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Abstract

In the current work, phospholipid bilayers are modeled using coarse grained molecular dynamics

simulations with the MARTINI force field. The extracted molecular trajectories are analyzed using

Fourier analysis of the undulations and orientation vectors to establish the differences between the

two approaches for evaluating the bending modulus. The current work evaluates and extends

the implementation of Fourier analysis for molecular trajectories using a weighted horizon based

averaging approach. The effect of numerical parameters in the analysis of these trajectories is

explored by conducting parametric studies. Computational modeling results are validated against

experimentally characterized bending modulus of lipid membranes using shape fluctuation analysis.

The computational framework is then used to estimate bending moduli for different types of lipids

(PC, PE and PG). This work provides greater insight into the numerical aspects of evaluating

bilayer bending modulus, provides validation for the orientation analysis technique and explores

differences in bending moduli based on differences in lipid nanostructures.
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I. INTRODUCTION

Lipid bilayers form an important part of all living cells and help with regulation of cellular

activity through the cell wall. These bilayers are primarily comprised of phospholipids which

have a hydrophilic head and a hydrophobic tail, which in an aqueous environment results in

self-assembly into bilayers with two layers of lipids across the membrane. It has been shown

that in heterogeneous membranes made of several different lipid types, cell fusion processes

are dependent on the reorganization (which can be related to the bending modulus) of these

lipids into domains based on the local curvature to facilitate fusion [1–3]. In other words,

lipids with small estimated bending modulus migrate to regions with larger curvature to

reduce the total energy of fusion intermediates, highlighting the need to understand the

bilayer bending modulus as a property of lipid nanostructure.

Computationally, the most commonly used method for evaluating the bending modulus

for lipid bilayers is using molecular dynamics (MD) simulations to model 2D planar mem-

branes and analyzing the thermal undulations from a flat planar initial structure through

the power spectra of undulations [4–6]. The mathematical framework for this approach

originated from the work of Helfrich [7] and Canham [8] which describes the free energy

functional for thin membranes with no surface tension. A variational approach is then used

to convert the curvature based energy functional to a function of deformation gradients.

The energy functional is then converted to Fourier space assuming small deviations from

the initial planar 2D structure. The power spectra of the undulations is observed to decay in

the fourth power as a function of spatial frequency, with the associated constant dependent

on the bilayer bending modulus. It is noted that the bilayer surface tension significantly af-

fects the undulations of the membrane, and thus, affects the bending modulus obtained from

the spectral analysis. Thus, the molecular simulations are performed at vanishing surface

tension to reduce any significant influence on the estimated bending modulus.

A recent review [9] has shown that the undulation power spectra underpredicts the bilayer

bending modulus as compared to experimentally reported values. An alternative approach

based on the power spectra of lipid orientations in the membrane has been proposed in recent

literature [10–12]. In this case, the energy functional for the bilayer includes the undulation,

tilt and protrusion of lipids i.e. recognizing more local nanoscale (o(1nm)) deformations

of the membrane as compared to the homogenized undulations (O(10nm)). In contrast to
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the undulation based analysis which assumes that the lipid bilayer is a flat homogeneous

continuum-like membrane, the orientation analysis recognizes the local molecular motion of

the lipids in the bilayer and constructs an energy functional for each of these local modes

of deformation. Orientation vectors are defined using the averaged heads and tails of these

lipids as the unit vector connecting the heads to the tails. Time averaged power spectra of

the orientation vector components is evaluated using 2D Fourier transforms and the bending

modulus is estimated based on long wavelength convergence of the orientation power spectra.

The orientation analysis is shown [9] to result in faster convergence i.e. a converged bending

modulus is obtained from bilayers of a smaller size relative to the undulation analysis. The

bending modulus obtained from the undulation spectra is expected to converge to those

obtained from the orientation spectra as the size of the bilayer and the simulation times are

increased. However, the time scale needed for the undulations to reach a converged estimate

scales to the third power of the bilayer size [13]. These conditions result in simulating

large bilayers over longer periods of time, which is computationally expensive. Thus, the

orientation spectra based analysis has been preferred in recent publications [11, 12]. Some

other computational methods reported in the literature for estimating the bilayer bending

modulus include a) indirect estimation of bending modulus through area compressibility

modulus [14] and b) bilayer buckling simulations [15].

