilibrium and
consequently the normal mode amplitudes fluc-
tuate independently. In such a harmonic system
each mode m` has a characteristic autocorrela-
tion time ⌧` (in units of the sampling interval),
which we estimate using the initial convex se-
quence estimator of [48]. Samples of the ampli-
tude separated by times longer than ⌧` sampling
intervals may be viewed as statistically indepen-
dent, so that the number of independent samples

-60 0 60
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Figure 10. (Color online) Graphical representation
of an average micelle shape and its fluctuations and
uncertainty. The central green curve linearly inter-
polates the average position of each diblock junc-
tion point. The region of the surface occupied by
solvophobic-rich diblocks is outlined in black. For
each junction point, a large blue ellipse and a smaller
red ellipse is drawn. A blue ellipse represents the 40%
confidence region, corresponding to one standard de-
viation from the mean, for a junction point assuming
a Gaussian distribution with variance given by the
shape variance ⌃ of Eq. (16). In the same way, a red
ellipse represents the variance in the mean shape ⌃̄
of Eq. (19).

of the `th mode amplitude is Ns/⌧`. Accord-
ingly, the squared uncertainty in the mean along
the m` direction is estimated to be the variance
⌃` of the shape distribution along this direction
divided by the number of independent samples
Ns/⌧`. We therefore estimate the variance ma-
trix ⌃̄ given the uncertainty in the mean by

⌃̄ =

2NjX

`=1

⌃`

Ns/⌧`
m` ⌦ m`. (19)

A graphical representation of an average micelle
shape together with its variance and variance in
mean is shown in Fig. 10.

Since this uncertainty estimation ignores un-
certainties in the mode eigenvectors m`, and
moreover our system’s fluctuations may be too
large to permit a harmonic approximation, the
estimate of Eq. (19) may be inaccurate. However
in Sec. III E, we will describe a way of validat-
ing Eq. (19) by checking whether the expected
uncertainty in ¯ within a simulation run is con-
sistent with the repeatability of ¯ over several
simulation runs. Then in Sec. IVA, we will use
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this validation to show our results are largely
consistent with this harmonic scheme.

C. Rejecting malformed micelles

In the case shown in Fig. 10, the diblock junc-
tion points make a smooth curve along the sur-
face of the micelle, indicating that the bonds
joining the diblocks were su�cient to make the
micelle well formed. However, this is not the case
with every simulation. Fig. 11a shows a case
where multiple diblock junction points crossed
from one side of the micelle to the other. In ad-
dition to this example, we have observed cases
where the solvophobic region of the micelle splits
into two or more disconnected pieces, as shown
in Fig. 11b. Since this work is concerned only
with the behavior of well-formed micelles, we
simply discard any such results where the av-
erage micelle shape is malformed.

If data is to be discarded in a consistent
manner, a precise definition of “well-formed” is
needed. We considered a shape to be well formed
if it satisfies two criteria: an ordering criterion
and a smoothness criterion. The ordering crite-
rion is satisfied if the shortest closed path visit-
ing each junction exactly once visits the junction
points in the intended order. This criterion de-
tects whether diblocks cross from one side of the
micelle surface to another, and it also detects
smaller defects such as a transposition of two di-
blocks. The smoothness criterion is satisfied if
the maximum distance between any two sequen-
tial junction points exceeds the median distance
by less than forty percent. The smoothness cri-
terion detects whether diblocks have broken o↵
from the main surface either to form a small ag-
gregate of diblocks outside the micelle, or to form
a cluster of solvophilic beads in the interior of the
micelle. We found that about half of the aver-
age micelle shapes resulting from our simulations
satisfied both criteria for being well formed.

D. Combining simulation runs

So far, we have discussed how to determine
an average micelle shape and its fluctuation from
a single simulation run. However, we performed

-60 0 60
-30

0

30

(a)

-70 0 70
-70

0

70

(b)

Figure 11. (Color online) Two di↵erent types of mal-
formed micelles. The curves and ellipses have the
same meaning as in Fig. 10. In (a), the average mi-
celle shape contains two junction points in the con-
cave region which approach the opposite surface of
the micelle. This occurs because the junction points
crossed to the other side during the simulations. In
(b), the micelle is broken up into multiple discon-
nected regions outlined by the junction points. Such
malformed micelles are not expected to take the de-
signed shape, and so they are excluded from our anal-
ysis.

multiple simulation runs of each micelle with dif-
ferent random initial velocities (see Sec. II C) to
both generate more statistical data, and more
crucially to confirm that the uncertainties in
each simulation run’s mean shape are well esti-
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mated. Therefore, for each micelle composition
there is not one, but Na average shapes, denoted
¯⇠, ⇠ = 1, 2, . . . , Na, and each of these has a cor-
responding variance ⌃⇠ and variance in mean ⌃̄⇠.
In this section, we describe how these quantities
are combined to produce a best estimate of the
shape, its fluctuations, and its error. To repre-
sent these best estimates, we will use the corre-
sponding symbols, but without the ⇠ subscript.
More explicitly, ¯ denotes the combined average;
⌃, the combined variance; and ⌃̄, the error in the
combined mean.

It would be possible to combine the means ¯⇠
via the simple minimization given in Eq. (15).
However this formula would ignore the uncer-
tainties ⌃̄⇠ in the means. These uncertainties
ought to be taken into account, because mean
shapes with lower uncertainty should be given
more weight in determining the combined mean.
Indeed, as might be predicted from the outliers
of Fig. 23b, we do find that there is a signifi-
cant variability in simulation runs’ uncertainties
in the mean. To account for the uncertainties,
we may define the combined mean using a maxi-
mum likelihood estimate [47]. Under the canoni-
cal assumptions of a harmonic system in thermal
equilibrium, we expect the probability distribu-
tion of ¯⇠ to be Gaussian, so the log-likelihood
L(¯, ¯⇠, ⌃̄⇠) of a true average shape ¯ given an
estimated average ¯⇠ and its error ⌃̄⇠ is (up to
an unimportant constant o↵set) proportional to
following quadratic form:

L
�
¯, ¯⇠, ⌃̄⇠

�
= � (ˇ̄� ¯⇠) · ⌃̄�1

⇠ · (ˇ̄� ¯⇠) , (20)

where ˇ̄ is the result of aligning ¯ with ¯⇠. Since
this log-likelihood depends only on ˇ̄, it is in-
dependent of rotations of ¯, as desired. The
product in Eq. (20) involving a matrix inver-
sion is indeed well-defined since ⌃̄⇠ does have full
rank when viewed as an operator on the space
of shapes aligned with ¯⇠, and the shapes ˇ̄� ¯⇠
indeed lie in this space.

Having defined the log-likelihood of a mean
given a single simulation, we may now define
the same for multiple simulation runs. This is
facilitated by the fact that the runs are statis-
tically independent from one another, so that
the joint probability of measuring each ¯⇠ with
the uncertainty ⌃̄⇠ given the true mean shape

¯ is the product of the individual probabilities,
and therefore the log-likelihood of the true mean
shape ¯ given the ¯⇠ and ⌃̄⇠ is simply the sum
of the individual log-likelihoods. Therefore the
maximum likelihood estimate for the true mean
shape ¯ is given by maximizing the sum of log-
likelihoods:

¯ = argmax
NaX

⇠=1

L
�

, ¯⇠, ⌃̄⇠

�
. (21)

As with Eq. (15), this argmax is defined only up
to a rotation, so, as with Eq. (15), a convention
is need to fix the rotational degree of freedom so
that ¯ is uniquely defined.

Once the average ¯ is found, one can ask
what is the best estimate for the fluctuations
that can be made from each run’s mean ¯⇠ and
variance ⌃⇠. We make this best estimate by find-
ing the variance matrix which best represents the
fluctuations aggregated over all simulation runs.
The variance ⌃⇠ represents a set of samples ⇠↵

aligned with ¯⇠. The first step in estimating the
variance from the shape samples via Eq. (16)
is to align the samples with the mean (in the
present case, ¯). Then an estimate of the vari-
ance of the aligned samples can be made using
this alignment transformation and the variance
⌃⇠ of the unaligned samples.

The alignment transformation can be decom-
posed into two steps. First we apply to each sam-
ple the rotation R⇠ which aligns ¯⇠ with ¯, pro-
ducing the aligned mean shape ˇ̄⇠ given by R⇠¯⇠
and the rotated samples ˇ⇠↵, given by R⇠ ⇠↵.
However, the alignment of the sample ⇠↵ with
the combined mean ¯ is not yet complete: al-
though ˇ⇠↵ is aligned with ˇ̄⇠, and ˇ̄⇠ is aligned
with ¯, nontransitivity implies that ˇ⇠↵ is typi-
cally not aligned with ¯. Therefore, a second ro-
tationR⇠↵ specific to each sample is necessary to
complete the alignment. Thus the transforma-
tion that rotates the sample ⇠↵ into alignment
with ¯ is R⇠↵R⇠.

We must now make an estimate of the vari-
ance in the aligned shape samples from the
transformation R⇠↵R⇠. Since the rotation ma-
trix R⇠↵ depends on ⇠↵, the aligned shapes
R⇠↵R⇠ ⇠↵ depend nonlinearly on ⇠↵. Because
of this nonlinearity, the variance of the aligned
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shape distribution may depend on higher order
moments of the distribution of shapes ⇠↵. Since
we do not record these higher moments, and we
wish to avoid reprocessing all the shape sam-
ples, an approximation is needed to obtain the
aligned shape distribution’s variance. We make
the approximation that the distribution of ⇠↵

is tightly centered on ¯⇠, from which it follows
both that ⇠↵ ⇡ ¯⇠ (and therefore the same is
true when rotated by R⇠: ˇ⇠↵ ⇡ ˇ̄⇠) and that
the angle ✓⇠↵ of the rotation R⇠↵ is small (af-
ter all, if ˇ⇠↵ = ˇ̄⇠, then the ˇ⇠↵ are already
aligned with ¯ so that ✓⇠↵ = 0). This approxi-
mation allows for linearization of the alignment
transformation. The rotated R⇠↵ˇ⇠↵ can be ap-
proximated as

R⇠↵ˇ⇠↵ = cos ✓⇠↵ˇ⇠↵ + sin ✓⇠↵ (^ˇ⇠↵)
⇡ ˇ⇠↵ + ✓⇠↵ (^ˇ⇠↵)
⇡ ˇ⇠↵ + ✓⇠↵ (^ˇ̄⇠) ,

(22)

where ^ˇ⇠↵ is defined in Eq. (13) as a 90�

counter-clockwise rotation of ˇ⇠↵. In Eq. (22),
the second line follows because ✓⇠↵ is small, and
the third line follows because ˇ⇠↵ ⇡ ˇ̄⇠. It re-
mains to determine the linear dependence of ✓⇠↵
on ˇ⇠↵.

The angle ✓⇠↵ of the rotation R⇠↵ is deter-
mined by the condition that R⇠↵ˇ⇠↵ be aligned
with ¯. By the reasoning found below Eq. (13),
this alignment requires that ^¯ ·R⇠↵ˇ⇠↵ = 0. In-
serting the approximation of Eq. (22) into this
condition for alignment, we obtain

^ ¯ · (ˇ⇠↵ + ✓⇠↵ (^ˇ̄⇠)) = 0, (23)

so that ✓⇠↵ = � (^¯)·ˇ⇠↵
¯·ˇ̄⇠ . Inserting this ✓⇠↵ back

into Eq. (22), we find the action of the second
rotation on a sample to be

R⇠↵ˇ⇠↵ ⇡
✓

1 �
^ˇ̄⇠ ⌦ ^¯
ˇ̄⇠ · ¯

◆
ˇ⇠↵ ⌘ ⇧⇠ˇ⇠↵, (24)

where we have defined the projection operator
⇧⇠ to be the tensor in parentheses above. We see
that the combined e↵ect of the two rotations on
a shape sample is approximately given by the lin-
ear operator ⇧⇠R⇠. Consequently, the variance
matrix for the aligned samples is approximated
by ⇧⇠R⇠⌃⇠RT

⇠ ⇧T
⇠ , which we denote by ⌃̌⇠.

If the aligned fluctuations from each simula-
tion run were aggregated, the resulting variance
matrix would be the weighted average of the in-
dividual ⌃̌⇠ of each run, weighted by the number
of samples. However, since each run had approx-
imately the same length, they generate approxi-
mately the same number of samples, and so we
make the approximation that the best estimate
for the combined variance is a simple average of
the ⌃̌⇠:

⌃ =
1

Na

NaX

⇠=1

⌃̌⇠. (25)

To estimate the variance in the mean ⌃̄ giving
the uncertainty in ¯, we also perform an average.
Just as in Eq. (25), we must revise the original
⌃̄⇠ to account for the fact that the best estimate
of the mean is now ¯, and to align ⌃̄⇠ with this
¯. Accordingly we perform the same alignment
transformation on each ⌃̄⇠ that was done for the
sample variances ⌃⇠ above. The result is de-

noted ˇ̄⌃⇠. We then average these ˇ̄⌃⇠ values as
in Eq. (25). This average doesn’t change sys-
tematically as Na increases. However the overall
variance in the mean of Na independent samples
is 1/Na times this average. Thus

⌃̄ =
1

N2
a

NaX

⇠=1

ˇ̄⌃⇠. (26)

E. Testing consistency between simulation
runs

In Sec. I C, we explained that we wish to
determine the thermal equilibrium statistics of
the well-formed micelles. Thus far, we have
described a procedure for analyzing the statis-
tics of micelle shapes from a single simulation
and for combining the results of multiple sim-
ulations, but we have not discussed a way of
testing whether the results of an individual sim-
ulation accurately reflects thermal equilibrium.
In this section, we describe how we verify that
individual simulation runs are thermally equili-
brated. We do this by comparing, on the one
hand, the di↵erence of individual run means ¯⇠
from the combined mean ¯ to, on the other hand,
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⌃̄⇠, which represents the error in the estimate of
¯⇠. If a simulation had not fully equilibrated,
the micelle would explore only a small subset
of the thermodynamically allowed configurations
within a single simulation run, leading to an un-
derestimate of the shape variance, and therefore
the variance in the mean shape ¯⇠. In this case,
the observed di↵erences between the ¯⇠ and ¯
would be significantly larger than ⌃̄⇠ would sug-
gest.

We use L
�
¯, ¯⇠, ⌃̄⇠

�
defined in Eq. (20) to

quantitatively measure the di↵erences between
the individual run averages ¯⇠ and the combined
mean ¯ relative to the variance ⌃̄⇠ in the individ-
ual run averages. Since L

�
¯, ¯⇠, ⌃̄⇠

�
is the neg-

ative of the chi-squared statistic and each mean
has 2Nj degrees of freedom, we expect that this
L should be of order �2Nj . We may therefore
define the reduced chi-squared �

2
⌫ of a combined

average ¯ by

�
2
⌫ =

�1

2NjNa

NaX

⇠=1

L
�
¯, ¯⇠, ⌃̄⇠

�
. (27)

We expect this �
2
⌫ to be near unity; however, if

the simulation runs were too short so that the
full range of thermal shapes is not explored in
a single simulation, then the di↵erence in the
means ¯⇠ would be larger than the errors in the
means ⌃̄⇠ would suggest, and �

2
⌫ would be much

larger than unity. Thus �
2
⌫ is a statistic that

tests not just whether the system is equilibrated,
but more generally how well-estimated are the
uncertainties ⌃̄⇠ of each mean shape ¯⇠, so that
�
2
⌫ tests also for the issues arising from unvali-

dated assumptions underpinning Eq. (19). Since
the ⌃̄⇠ are defined using ⌃⇠ (see Eq. (19)), the
�
2
⌫ also provide an indirect test of the ⌃⇠ as well.
In fact, it is possible to validate the uncertain-

ties ⌃̄⇠ in more detail. From Eq. (19), we expect
that the uncertainty of the mean ⌃̄⇠ in the di-

rection of its `th mode m⇠` is given by
⌃⇠`⌧⇠`
Ns,⇠

. To

verify this expectation, we can define the chi-
squared of the `th mode by

�
2
⇠` =

(m⇠` · (¯⇠ � ¯))2

⌃⇠`⌧⇠`/Ns,⇠
. (28)

For each `, we expect that �
2
⇠` should be near

unity. Testing this expectation gives a more

thorough validation of Eq. (19), and in partic-
ular that finding the correlation time ⌧⇠` of each
mode is su�cient to characterize the full corre-
lations of the shape fluctuations. The reduced
chi-squared �

2
⌫ for each micelle composition and

a representative set of chi-squareds �
2
⇠` for the

modes of one simulation run are presented in
Sec. IVA.