While some studies published in the literature use full MD [6, 16], several computational

studies in the literature use coarse grained (CG) MD simulations to study the undulations

or orientation spectra [11, 12, 17]. Coarse grained molecular simulations significantly reduce

the computation time by reducing the number of degrees of freedom in the system and by

increasing the time step size. Of the several CG potentials developed in the past, MARTINI

CG potentials [18, 19] were specifically designed and tested for modeling lipid based struc-

tures. The MARTINI potentials have been observed to reproduce structural observations

like the area per lipid and lipid conformations, mechanical properties of the bilayers e.g.

bending, tilt moduli, lipid aggregation and membrane domain formations [20]. Following

from the literature, MARTINI force fields (martini22) will be used to perform the CG MD

simulations of lipid bilayers in the current work.

Experimentally, a few different techniques have been used to determine the bending mod-

ulus of bilayers e.g. shape fluctuation (or flickering) analysis [21, 22], micropipette aspiration

[23] and X-ray scattering [24]. A few reviews have outlined the various experimental meth-
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ods and the estimates of bending moduli for a range of lipid types and influencing factors

[25–28]. One of the issues with the bending modulus of lipid membranes is that the different

experimental and computational techniques result in different values for the estimated mod-

ulus. A recent review [9] summarizes the current methods for finding the bilayer bending

modulus from experiments and from computational molecular simulations, highlighting the

differences in the results obtained from these techniques. It is concluded that the exper-

imental and computational techniques used so far do not agree on the bending modulus,

with up to 400% difference in bending moduli reported for bilayers composed of the same

type of lipid. Thus, it is important to further verify the computational techniques used for

estimating bilayer bending moduli and validate these with experimental results.

In this context, the current work is aimed at (a) evaluating the numerical implementa-

tion of the molecular trajectory analysis and extending the numerical techniques for more

consistent estimation of bilayer properties, (b) verifying the estimated bending modulus

with published literature and validating these with experimental characterization performed

herein and (c) evaluating the bilayer bending modulus for more lipid types, i.e. phospho-

choline (PC), phosphoethanolamine (PE) and phosphoglycerol (PG), using both undulation

and orientation analysis to understand the effect of lipid nanostructure.

II. MATHEMATICAL PRELIMINARIES

The details of mathematical derivations for the undulation and orientation analysis can

be found in [12]. However, a short description of key ideas is provided here. A schematic of

a planar lipid bilayer undergoing thermal undulations is shown in Fig. 1. The undulation of

the membrane is defined by the z coordinates of the mean lipid head surface. The surface

obtained from lipid heads in the top leaflet is given by zu(x,y) and the surface obtained from

lipid heads in the bottom leaflet are given by zl(x,y). The variation of the the central plane

of the bilayer is then defined by z = (zu + zl)/2. The orientation vector for the membrane is

defined as a unit vector n(x,y) connecting averaged lipid heads to the averaged lipid tails in

each leaflet. The orientation vector of lipids in the top leaflet is defined as nu(x,y) and the

orientation of the lipids in the bottom leaflet is defined as nl(x,y). The unit vector normal to

the homogenized surface of lipid heads is defined as Nu(x,y) for the top leaflet and Nl(x,y)

for the bottom leaflet.
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FIG. 1. Schematic of a lipid bilayer membrane with top and bottom leaflet undulation surfaces

(zu, zl), mean bilayer undulation surface (z), the local unit normal perpendicular to the undulation

surfaces (Nu, Nl) and local lipid orientation unit vectors (nu, nl).