In addition to testing the formulas for the
simulation run averages ¯⇠ and their uncertain-
ties ⌃̄⇠ defined in Sec. III A and Sec. III B, we
would like to validate the combined average ¯
and its uncertainty ⌃̄. One method of valida-
tion is to verify that the result of combining the
¯⇠ and the ⌃̄⇠ is consistent with the result of
first concatenating the list of samples ⇠↵, and
then finding a mean from these samples, using
Eq. (15) as if the samples were generated from a
single simulation. We chose to compare with the
average of the combined samples, denoted by ˜̄,
since the procedure for averaging a time series of
shapes can itself be validated using �

2
⌫ and �

2
⇠`.

Once the average of the combined samples has
been found, a �

2
` statistic similar to the one in

Eq. (28) can be computed. More precisely, we
define �

2
` by

�
2
` =

(m` · (˜̄� ¯))2

⌃̄`
(29)

where m` is the `th eigenmode of ⌃̄ and ⌃̄` is the
associated eigenvalue. An example calculation
of this statistic will be presented in Sec. IVA.

F. Shape features

We have now given a complete description
about how to extract micelle shape information
from the simulation. However, in this paper
we will pay special attention to two features of
the micelle shape: the “curvature ratio” and
the “normalized fluctuation”. The curvature ra-
tio c�/c+ is defined as the ratio of the average
signed curvature of the micelle surface region oc-
cupied by the solvophobic-rich diblocks to that
of the solvophilic-rich diblocks as illustrated in
Fig. 12. We are interested in this quantity be-
cause our intent is to use our shape-design mech-
anism to produce a micelle of unusual shape,
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Figure 12. (Color online) Illustration of the curvature
ratio definition. The curvature ratio is defined as the
ratio of the average curvature c� in the region occu-
pied by the solvophobic-rich diblocks to the average
curvature c+ in the region occupied by the solvophilic
blocks. The curvature ratio is one for a circle, and is
negative for a shape with a dimple such as the one
shown in the figure, becoming more negative as the
dimple grows more pronounced.

specifically one with a dimple. The curvature
ratio quantifies the strength of this dimple, and
therefore can help detect the conditions under
which our shape-design mechanism works best.

In addition to the average shape, we are inter-
ested in the shape fluctuations, as noted previ-
ously. We have introduced the variance matrix ⌃
to characterize the shape fluctuations. We sum-
marize the size of the fluctuations represented by
this 2Nj ⇥ 2Nj matrix with a single scalar, the
normalized fluctuation �, to measure the amount
of fluctuation in the micelle shape, normalized
so as not to scale with the number of junction
points or the size of the micelle. The normalized
fluctuation is defined by

� =

r
Tr⌃
¯2

. (30)

It is enlightening to notice a connection between
the normalized fluctuation � and the distance
metric�int: if ¯ and ⌃ are the mean and variance
of a single simulation run, then by Eq. (16) and
Eq. (10), the � for this simulation run is given
by

s
1

Ns�1

PNs
↵=1�int(¯, ↵)

¯2
. (31)

Still another, more pictorial interpretation of the
normalized fluctuation can be framed in terms of
the error ellipses representing ⌃ (the larger blue

ellipses of, e.g., Fig. 9): the normalized fluctu-
ation is roughly the typical linear size of these
ellipses relative to the linear size of the micelle.

Since we will be analyzing these two features
of micelle shape, we must make an estimate of
their uncertainty. The uncertainty of the curva-
ture ratio can be straightforwardly derived from
the full variance matrix ⌃̄ giving the variance in
the mean.

Estimating the uncertainty in the fluctuation
� is more subtle because � is defined in terms of
the variance ⌃, and so the error in delta repre-
sents the error in the fluctuations of a quantity
rather than the error in the quantity itself. Con-
sequently, we attempt only a rough estimate of
the error in �. The dominant source of uncer-
tainty in � comes from Tr⌃. We find the un-
certainty in Tr⌃ by recognizing that the trace is
the sum of eigenvalues:

Tr⌃ =
X

`

⌃`. (32)

Evidently, it su�cient to estimate the uncer-
tainty in each variance. To perform this esti-
mate, we resort to assuming that each ⌃` rep-
resents the variance of a Gaussian distribution.
Given n samples of a univariate Gaussian ran-
dom variable with variance ⌃, a formula for the
uncertainty �⌃ of the estimate of the distribu-
tion’s variance is given by (see [49])

�⌃ = ⌃

r
2

n� 1
. (33)

To use this formula to estimate the uncer-
tainty in ⌃`, we must choose a value for the
number of independent samples n` contributing
to the estimation of ⌃`. We estimate this num-
ber of samples for each mode m` of ⌃ by taking
the ratio of the fluctuation in the mode ampli-
tude ⌃` with the uncertainty in the mean along
the m` direction:

n` =
mT
` ⌃m`

mT
` ⌃̄m`

. (34)

As this estimate of the normalized fluctua-
tion uncertainty requires approximation in the
form of Eqs. (33) and (34), some degree of vali-
dation is in order. To this end, we calculate the
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normalized fluctuation from each simulation run
(i.e., substitute ¯⇠ and ⌃⇠ in Eq. (30)), and com-
pute the standard error in the resulting normal-
ized fluctuations. While this second method may
seem reasonable, we prefer the uncertainty esti-
mate described in the preceding paragraphs for
two reasons: first, the second estimate cannot be
used if there is only one simulation run produc-
ing a well-formed micelle; and second, the first
estimate is less likely to underestimate the un-
certainty, because it takes into account all modes
while the second estimate can result in an un-
derestimate if the normalized fluctuations from
individual simulation runs happen to be similar.
The results of using these two methods is com-
pared in Fig. 15.

IV. RESULTS

In this section, we present micelle simulation
results. The ultimate goal of running the simu-
lations was to determine if the micelle shape fea-
tures may be controlled by appropriately chang-
ing the micelle composition. In Sec. III, we de-
veloped a set of tools to determine the equilib-
rium shape properties of a simulated micelle, but
these tools depended on a number of untested
assumptions, and so before presenting the re-
sults of applying these tools, we first perform in
Sec. IVA the validations discussed in Sec. III E
and Sec. III F.

With this done, we present the results of sim-
ulating micelles of several compositions. The
range of micelle compositions was not chosen to
be exhaustive but only to demonstrate a signif-
icant degree of control over the micelle shape.
To this end, we varied two aspects of the mi-
celle composition: the length of the core segment
and the composition of the solvophobic-rich di-
blocks. The length of the core segment ranged
from 600 beads to 1000 beads. Two solvophobic-
rich diblock compositions were studied, the first
being 30 solvophobic beads and 2 solvophilic
beads and the second being 27 solvophobic beads
and 4 solvophilic beads. Since the first compo-
sition has a larger asymmetry, and therefore the
micelles containing these diblocks have a larger
asymmetry contrast between their solvophobic-

rich and solvophilic-rich diblocks, we refer to
these micelles as “high contrast”. Conversely, we
refer to the other micelles, whose solvophobic-
rich diblocks contain 27 solvophobic beads and
4 solvophilic beads, as “low contrast”. Other
aspects of the micelle composition were held
constant: each micelle had 12 solvophobic-rich
diblocks and 55 solvophilic-rich diblocks, and
the solvophilic-rich diblocks each had 24 solvo-
phobic beads and 7 solvophilic beads. To ob-
tain su�cient statistics, each simulation was run
in parallel on nine cores for 70 hours, during
which time LAMMPS completed about one bil-
lion timesteps. The mean shapes, fluctuations,
and uncertainties resulting from these simula-
tions are plotted in Table I. In Sec. IVB, we plot
the shape features introduced in Sec. III F as a
function of the size of the core and the asymme-
try ratio of the solvophobic-rich diblocks.

A. Validation of analysis

In Sec. III E, we introduced two statistics �2
⌫

and �
2
⇠`, defined in Eqs. (27) and (28), for val-

idating that the variation in the means ¯⇠ was
consistent with the error ⌃̄⇠ in these means. We
stated that a correctly estimated error leads to
the statistics being nearly one, while underes-
timated error lead to large values and overesti-
mated errors lead to small values. One cause of
concern motivating this test is that the simula-
tions may not have been run long enough for the
full range of thermal shapes to explore, leading
to the estimated mean of a simulation run be-
ing strongly biased by the initialization. This
would lead to the means being more di↵erent
than mere thermal fluctuations would predict,
and therefore lead to large �

2
⌫ and �

2
⇠`. An-

other cause for concern is that the assumption
underpinning Eq. (19), namely that the fluctu-
ation mode amplitudes fluctuate independently
and are each described by a separate correlation
time may be strongly violated to the point that
Eq. (19) gives an unsatisfactory estimate of the
uncertainty in the mean. A shortcoming of the
estimate Eq. (19) would likely cause a systematic
dependence of �2

⇠` on the mode number `, since
we expect the applicability our assumptions to
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600 Core 700 Core 848 Core 1000 Core

high
contrast

low
contrast

Table I. (Color online) Average shapes of micelles of various compositions, plotted in the manner of Fig. 10.
The micelle compositions are described in the first paragraph of Sec. IV. The relative magnitudes of the
normalized fluctuation � (blue) and curvature ratio c�/c+ (orange) of each shape are indicated by bars next
to the shape.

600 Core 700 Core 848 Core 1000 Core
high

contrast
5.5 0.69 1.8 —

low
contrast

59 1.2 2.3 3.2

Table II. Reduced chi-squared �
2
⌫ (defined in

Eq. (27)) for each of the averages shown in Table I.
One of the entries is blank since there was only one
well-formed result for that micelle composition, in
which case the reduced chi-squared statistic is mean-
ingless. Only one of the simulations runs of the high-
contrast micelle having 1000 core beads gave a well-
formed average shape, so that all of the other runs
were rejected. The reduced chi-squared statistic is
meaningless in this case, so it is omitted.

depend on the amplitude or correlation of the
mode, both of which vary systematically with `.

Results for �
2
⌫ are given in Table II. The

simulations of low-contrast micelles having 600
core beads had a large �

2
⌫ . This happened be-

cause two of the four simulations fluctuated only
modestly about significantly di↵erent, but well-
defined mean shapes. The other two of the four
simulation runs showed large fluctuations. This
suggests that, for this micelle composition, there
are multiple metastable shapes between which

the micelle can fluctuate. This example demon-
strates the benefit of doing multiple independent
simulation runs and shows the limitations of rep-
resenting a shape with a single mean and a vari-
ance about the mean.

On the other hand, besides the two aforemen-
tioned cases, all the �

2
⌫ are near unity, indicat-

ing that the simulations are well equilibrated and
the uncertainty in the mean shape from each run
is well-estimated.

Next we consider the �2
⇠` of Sec. III E. A more

detailed diagnostic than the �
2
⌫ , the �

2
⇠` indi-

cate how well the shape error of the ⇠th sim-
ulation run in the direction of the `th mode is
estimated. To illustrate that the low-` modes
are markedly di↵erent from the high-` modes,
and thereby motivate the mode-by-mode valida-
tion o↵ered by the �

2
⇠` statistic, we first show

representative plots of the mode amplitude vari-
ances ⌃⇠` vs `, the correlation times ⌧⇠` vs `, and
a few modes m⇠` in Fig. 13. We find that the
mode amplitude variance ⌃⇠` varies by three or-
ders of magnitude. With this in mind, we plot in
Fig. 14 �

2
⇠` for a representative simulation run of

a low-contrast micelle with 848 core beads. Al-
though the mode variances ⌃⇠` and correlation
times ⌧⇠` vary by several orders of magnitude,
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1 50 100 131

(a)

1 50 100 131

1

5

10

50

100

(b)

-90 0 90
-80

0

80

First mode

(c)

-90 0 90
-80

0

80

Tenth mode

(d)

-90 0 90
-80

0

80

Fiftieth mode

(e)

Figure 13. (Color online) (a) Plot of the mode amplitude variance ⌃⇠` vs mode number ` and (b) the
correlation time ⌧⇠` (in units of the sampling interval) from a single simulation run (i.e., single value of ⇠)
for a low-contrast micelle containing 848 core beads. The three modes corresponding to rigid motions are
omitted because their amplitude variance is zero. The variances range over three orders of magnitude. (c),
(d), and (e) Plots of the ` = 1, ` = 10 and ` = 50 modes. The average shapes are plotted as well as a
deformation of the shape in the direction of the mode m⇠`. In (c), the size of this deformation is

p
⌃⇠1,

which represents one standard deviation of sampled shape distribution in the direction of m⇠`. In (d) and
(e), the size of the deformation is increased to five standard deviations for clarity.
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1 50 100 131

Figure 14. (Color online) Plot of �
2
⇠` (defined in

Eq. (28), black circles) vs ` for the representative
simulation run of Fig. 13 of a low-contrast micelle
with 848 core beads. As in Fig. 13, the modes are
ordered by their amplitude, so that the first mode
(` = 1) is the mode with highest amplitude. The
horizontal lines bracket the 90% confidence interval
for the �

2
⇠` statistic, assuming the mean shape dis-

tribution is Gaussian. Most of the �
2
⇠` fall in this

range, with no apparent systematic dependence on `.
For contrast, we present �2

⇠` with correlations ignored
(by substituting ⌧⇠` ! 1 in Eq. (19), red diamonds).
In this case, the �2

⇠` show a clear dependence on `, in

that �2
⇠` is much larger than unity for small `.

the �
2
⇠` remain mostly within their 90% confi-

dence interval with no apparent systematic de-
pendence on `, giving a positive validation of
the assumptions used to calculate ⌃̄⇠. In partic-
ular, this validation gives credence to the form of
Eq. (19) used to calculate the error in the mean
of a single run, where each mode is assumed to
have an independent correlation time estimated
by the time series of that mode’s amplitude.

If the correlation times were estimated incor-
rectly, then the �

2
⇠` for small ` would be signif-

icantly di↵erent than the �
2
⇠` for large `. As an

extreme example of an incorrect correlation time
estimation, consider the e↵ect of ignoring corre-
lation times completely (i.e., inserting ⌧⇠` = 1
into Eq. (19) as done in Fig. 14): the error in the
mean along the high-amplitude modes is under-
estimated and so the corresponding �2

⇠` are much
larger than unity. This analysis was done for a
single run using one of our more stable composi-
tions. Naturally, less well-behaved micelle com-
positions and runs, such as the low-contrast com-
position with 600-bead core, are not expected to

�

�

�

�

�
�

�

�

�
�

�

�

�

�
�

600 700 800 900 1000
0

0.04

0.08

Core size, c

Figure 15. (Color online) Plot of two estimates of
the uncertainty in the normalized fluctuation � for
the di↵erent micelle compositions of Table I. Black
(red) symbols represent high (low) contrast micelles.
Closed symbols represent the first estimate defined
using Eqs. (32) to (34); open symbols represent the
second estimate described below Eq. (34). Since sim-
ulations of the high-contrast micelle with 1000 core
beads only resulted in one well-formed shape, the
second estimate of its normalized fluctuation uncer-
tainty cannot be made. Besides this case, and the
case of the high-contrast micelle with 700 core beads,
where the two simulation runs giving well-formed mi-
celles had very similar normalized fluctuations, the
estimates agree to within a factor of two.

fare as well under the same analysis.
Next, in Sec. III F, we described a way to es-

timate the uncertainty in the normalized fluc-
tuation � by individually estimating the uncer-
tainty in each mode variance ⌃`. The estimate of
this uncertainty is crucial to understanding the
significance of our quoted values for the shapes’
normalized fluctuations, but this estimate relied
on two as yet unvalidated approximations repre-
sented by Eqs. (33) and (34). Therefore it is nec-
essary to validate this estimate, which we pro-
posed to do by performing a comparison to the
standard error of the normalized fluctuations in-
dividually calculated from each simulation run.
The comparison is shown Fig. 15. We expect
only rough agreement because the estimate be-
ing validated assumed the shape data is drawn
from a Gaussian distribution. In fact the size of
the errors are only consistent to about a factor of
two. Therefore, when evaluating the significance
of the results in Sec. IVB, it should be remem-
bered that the uncertainties in the normalized
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Figure 16. Plot of �2
` defined in Eq. (29) vs mode

number `. The two horizontal gray lines demarcate
the 90% confidence interval.

fluctuations are determined only to this limited
precision.

Finally, we validate the formula Eq. (21) for
the combined mean ¯ and its uncertainty esti-
mate ⌃̄ defined by Eq. (26). This validation
is important because the quantities ¯ and ⌃̄
are used to determine the value and uncertainty
of the average micelle shapes’ curvature ratios,
which will be examined in Sec. IVB. The vali-
dation is done by comparing the combined mean
¯ with the combined set of all shape samples,
as described in Sec. III E. In Fig. 16, we show
a plot of the statistic �

2
` , defined in Eq. (29),

for the low-contrast micelle with 848 core beads.
The �

2
` fall within the expected range, and the

`-average of �2
` is 1.5. The di↵erence between

this value and the ideal value of 1 suggests that
the error in the combined mean may be slightly
underestimated. From Fig. 16, this underesti-
mation seems to be worst for low ` modes.