The free energy of undulation for a bilayer using the Helfrich-Canham [7, 8] methodology

for homogeneous thin membranes which lack internal structure (i.e. continuum based) is

described as:

Fu =
1

2

∫ ∫ (
kc|∇2z|2+γ|∇z|2

)
dA (1)

where kc is the bending modulus of the membrane and γ is the surface tension. The expres-

sion for free energy presented in Eqn. 1 further assumes that the membrane is symmetric

(i.e. has same lipid composition and density in each leaflet) and the leaflets are exposed to

the same aqueous environment on either sides of the bilayer, such that there is negligible

spontaneous curvature. This equation is converted to Fourier space by performing a Fourier

transformation, i.e. z(x) =
∑

q ẑ(q)eiq·x. The Fourier transformation converts the undula-

tion variable z from 2D Cartesian space x = (x, y) to 2D Fourier space q = (qx, qy). The

quadratic form of the free energy allows for using the equipartition theorem which states

that the energy stored in each of the modes is equal to 1
2
kBT and results in the following

relationship:

〈
|ẑ(q)|2

〉
=

kBT

kc|q|4+γ|q|2
(2)

where 〈|ẑ(q)|2〉 is time averaged magnitude of the power spectra of undulations, kB is Boltz-

mann’s constant and T is the temperature. For large values of q, or if there is significant

surface tension in the membrane, the second term in the denominator governs the power
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spectra of undulations. However, for small values of q and tensionless membranes, the first

term in the denominator governs the power spectra. Under the assumption of vanishing

bilayer surface tension and small q (i.e. long spatial wavelength), the power spectra can be

approximated as:

〈
|ẑ(q)|2

〉
=

kBT

kc|q|4
(3)

If the local lipid structure of the membrane is considered, and an assumption of small

undulations is placed, the bilayer free energy for undulation can be described in terms of

the local lipid orientation vectors [11] as:

Fu =
1

2

∫ ∫ (
kc(∇ · n)2 − Ω

b0

ε∇ · n +
KA

b2
0

ε2 +Kθm
2 +Ktw(∇×m)2

)
dA (4)

where Ω is the bending-compression coupling coefficient, KA is the area compressibility

modulus, Kθ is the tilt modulus, Ktw is the twist modulus, ε = z̃ − z where z̃ is the

homogenized mid surface, b0 is the mean bilayer thickness and m = n−∇z assuming small

undulations. Similar to undulation analysis, Fourier transformation converts the orientation

vector components from Cartesian to Fourier space as n(x) =
∑

q n̂(q)eiq·x. Furthermore, a

new definition for longitudinal orientation vector in the Fourier space may used as n̂||(q) =

1
|q| [q · n̂(q)], where |q| is the element-wise norm of the wavevector defined as |q|=

√
q2
x + q2

y.

After using the equipartition theorem, the time averaged magnitude of the power spectra

for longitudinal orientation vector (
〈
|n̂||(q)|2

〉
) is decoupled and is given by:

〈
|n̂||(q)|2

〉
=

kBT

kc|q|2
(5)

Unlike the undulation spectra (Eqn. 3) which decays as the fourth power of q, the orien-

tation spectra decays as the second power of q for long spatial wavelengths.

III. MODELING AND ANALYSIS

Computational modeling of lipid bilayers is performed using CG MD in Gromacs 5.1

and the 2D Fourier analysis is performed using in-house Python 2.0 scripts parallelized by

Python’s multiprocessing module. Details of the numerical aspects of modeling and analysis

are provided here.
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III.1. Coarse Grained Molecular Dynamics

The coarse grained molecular modeling of the bilayers is performed using the MARTINI

CG force field in Gromacs. The bilayers are assembled using a script [29] to set up a

simulation box with a flat lipid bilayer, water molecules and salt ions (Na+, Cl−). It is

to be noted that the number of lipids in each leaflet is the same in the initial assembly

and the aqueous environment on either sides of the bilayer is the same, such that there

is negligible spontaneous curvature in the membrane. The system is minimized using the

steepest decent algorithm for 10000 steps. Once the structure is minimized, the production

runs are performed using an NPT ensemble for 400ns with a time step of 40ps. The reference

temperature is fixed at 325K and a surface-tension pressure coupling is used with zero

in-plane surface tension and 1 atm pressure along the bilayer thickness direction. The

surface-tension pressure coupling in Gromacs allows for the MD box size (or bilayer in-plane

dimensions) to evolve to statistically maintain a prescribed surface tension (zero for the

current work). Periodic boundary conditions are used in all three spatial directions.