B. Shape features

Finally we discuss our findings concerning
the shape features discussed in Sec. III F. To
study quantitatively the dependence of micelle
shape on composition already apparent in Ta-
ble I, we plot in Fig. 17 the curvature ratios
and normalized fluctuations of these shapes, as
well as a fit to a simple linear model. Several
trends are revealed by these plots. The curva-
ture ratio becomes more negative (meaning that

600 700 800 900 1000
0.15

0.40

(a)

600 700 800 900 1000
-2

-1

0

(b)

Figure 17. (Color online) Plots of normalized fluctu-
ation � and curvature ratio c�/c+ vs micelle compo-
sition. The micelle compositions are those of Table I.
In (a), � is plotted against the size of the micelle core.
Black (red) points represent high (low) contrast mi-
celles. The data are fit to a model containing only
constant and gradient terms: � = �0 + mcc + mrr,
with c being the number of core beads and r be-
ing the solvophobic-rich diblock asymmetry ratio (de-
fined in Eq. (2)). Best fit parameters are found to be
mc = (�1.0 ± 0.3) ⇥ 10�4 and mr = 0.37 ± 0.08.
The reduced chi-squared for this fit is 1.9. The cur-
vature ratio is treated analogously in (b). The best
fit parameters for the curvature ratio are given by
mc = (1.7± 0.1)⇥ 10�3 and mr = 4.5± 0.3. The re-
duced chi-squared for this fit is 14. After omitting the
outlier at a core size of 600 and nint : next = 27 : 4,
the reduced chi-squared drops to 4.4.

the dimple becomes more pronounced) as the
asymmetry ratio becomes more negative (mean-
ing the solvophobic-rich diblocks become even
more solvophobic). This confirms our intuition
explained in Sec. II B that the curvature should
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be positively correlated with the asymmetry ra-
tio.

Another trend is that as the size of the core
is increased, the curvature ratio becomes more
positive (meaning that the dimple becomes less
pronounced). We propose the following explana-
tion for this behavior. We note that an increase
in the core size increases the volume of the mi-
celle. This increased volume could be accom-
modated either by an increase in the perimeter,
reducing the density of diblock “surfactant” on
the surface and thereby presumably increasing
the micelle surface tension, or by making the
micelle more circular, thereby making the cur-
vature ratio more positive. In practice, we ex-
pect both of these happen to some extent, and
so increasing the core size would both increase
the surface tension and make the curvature ratio
more positive.

The normalized fluctuations are less precisely
determined, but trends are still apparent. The
data show that the normalized fluctuations de-
crease as the solvophobic-rich diblocks become
more solvophobic. This e↵ect could also be
explained in terms of a competition between
the preferred perimeter and preferred curva-
ture. As the solvophobic-rich diblocks become
more solvophobic, the dimple becomes more pro-
nounced, which we propose leads to an increase
in perimeter and consequently surface tension.
This increased surface tension would then de-
crease the amplitude of shape fluctuations. Also,
the data suggest that micelles with more core
have lower normalized fluctuations, although the
size of this e↵ect is on the same order of the
uncertainty. We have argued in the previous
paragraph that increasing the core should in-
crease surface tension. In addition to reducing
the dimple, this increased tension should also re-
duce fluctuations, explaining the trend.

We note one more feature in the data: the
low-contrast micelle with 600 has a significantly
more positive curvature ratio than the trend line
of Fig. 17b predicts. Although we are not sure
how to explain this, we suspect this behavior
is related to the onset of a transition reported
in [50] involving the buckling a two-dimensional
vesicle wall upon decreasing the vesicle’s interior
volume. If the energy barrier associated with

buckling was high enough to preclude a buckling
event from occurring within a simulation, then
our observation, previously noted in Sec. IVA, of
two well-defined, but inconsistent micelle shape
averages could be explained. In any event, this
data point is an interesting starting point for
further investigation.

Having described our results, we now note
that they a↵ord some degree of predictive power.
We have observed a range of curvature ratios
extending approximately from �0.5 to �1.8 ex-
hibiting a mostly regular dependence on micelle
composition. Therefore if a micelle with curva-
ture ratio in the observed range is to be con-
structed, the data provide a way to determine
which micelle composition gives the desired cur-
vature ratio. In this way, we have demonstrated
that micelle shape design is possible using our
design mechanism.

V. DISCUSSION

The work presented in this paper is only
a first demonstration that our micelle design
mechanism can provide for fine control of a mi-
celle shape. Only two aspects of the micelle com-
position were changed, and only two aspects of
the micelle shape were studied. Further, the sys-
tem we studied was only two-dimensional and
the problem of malformed micelles was deferred
completely. In this section, we address these is-
sues in order to clarify the significance of our re-
sults: we describe other aspects of micelle com-
position to vary; we suggest additional features
of the thermal shape distribution to control; we
suggest a few alternate schemes for bonding the
micelle’s constituent diblocks with the idea that
they may be more e↵ective at preventing mal-
formed shapes; and we discuss how the results
presented in this work may be extended to three
dimensions and what challenges may arise. Fi-
nally, we discuss how our results are relevant to
the applications mentioned in the introduction.

A. Further variation of micelle composition

In this work, the e↵ect of only two aspects
of micelle composition were studied, and some
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speculative explanations of the observed behav-
ior were given. In future work, other aspects
of micelle composition may be varied, extending
the range of observed micelle shapes and giving
further insight into the factors a↵ecting micelle
shape. For example, only the asymmetry of the
solvophobic-rich diblocks were studied; the e↵ect
of varying the solvophilic-rich diblocks could also
be studied. Another aspect of the micelle com-
position to address is the length of the diblocks.
In this work, we filled the micelle surface with
diblocks of a specific chosen length, and chose
the asymmetry of these diblocks to produce the
desired curvature. However, there is freedom in
choosing the length of the diblocks: the micelle
surface could be filled using a larger number of
shorter diblocks, holding fixed the imprinted pre-
ferred curvature profile. A third way of alter-
ing the micelle composition is to introduce an-
other species of diblock. In the micelle shapes
presented in Sec. IV, there were three regions
of significantly di↵erent curvature: the concave
dimple, the weakly convex surface opposite the
dimple, and the strongly convex surface adja-
cent the dimple. Since these micelles only con-
tain two species of diblock, the observed micelle
shapes seem to be at odds with our stated design
strategy, wherein the diblock’s preferred curva-
ture dictates the surface curvature. We expect
that the mismatch between the imprinted cur-
vature and the realized curvature represents a
frustration which may a↵ect the dynamics (e.g.,
fluctuations) of the micelle. To test this expec-
tation, one could introduce a third species of di-
block to better match the realized micelle curva-
ture, and study the resulting micelle shapes.

B. Additional shape features to control

Just as there are many ways to alter the mi-
celle composition, there are many aspects of the
micelle shape to control. Here we list three ex-
tensions to the shape control demonstrated in
this work. First, instead of the curvature ra-
tio of the average shape illustrated in Fig. 12,
one could study other quantities characterizing
the average shape. In fact, the di↵erence met-
ric �int, defined in Eq. (10), provides a way of

quantifying the similarity to any chosen target
shape. Second, we chose a static set of inter-
action parameters in our model; however, ap-
plications may require exposing the micelle to
varying environments (having variations of e.g.,
temperature, pH, or salt concentration). On the
one hand, such a varying environment would pre-
sumably make it di�cult to ensure a fixed mi-
celle shape. On the other hand, there emerges a
challenge of designing a micelle that assumes dif-
ferent designed shapes depending on its changing
environment. Lastly, we have found evidence of
a micelle exhibiting two metastable shapes in a
single environment. In this case, there is a break-
down in the representation of the micelle shape
as a Gaussian distribution fluctuating about a
single mean. Instead, one could categorize the
observed micelle shapes into clusters (each rep-
resenting a metastable micelle shape), and find
the mean shape in each cluster and the transi-
tion rates between the clusters. Further, each
metastable shape presumably may be designed
by changing the micelle composition.

C. Ensuring micelles are well-formed

In Sec. I C, we identified one challenge as-
sociated with our shape-design strategy as the
stability challenge of ensuring that the micelles
are well formed: that the diblocks keep their in-
tended relative positioning on the micelle sur-
face. We chose to sidestep discussion of this
challenge, and instead focus only on the shape
control of well-formed micelles. However, with-
out some way of ensuring micelles remain well
formed, the shapes of the well-formed micelles
seem to be of limited importance. In this sec-
tion, we give examples of what can be done to
ensure micelles remain well formed.

If there are a number of micelles dispersed in
a solvent, one way a micelle can fail to be well
formed is to coalesce with another micelle. In
our work, we avoid this failure mode by including
only one multiblock copolymer in a simulation,
but the applications we imagine involve many co-
existing micelles, in which case coalescence must
be prevented. Coalescence and transfer of ma-
terial between micelles is a phenomenon that
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already occurs for conventional micelles made
of diblock copolymers, and it has been found
both through simulations [51–53] and experi-
ments [40, 54, 55] that the composition of a mi-
celle’s constituent diblocks can be used to con-
trol the micelle’s equilibrium size. Therefore, we
expect that it is possible to choose diblock com-
positions so that large aggregates composed of
coalesced single-polymer micelles are thermody-
namically unstable.

Alternatively, even a single micelle may be-
come malformed, either by diblocks rearranging
on the surface as was the case for Fig. 11a or by
solvophobic blocks exiting the micelle interior to
a second solvophobic region disconnected from
the micelle interior as was the case for Fig. 11b.
It is possible that altering the polymer inter-
actions (e.g., changing the immiscibility of the
solvophobic monomers) is su�cient to suppress
these failure modes.

If altering the polymer interactions is not suf-
ficient or practical, other bond topologies be-
sides the linear one used in this work, while
perhaps harder to synthesize, might be e↵ec-
tive. One could imagine a solvophobic backbone
chain with solvophilic (and perhaps solvophobic)
side chains; in fact, these bond schemes have
been considered theoretically in [14]. Alterna-
tively, the backbone chain could be solvophilic.
Even more intricate possibilities are a solvopho-
bic backbone chain with diblock side chains or
even branched side chains where the degree of
branching can be used to control the curvature.
Examples of alternate bond topologies are shown
in Fig. 18. In any case, we imagine that the ef-
fect of a diblock’s spontaneous curvature on the
shape of a well-formed micelle is mostly inde-
pendent of the bond scheme used to make the
micelle well formed, so that these two problems
may be studied independently.

D. Implications for three-dimensional
micelles

In this work, a polymer model having only
two dimensions was chosen, as has often been
done [56–60]. Two-dimensional simulations have
the advantage of being both computationally less

(a) (b)

(c)

Figure 18. (Color online) Schematics of alternate
bond topologies for single-polymer micelles. The
color scheme is the same as that of Fig. 2. In
(a), diblocks have been attached as side chains to
a solvophobic homopolymer. In (b), the diblocks
are instead attached on their solvophilic ends to a
solvophilic homopolymer. Lastly, in (b), the diblocks
are represented as a pair of side chains attached to a
solvophilic homopolymer chain.

demanding and easier to visualize. Despite the
simplicity gained by moving to two dimensions,
the polymer behavior nonetheless is closely anal-
ogous to the three-dimensional case. For exam-
ple, we observed our two-dimensional polymers
exhibit a well-defined density, surface tension,
and a preferred mean square displacement per
monomer, as is the case in a three-dimensional
system. Since these are the primary ingredients
that set the micelle surface’s preferred curva-
ture [38], it is expected that a three-dimensional
micelle surface ought to be influenced by the
constituent polymer compositions similar to the
two-dimensional micelles considered here. For
example, we expect that making a patch of
solvophobic-rich diblocks on the surface of a mi-
celle with spherical topology would cause the mi-
celle to form a concave dimple.

Although we expect the degree of shape con-
trol demonstrated in this work to be indicative of
what is possible in three dimensions, we must ad-
mit that the extra dimension reduces the poten-
tial for additional control o↵ered by our shape-
design strategy, as we now explain. In two di-
mensions, a curve is completely specified by its
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(a)

(b)

(c)

Figure 19. Plots of three unduloids interpolating be-
tween a cylinder and a string of spheres. Each sur-
face shown in (a), (b), and (c) has a uniform mean
curvature, and furthermore the three curvatures are
the same. In fact, these shapes can be continuously
deformed into one another with the mean curvature
held fixed.

curvature at every point, and therefore a unique
shape may be determined by imposing a pre-
ferred curvature at each point. In three dimen-
sions, to lowest order in the curvature, the local
bending energy Ubend per unit of the micelle sur-
face area is [61] given by

Ubend = 2k (H � c0)
2 +

k̄

2
K, (35)

where H and K are the mean and Gaussian cur-
vatures, c0 is the spontaneous mean curvature,
and k and k̄ are moduli governing the mean
and Gaussian curvature, respectively. While we
expect that the local spontaneous mean curva-
ture parameter c0 can be set by the local di-
block composition at the surface, a surface is de-
scribed by not one, but two principal curvatures
at each point. Thus a micelle shape is under-
specified by the mean curvature profile induced
by diblocks on the micelle surface. For exam-
ple unduloids [62] are a family of distinct shapes
all having the same mean curvature profile (ex-
amples shown in Fig. 19). The diblocks having
mean curvature compatible with the unduloid
in Fig. 19b, will likewise have a mean curvature
compatible with Fig. 19c, so neither one of these
shapes can be designed if diblocks a↵ect only the

preferred mean curvature. Even if full control of
the shape is not possible in three dimensions,
some degree of control is undoubtedly possible.
For example, we expect it is possible to design a
micelle having dimpled shape analogous to the
one considered here. Characterizing this control
represents an interesting direction for future re-
search.

Another di�culty with extending the shape-
design mechanism is that a more sophisticated
bond scheme is necessary to enforce the relative
positioning of the diblocks on the surface of the
micelle. Indeed, three-dimensional amphiphilic
linear multiblock copolymers and polymers with
side chains have been simulated [63], and while
rough shape control has been demonstrated, the
junction points do not arrange themselves on the
micelle surface in an organized manner, so the
fine control we seek does not seem possible. In-
stead, the polymer may need to be realized in
the form of a branched polymer. One possibil-
ity is to first form a crosslinked polymer net-
work of a roughly spherical shape, and then graft
onto the network surface diblocks of the desired
compositions. There remains a question of how
to create the crosslinked polymer network with
chemically distinct surface regions necessary to
graft specific species of polymer to specific re-
gions on the surface. We hypothesize that such
a network could be created either by growing
outward from a multifunctional core such as a
silsesquioxane [64] or by growing inward from
an external, rigid sca↵old such as a protein cage
[65]. In either case, after the network is formed,
the original core or sca↵old could be disassem-
bled, leaving only the flexible polymer network.

E. Relevance to applications

We now discuss how our results could be used
to address the applications discussed in the in-
troduction. One application was to use shape-
designed micelles as drug carriers. It has been
found that the carrier shape can a↵ect how much
drug can be loaded into the micelle [4]. Also, it
has been found that nanoparticle shape can af-
fect where in the body (e.g., in which organ) the
particles accumulate [66–70]. Our shape-design
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mechanism therefore may potentially be used to
optimize the loading capacity or biodistribution
of a micelle drug carrier. Additionally, it was
found that carrier shape flexibility a↵ects how
quickly the drug is cleared from the body [70–
73]. Thus control not only of micelle shape, but
also flexibility may be relevant to drug delivery
applications.

Another application was the lock and key
mechanism. In [8], the assembly of concave ob-
jects, similar to the ones designed in this work,
were studied. It was found that in the presence
of depletants, ensembles of these objects could
be made to aggregate. It was further found that
the size of the concave feature a↵ects the ag-
gregation: the concave curvature of the dimple
must match the convex curvature of the object
to which it will bind. Since the micelles studied
in this work are dimpled in a similar way, it is
natural to ask if they can participate in the same
selective aggregation behavior.

VI. CONCLUSION

Molecular dynamics simulations were used to
study the fluctuating shape of a polymeric mi-
celle at finite temperature in two dimensions.
The micelle was constructed from a single, lin-
ear, multiblock copolymer. A globular state
with the multiblock’s junction points sequen-
tially ordered around the micelle perimeter is
often maintained during the course of the sim-
ulation when such a state is used as the initial
configuration. We introduced and validated sta-
tistical methods for quantitatively characteriz-
ing such a globular micelle shape in the pres-
ence of strong thermal fluctuations. Using these
methods, we demonstrated the e↵ectiveness of a
strategy where the multiblock is viewed as a col-
lection of diblock copolymers joined end to end,
and the asymmetry of these diblocks is selected
to dictate the micelle surface curvature. Specifi-
cally, we found that positioning solvophobic-rich
diblocks preferring concave curvature on the mi-
celle surface caused the formation of a concave
dimple in the surface region occupied by these
diblocks. Further, the strength of the dimple is
controlled by both the asymmetry of these di-

blocks and the size of a homopolymer core seg-
ment located in the micelle interior. In addition
to the strength of the dimple, the asymmetry of
the solvophobic-rich diblocks and the size of the
core segment a↵ected the amount of fluctuations
in the micelle shape.