Molecular trajectories for the lipid heads and the lipid tails are extracted every 0.4ns for

analysis after the first 80ns equilibriation time such that the analysis results shows small

variations. The molecular trajectories are extracted for the heads and tails for both the

upper and lower leaflets. The lipid heads are defined by averaging the coordinates of the

two linker glycerol groups and the tails are defined by averaging the coordinates of the end

acyl groups in lipid tails. It has been shown [16] that different choices of lipid head and tail

estimation results in small variations in the evaluation of bending modulus. For the analysis,

the trajectories are divided into time blocks of 40ns which each block analyzed individually

to establish error estimates in estimated bending modulus, similar to the block averaging

process used in [16].

III.2. Fourier Analysis

The trajectories of the lipid head and tail groups are sorted into the upper leaflet and lower

leaflet based on the averaged lipid head coordinates. These trajectories are subsequently

used to evaluate averaged undulation coordinates (z) and orientation vector components

(nx,ny) as:
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z =
zu + zl

2
(6a)

nx =
nux − nlx

2
(6b)

ny =
nuy − nly

2
(6c)

One of the keys to finding the 2D Fourier transform for the undulation variable (z) or the

orientation vector components (nx,ny) is interpolating the unstructured molecular head/tail

particle data to a structured grid. Some studies in the literature [11, 12] have averaged the

data in each cell of structured grid to estimate the averaged quantities for each of the grid

points. However, this method leads to issues with empty grid cells as the number of grid

points is increased (which is important for better resolution and accuracy of the obtained

Fourier transform). Consequently, larger grid cells (or smaller number of structured grid

points) are used for Fourier analysis i.e. a larger section of the 2D data is averaged. It has

been pointed out [30] that averaging over larger sections may lead to reduction the Fourier

spectra magnitude, especially for fast varying spatial data (e.g. local orientation vector

components in the current work). In order to lift these constraints, a non local weighted

averaging method (similar in principle to [29]) is used in the current work. Undulation

coordinates and orientation vector components are averaged over a radius of size δ on a

structured grid as shown in the schematic in Fig. 2a,2b. The radius (δ) over which the

undulation and orientation variables are averaged is called the horizon.

It is to be noted that the horizon radius follows the rules of periodic boundary conditions

in both x and y directions as indicated in Fig. 2b. Averaging over a horizon interpolates the

unstructured data onto a defined regular N×N square grid, with grid points defined as x̃i.

In general, a field variable given by f(x) is averaged as:

f(x̃i) =
1∫

Ac
w(rx)dA

[∫
Ac

w(rx)f(x)dA

]
=

1∑Nc

j=1w(rxj
)

[
Nc∑
j=1

w(rxj
)f(xj)

]
(7)

where Ac is defined as the area of a circle centered at x̃i and a radius of δ, w(rxj
) is the

weight assigned to a particle at a radius rxj
away from x̃i and Nc is the number of particles

which lie inside the horizon. For the current work, the field variables defined by f(x) are the

undulation variable (z) and the components of the orientation vector (nx, ny). The weights

assigned to the particles, w(rxj
) are defined as:
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FIG. 2. Schematic of a) the weighted horizon over one structured grid point (x̃i), b) local horizons

overlaid on the structured mesh and unstructured molecular data indicating periodicity of horizons

and c) radial binning averaging over annular patches using a binwidth ∆ to convert from 2D to

1D Fourier space.

w(rxj
) =

1

1− e−α

[
e−αrxj /δ − e−α

]
(8)

where the weight decreases exponentially away from the center, x̃i, at a rate defined by the

exponent α and becomes zero at rxj
= δ. The horizon based averaging scheme used in the

current work circumvents issues with the grid based approach [11, 12], i.e. cells with no

lipids, for a fine structured grid. The combination of the horizon radius and exponent α in

the weighing function may be adjusted to allow for a finer structured grid preserving the

local perturbations in the undulation and orientation variables. The fast decaying exponen-

tial weighing function rapidly reduces the influence of lipids further away from the center

rapidly, preserving the local perturbations in data extracted from molecular trajectories.

Fig. 3a shows the molecular trajectories for a lipid bilayer of size ∼32nm square under-

going undulations. Fig. 3b and Fig. 3c show the averaged undulation (z̃) and orientation

component (ñx) using a horizon radius of 2nm with α=8 and N=32. The particles in the

foreground are the positions of averaged lipid heads which are colored based on the local

values of z and nx. The background shows the contour of the field variables after they are

interpolated to a regular background mesh using weighed averaging i.e. z̃ and ñx. It is to be

noted that the z̃ shows a long range variation whereas ñx shows local perturbations in the

orientation vector components. The local variations in the orientation vector components
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results in faster convergence to the bending modulus relative to the undulation analysis since

the time scales associated with the changes in lipid orientations are smaller.

FIG. 3. a) Coarse grained representation of a lipid bilayer (∼32nm) membrane modeled using

MARTINI potentials in Gromacs, b) 2D contours of local lipid undulation overlaid on averaged

undulation field variable using a horizon radius (δ) of 2nm with α=8 and N=32 c) 2D contours of

local lipid orientation overlaid on averaged orientation field variable using a horizon radius (δ) of

2nm with α=8 and N=32.

After the interpolation to a structured grid is performed, 2D Fourier analysis can be

performed using standard discrete Fourier transform tools. At this point the variables of

interest (z̃, ñx, ñy) convert from the real space (x) to Fourier space (q) and are denoted by

(ẑ, n̂x, n̂y) where (̂·) denotes that the variables are now defined on Fourier space q = (qx, qy).

The orientation vector components in the Fourier space are further used to evaluate the

longitudinal orientation vector as:

n̂|| =
1

|q|
[q · n̂] =

1

|q|
[qxn̂x + qyn̂y] (9)

where |q| is the element-wise norm of the wavevector defined as |q|=
√
q2
x + q2

y. The field

variables of interest (ẑ, n̂||) are converted from 2D to 1D Fourier space by recognizing the

radial symmetry in 2D Fourier space and performing radial averaging using wavevector
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binning (Fig. 2c). Let us say a field variable, f̂(qx, qy) is defined on a 2D Fourier space. The

variable can be represented on a 1D Fourier space using wavevector binning as:

f̂(|q|) =

∫ |q|+∆/2

|q|−∆/2

〈
f̂(qx, qy)

〉
d|q|= 1

Nq

∑
Nq

f̂(qx, qy) (10)

where 〈·〉 denotes averaging over the binwidth ∆ = π/L in the current work and Nq are the

number of points in the bin.

IV. EXPERIMENTAL CHARACTERIZATION

IV.1. Vesicle Generation

Giant unilamellar vesicles (GUVs) are formed using the electroformation technique [31–

33] and used to study bilayer bending modulus experimentally. A polydimethysiloxane

(PDMS, Sylgard 184, Dow Corning) mold is created with a hydrating well of cylindrical

cross section as shown in Fig. 4. The mold is sandwiched between two conductive sur-

faces which act as electrodes. For the current work, 10mg of 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC, Avanti Polar Lipids) lipids are dissolved in 1mL of chloroform and

transferred to a 10ml scintillating vial. A solution with 5µL of the lipids in chloroform are

deposited onto the conducting surface of the bottom indium tin oxide (ITO, Sigma Aldrich)

slide using a glass pipette. Nitrogen or Argon (Airgas) gas is passed over the lipids for three

minutes to coat an even thin film over the ITO slide. The coated ITO slide is placed under

vacuum for 1 hour to evaporate remaining excess chloroform from the lipids. The top ITO

slide is placed onto the PDMS substrate and bottom ITO slide encapsulating the hydrating

well. A hydrating solution is introduced into the well allowing for swelling of lipid layers

into GUVs. A syringe with a 1mm blunt needle attachment is used to inject the hydrating

solution, 20mM sucrose (Sigma Aldrich) in deionized (DI) water, through specially included

channels in the sides of the PDMS mold. Finally, a sinusoidal AC waveform is applied across

the chamber to trigger the budding and swelling of vesicles. In the current work, an AC

waveform of amplitude of 1V and a frequency of 1Hz was passed through the ITO slides for

3 hours. Varying the electric potential and frequency produces GUVs of different sizes. At

this point, the well contains electroformed GUVs which are extracted by a syringe pump

to prevent vesicle collapse, and transferred to dishes for observation. Other techniques for
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generation of GUVs include phase transfer [21] and sonication/extrusion [34].