This work is a modest step in the direction
of making shape-controlled micelles based on
modulated preferred surface curvature. Many
caveats and shortcomings were noted, such as
the metastability of our simulated micelles and
the two-dimensional nature of the simulation.
Nevertheless, we have found that micelle shape
can be controlled by the constituent diblock
composition. In future work, the micelle shape-
design strategy could be studied in three dimen-
sions where it is as yet unclear how precisely
polymeric micelles’ shapes could be controlled.
Additionally, research must be done to deter-
mine what is necessary and su�cient to ensure
the thermal stability of the designed micelle.
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Appendix A: Model

This section is devoted to providing a pre-
cise description of the pair potentials govern-
ing the two species of beads. In our system of
units described in Sec. II A, the bond interaction
Ubond(d) felt by two adjacent beads displaced by
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a distance d, is given by

Ubond(d) = d
2
. (A1)

The form of the non-bonded interaction Unb

is more complicated. This interaction is the sum
of two terms. One term is a sti↵ repulsion Ur

enforcing that no two beads have the same po-
sition. Following [41], we take an interaction
whose strength is proportional to the size of the
overlap region of the beads. Therefore the sti↵
repulsion is given by

Ur(d)

PrD
2
r/2

= cos�1

✓
d

Dr

◆
� d

Dr

s

1� d2

D2
r
, (A2)

where Dr is the maximum range of the repulsive
interaction, Pr is a constant setting the strength
of the interaction, and again d is the distance
between the bead centers. For simplicity, we
simply take the same value of Pr and Dr to
govern all pairs of beads. In addition to this
sti↵ repulsion, there is an attraction Ua(d) be-
tween solvophobic beads of the same form as
Eq. (A2), but with a longer interaction range
Da, and a negative strength parameter Pa. For
the sake of reproducibility, we present the val-
ues we chose for these parameters; the values
are Dr = 2.015873, Pr = 8.870637, Da = 4,
and Pa = �0.378. Ua = 4.75. The form of the
pair potential and the specific parameter values
were chosen to produce a homopolymer with fa-
vorable kinetics and physically reasonable ther-
modynamic properties (density, compressibility,
surface tension, etc.), as will be seen in Ap-
pendix C. Plots of the pair potentials are shown
in Fig. 20. We did not perform an extensive
search of functional forms for the pair potential,
and the precision of the quoted parameter val-
ues was not necessary to produce a physically
reasonable polymer; instead, the large number
of digits resulted from reparameterizing the in-
teraction potential. Therefore we expect a pair
potential having either an alternate functional
form or parameter values di↵erent by a few per-
cent would still lead to physically reasonable be-
havior. Still, su�ciently poorly chosen parame-
ters may cause undesirable behavior such as all
beads collapsing to a single position or glassy
dynamics.
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Figure 20. Plots of non-bonded interaction potential.
Energies and lengths have been nondimensionalized
using kBT and Ltherm respectively, as described in
the second paragraph of Sec. II A. In (a), the purely
repulsive interaction potential Ur of Eq. (A2) for a
bead pair containing a solvophilic bead is plotted.
In (b), the interaction potential for two solvophobic
beads is plotted. This interaction potential contains
an attractive term in addition to the repulsive poten-
tial Ur plotted in (a).

Appendix B: Simulation method

To determine the average micelle shape re-
sulting from this model, we perform a constant
temperature molecular dynamics simulation us-
ing LAMMPS [45]. Although LAMMPS is a
molecular dynamics simulator, meaning it essen-
tially works by calculating forces from the poten-
tials and then using Newton’s second law to get
the accelerations from these forces, it provides
for running simulations of a fixed number of par-
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ticles “n” at constant temperature “t” and either
constant volume “v” or pressure “p”, through its
fix nvt and fix npt commands, respectively.
Since we are interested in obtaining a thermal
ensemble of configurations, these are exactly the
commands we used to time-evolve the system.
There are two parameters for the fix nvt com-
mand: a timestep and a time constant Tdamp

setting how quickly the simulation thermalizes
the system. Additionally, for constant pressure
simulations, there is an additional time constant
Pdamp determining how quickly the volume in
a constant pressure simulation responds to an
unbalanced pressure. To specify these time con-
stants, we must express them in terms of our
time unit, which, referring to our the system of

units described in Sec. IIA, is
q

mL2
therm

kBT , where
m is the mass of a bead, Ltherm is the root-mean-
square extension of the harmonic spring in ther-
mal equilibrium, kB is Boltzmann’s constant and
T is the temperature of the simulation thermo-
stat. From this expression, it can be shown that
the time unit is equal to Tdimer/⇡, where Tdimer

is the oscillation period of two beads connected
by a spring and isolated from the thermal bath.
In terms of this unit of time, we found after
some experimentation that setting the timestep
to 0.003 and setting Tdamp and Pdamp to 0.5 al-
lows for e�cient and numerically stable simula-
tion.

Another detail of the simulation is the initial-
ization. In all cases, the initial bead velocities
were chosen from a thermal distribution at the
temperature of the simulation thermostat.

Appendix C: Validation

In this section, we verify that our model and
simulation method, described in detail in Ap-
pendix A and Appendix B, produce physically
reasonable results in cases where the expected
behavior is known. One such case is a homopoly-
mer melt: a system consisting of a dense phase of
polymers all made from the same single species
of bead (in our case, solvophobic). The melt
ought to have a well-defined density, compress-
ibility, and surface tension. Additionally, the
density and mean square end to end distance

Figure 21. (Color online) Visualization of simulated
homopolymer melt. The simulated system contains
30 solvophobic homopolymer chains, each having 35
beads, shown as red disks. The springs connecting
adjacent beads are shown as red segments. The sys-
tem is periodic, its boundary indicated by the black
square.

of the polymer ought to have an expected de-
pendence on the number of monomers in the
polymer. In addition to verifying that the sim-
ulation is consistent with these expectations, we
also test for quantitative agreement between the
melt properties and those of real polymer; specif-
ically, we compare with poly(dimethylsiloxane)
(PDMS). A comparison of our system with
PDMS is apt because both systems are only
weakly insoluble.

First we consider the melt density. We sim-
ulate a periodic homopolymer system, shown in
Fig. 21, at zero pressure. In this case, the equi-
librium density is the number of beads divided
the average volume of the system. Multiple inde-
pendent simulations for di↵erent chain lengths n
were run in order to find the dependence of the
simulated density d on chain length and com-
pare this dependence to theoretical expectations.
Theoretically, the density is expected to reach a
finite value d1 as the chain length goes to in-
finity. For large values of the chain length, the
dependence of the density on the chain length
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Figure 22. (Color online) Solid curve: expected func-
tional form Eq. (C1), fitted to the simulation values
shown as points. The resulting reduced chi-squared
is 0.5, indicating that this functional form is con-
sistent with the data. The best-fit value of d1 is
0.30146± 0.00001.

d(n) can be expanded in the small parameter
1/n:

d(n) = d1 +
a

n
, (C1)

where a is a parameter representing how strongly
the density depends on the chain length. We find
our data is indeed well-fitted by this functional
form, as seen in Fig. 22.

Having found the equilibrium density at zero
pressure, we may also find the equilibrium den-
sity at finite pressure. The response of the den-
sity to an applied pressure is characterized by the
compressibility, denoted �. Alternatively, � may
be determined by analyzing the density fluctua-
tions at constant pressure. If the simulation pro-
duces a proper Boltzmann ensemble, these two
ways of determining the compressibility ought to
agree. Indeed, the compressibilities determined
from these two methods do in fact agree, as can
be seen in Fig. 23.