FIG. 4. Illustration of the electroformation setup for vesicle generation.

IV.2. Experimental Evaluation of Bending Modulus

The images of GUVs in solution are captured by an inverted brightfield microscope. A

band pass filter is used on the images to enhance the GUV outlines. A gradient based

approach is used to extract the contours of liposomes where a combination of first and

second derivatives of the pixel intensity are used to define the contours.

A detailed description of image analysis for the GUVs to estimate the bending modulus

may be found in [17, 35] and references therein. However, the key ideas are outlined here.

For the experimentally observed GUVs, the X-Z plane of the bilayer (Fig. 1) is observed as

a circular outline of the vesicles. The undulations of the circular vesicle are observed as the

variations in radial displacement. In this case, the equations presented in Section II for flat

planar bilayers need to be extended by using an equatorial projection [17, 35] and can be

represented as:

〈
|û(q)|2

〉
=
kBT

2Lγ

1

q
− 1√

γ
kc

+ q2

 (11)

where 〈|û(q)|2〉 is the time averaged magnitude of the power spectra for the radial displace-

ments. Under the assumption of long wavelengths and small surface tension, Eqn. 11 reduces

to:

〈
|û(q)|2

〉
=

kBT

4Lkc|q|3
(12)
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where L = 2π 〈r〉 is the averaged circumference of the vesicle with 〈r〉 being the average

radius. The power spectra of experimentally observed radial undulations of the GUVs from

an initial spherical shape decays as a third power of q as against the fourth power for planar

bilayer using the undulation analysis (Eqn. 3).

V. RESULTS AND DISCUSSION

V.1. Experimental Results

Experimental investigation is performed with 1,2-diphytanoyl-sn-glycero-3-phosphocholine

(DPhPC) liposomes to validate the bending modulus estimates obtained from the compu-

tational framework. DPhPC lipids are chosen in the current work since the liposomes are

stable for a large range of temperature and physiological conditions. The coarse grained

representation of DPhPC lipids using MARTINI CG is the same as DPPC, since MARINI

CG represents butane and isopropane using the same effective atom [18, 19]. Thus, the

computational results for DPPC bilayers are directly comparable with the experimental

investigation with DPhPC liposomes. Fig. 5 shows a GUV with ∼70µm diameter as ob-

served from the microscope (Fig. 5a) and with the extracted contour using subsequent

image analysis (Fig. 5b). The extracted contour is further used to perform Fourier analysis

as discussed in Section IV.2 and averaged over ∼1150 time frames. The resulting power

spectra of the radial undulation (ûq) normalized by q3 is shown in Fig. 5c. It is to be noted

that the converged value of q3 〈|ûq|2〉 for small q is used to estimate the bending modulus of

the bilayer using Eqn. 12. For the three liposomes the study was performed, the estimated

bending moduli were observed to be 12.84 ± 1.97×10-20J.

V.2. Effect of Interpolation Parameters

One of the keys to estimating the bending modulus is understanding the influence of

trajectory analysis parameters on the averaging of molecular trajectories and the subsequent

Fourier analysis. This is specially important, since the estimated bending modulus may vary

significantly depending on the choice of these parameters. In the studies presented in the

literature [10–12, 15], the emphasis is on highlighting the mathematical framework and

demonstrating its applicability in comparison to previously published experimental results.
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FIG. 5. a) Sample of one time frame of a GUV (∼70µm diameter) observed under the micro-

scope, b) extracted GUV contour using image analysis and c) normalized power spectra for radial

undulations (q3
〈
|ûq|2

〉
) for a DPhPC liposome.