In Fig. 23b, there are two outliers exhibiting
anomalously large fluctuations, and therefore ex-
cluded from the compressibility analysis. Since
these outliers could not be reproduced, they were
replaced by data from repeated simulations. In
any case, the outliers represent only small fluctu-
ations in density (less than one percent). Addi-
tionally, the average density observed from these
two simulations is consistent with the trend ex-
hibited by the rest of the simulations, as shown
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Figure 23. (Color online) Two independent fits to
determine the compressibility �. In (a), the density
d of the homopolymer system of Fig. 21 with 30 poly-
mer chains and 15 beads per chain is plotted against
the applied pressure (data points). The solid line
shows a fit of the functional form d(p) = d0 (1 + �p)
to the data, which yields a compressibility � of
0.242±0.002, and reduced chi-squared of 0.65. In (b),
data from the same simulations of Fig. 22 are plot-
ted. The variance of the sampled densities, normal-
ized by the square density d(n)2 found from the fit of
Fig. 22, are plotted against the reciprocal of the chain
length. Two systems having 45 and 50 beads per
chain produced anomalous results, which could not
be reproduced after several attempts. These anoma-
lous results are shown as partially transparent data
points, and the solid data points at the same chain
lengths are results from representative repeats of the
simulation. A fit of the expected functional form
�d(n)/(Ncn) to the data excluding the outliers was
performed, whereNc is the number of chains (namely,
30) in the simulation. The fit gives a best-fit com-
pressibility of 0.2372±0.0007, and the chi-squared of
the fit is 1.4.
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Figure 24. (Color online) Plot of the mean-square
end-to-end chain distance hr2i as a function of chain
length for the same systems of Fig. 22 and Fig. 23b.
The data are fit to a the theoretical expectation given
in Eq. (C2), resulting in a best-fit value of b2 equal
to 6.41± 0.05 and a reduced chi-squared of 1.1.

in Fig. 22. This suggests that the samples are
incompletely equilibrated for purposes of deter-
mining these small fluctuations, even though
they are well equilibrated for determining the
density. Consequently, we conclude that care is
needed when the magnitude of, and uncertainty
in, a physical quantity’s thermal fluctuations.
Accordingly, we provide validation of our esti-
mates of micelle shape fluctuations in Sec. IVA.

In addition to the density, the mean-square
end-to-end chain distance hr2i also has an ex-
pected dependence on chain length [74]

hr2i(n) = b
2
n+ hr2i0, (C2)

where b
2 is a parameter giving the size of each

bead’s contribution to the mean-square end-to-
end distance, and hr2i0 is a subleading correc-
tion. As can be seen in Fig. 24, our data does
match this expectation well.

The final property of our system considered
here is its interfacial tension with the solvent,
which we determine using a simulation cell of
fixed volume and two free surfaces, as shown in
Fig. 25. Since the simulation has two surfaces,
the surface tension is half of the force transmit-
ted across the simulation cell. Because we know
the inter-bead forces as a function of bead po-
sition, calculating the transmitted force in the
simulation is a simple matter. We expect a well-

Figure 25. (Color online) Typical configuration of a
strip of homopolymer in (implicit) solvent. The simu-
lated system contains 143 solvophobic homopolymer
chains, each having 15 beads, shown as red disks.
The springs connecting adjacent beads are shown as
red segments. The system is periodic in one direc-
tion, and the fixed periodic boundaries are shown as
black lines.
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Figure 26. (Color online) Plot of inferred surface ten-
sions vs number of chains for system simulated in the
geometry of Fig. 25. A best fit to a constant yields
a surface tension of 0.717 ± 0.003. The reduced chi-
squared of the fit is 1.1, indicating that the data are
consistent with the surface tension being independent
of the number of chains in the system, as theoretically
expected.

defined surface tension independent of the num-
ber of chains in the simulation, and indeed this
is what we find, as can be seen in Fig. 26.

Having verified that the homopolymer melt
behavior matches theoretical expectations, we
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may ask if the actual values of the density,
compressibility and mean-square end-to-end dis-
tance per monomer are similar to those of real
polymer. We compare to poly(dimethylsiloxane)
at room temperature. To form a basis for com-
parison, we must make contact between simula-
tion units and the physical units in which PDMS
is measured. One correspondence of units may
be set by identifying the temperature of the sim-
ulation with the room temperature. Another
correspondence can be made by identifying the
Kuhn length [75], which we denote by `K , of the
model system with that of PDMS. To compare
the number density of the simulated system with
PDMS, it is necessary to specify the number
of dimethylsiloxane monomers corresponding to
one simulated bead. We make the choice that
one Kuhn segment in the simulation ought to
correspond to one Kuhn segment of PDMS. The
mean square bond length l

2 of our simulation is
3.2, so the number of beads per Kuhn segment
b
2
/l

2 is equal to 2.0, and the Kuhn length b
2
/l

is 3.6. Using the correspondences we have just
described, physical properties of our simulation
and those of PDMS are tabulated in Table III.

From Table III, we see that the density, com-
pressibilities, and surface tensions of our simu-
lated system are all on the same order of mag-
nitude of those of PDMS, validating that our
simulated system has properties similar to real
polymer. Further, the nature of the di↵erence
of the two systems’ properties can be partially
explained: our simulated system’s compressibil-
ity is higher than that of PDMS, and its surface
tension, lower. This is explained by our tuning
of the interaction parameters of our model to
create a “soft” system with a low energy barrier
for bead rearrangements, leading to shorter sim-
ulation times. With this in mind, we conclude
that our model polymer is reasonably similar to
PDMS, if a little softer.

Appendix D: Equivalence of two definitions
of mean shape

To justify our definition Eq. (15) of ¯, we
show that it is equivalent to an alternative notion
of average. The alternative definition involves

Quantity Unit
PDMS
value

Value in
simulation

Kuhn segment
density

`
�d
K 2.5 1.9

Compressibility
`
d
K ⇥ 10�3

kBT
4.0 19

Surface tension
kBT

`
d�1
K

5.6 2.6

Table III. Properties of our simulated ho-
mopolymer system compared with those of
poly(dimethylsiloxane). Since only comparison
of nondimensional ratios are meaningful, we express
is property in a system where the unit of length is the
Kuhn length `K , the unit of energy is thermal energy
kBT , and the amount of polymer is measured by
the number of Kuhn segments. Nondimensionalized
this way, the values of the density are similar, but
our simulated system has a lower surface tension
and higher compressibility The physical properties
of PDMS needed to calculate the values in this table
may be found in [76–78].

first rotating the shapes so that the summed
pairwise square di↵erences are minimized, and
then simply taking an arithmetic average. In
symbols, we define the minimizing rotation an-
gles ✓̌↵ by

(✓̌1, . . . , ✓̌Ns) = argmin
(✓1,...,✓Ns )

NsX

↵,�=1

�ext(R✓↵ ↵,R✓� �),

(D1)
and then we define the arithmetic average ˜̄ of
the shapes by

˜̄ =
1

Ns

NsX

↵=1

R✓̌↵ ↵. (D2)

To transform Eq. (D2) into a form more similar
to Eq. (15), we use a standard identity relating
the expected square di↵erences between two in-
dependent samples to expected square di↵erence
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of a single sample to the mean4:

1

N2
s

NsX

↵,�=1

�ext(R✓↵ ↵,R✓� �) =

2
1

Ns

NsX

↵=1

�ext(R✓↵ ↵,
1

Ns

NsX

�=1

R✓� �). (D3)

In fact we can proceed further by recognizing
that the arithmetic mean minimizes the sum of
square di↵erences. Using this fact to transform
the right hand side of Eq. (D3), we obtain

1

N2
s

NsX

↵,�=1

�ext(R✓↵ ↵,R✓� �) =

2
1

Ns
min

NsX

↵=1

�ext(R✓↵ ↵, ). (D4)

Using this identity (and ignoring an unim-
portant multiplicative factor of 2Ns), we may
transform Eq. (D1) into

(✓̌1, . . . , ✓̌Ns) =

argmin
(✓1,...,✓Ns )

min
NsX

↵=1

�ext(R✓↵ ↵, ). (D5)

From this equation, we see that the ✓̌↵ re-
sult from performing a double minimization ofPNs

↵=1�ext(R✓↵ ↵, ) with respect to both the
✓↵ and . Now we have already stated above
Eq. (D4) that the minimizing must be the
arithmetic average given by Eq. (D2), so that
we may simply write

˜̄ = argmin min
(✓1,...,✓Ns )

NsX

↵=1

�ext(R✓↵ ↵, )

= argmin
NsX

↵=1

min
✓↵

�ext(R✓↵ ↵, )

= argmin
NsX

↵=1

�int( ↵, )

= ¯,

(D6)

where the second line is obtained by noting that
each term in this sum of square di↵erences de-
pends on only one R✓↵ , and the third and fourth
lines are obtained by applying the definitions
Eq. (10) and Eq. (15) respectively. We conclude
that the two notions of average ¯ and ˜̄ are in-
deed the same.
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