However, the role of interpolation parameters has not been sufficiently addressed. In the

current work, parametric studies are conducted by varying three key analysis parameters

which affect the estimated bending modulus, i.e. horizon radius (δ), weighing function

exponent (α) and the number of regular grid points (N), to understand their influence on

the estimated bending moduli, following from Eqns. 7 and 8.

FIG. 6. Time averaged a) undulation spectra, b) orientation spectra, c) normalized undulation

spectra and d) normalized orientation spectra for a ∼32nm DPPC bilayer with α=8 and N=32 for

different horizon radii (δ).

A comparison of power spectra obtained from the undulation and orientation analysis for

a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer (∼32nm) for different horizon
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radii are shown in Fig. 6. Fig. 6a shows the power spectra obtained from the undulation

analysis (〈|ẑq|2〉), Fig. 6b shows the power spectra obtained from the orientation analysis

(
〈
|n̂||q |2

〉
), Fig. 6c shows the normalized power spectra from undulation analysis (q4 〈|ẑq|2〉)

and Fig. 6d shows the normalized power spectra from orientation analysis (q2
〈
|n̂||q |2

〉
). The

data points represent the magnitude of power spectra obtained from each of the 40ns time

blocks and the solid line represents the best fit to the block averaged data points. For the

results presented in Fig. 6, the weight function exponent (α) is chosen to be 8 and the

grid size (N) is 32 i.e. the horizon spans nearly two regular grid cells for 2nm horizon

size. It is to be noted that the converged small q magnitudes for the normalized undulation

and orientation spectra are used to estimate the bending moduli using Eqns. 3 and 5. It

is observed that a larger horizon radius results in a decrease in the magnitude for short

wavelength (large q) undulation and orientations spectra. Averaging over a larger radius

cancels out the local perturbations in the trajectories around a mean value and results in

a decreased magnitude. This is especially true for the orientation components since they

exhibit local fast varying perturbations. Thus, the reduction in the magnitude for large q is

more significant in the orientation spectra as compared to the undulation spectra.

TABLE I. Estimated bending moduli for a DPPC bilayer from undulation and orientation analysis

for different horizon radii (δ) with α=8 and N=32.

Horizon Radius Undulation Analysis Orientation Analysis

δ (nm) kc (×10-20J) kc (×10-20J)

1.5 6.90 15.24

2 6.99 16.34

2.5 7.11 17.27

While the normalized power spectra from the undulation and orientation analysis seem

to converge for long wavelengths (small q) from Fig. 6, small variations in the converged

magnitudes may result in considerable differences in estimated bending moduli. The bending

moduli for the three horizon radii studied here (1.5nm, 2nm and 2.5nm) with α=8 and

N=32 are presented in Tab. I. It is to be noted that a horizon radius of 1.5nm is the

smallest permissible in this case since a smaller horizon size leads to no enclosed lipids in

the horizon at some of the analysis time steps. The smallest permissible horizon radius
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will, in general, be dependent on the area per lipid of the bilayer such that each horizon

over each grid point is occupied by at least one lipid for the entire length of time of the

simulations. It is observed that a larger horizon radius results in a larger estimate for the

bending modulus since a larger horizon leads to smaller magnitude of the converged time

averaged spectra. While the difference in the converged magnitude is small, it still leads to

a small increase in bending moduli with increasing horizon radius as the bending moduli are

inversely related to the normalized magnitude of the power spectra for small q in Eqns. 3 and

5. The increase in bending moduli estimated from undulation analysis and the orientation

analysis are observed to be ∼3% and ∼13%, respectively, between cases with δ=1.5nm

and δ=2.5nm. The larger difference observed for the orientation analysis is because the

local perturbations in orientation vector components get averaged out for a larger horizon

radius. In addition, Tab. I shows that the estimated bending moduli from the undulation

analysis are significantly smaller than those obtained from the orientation analysis similar

to the observations reported in the literature [9]. The undulations are expected take a

larger bilayer size and a longer simulation time to converge to the results obtained from the

orientation analysis.

FIG. 7. Time averaged a) undulation spectra, b) orientation spectra, c) normalized undulation

spectra and d) normalized orientation spectra for a ∼32nm DPPC bilayer with δ=2nm and N=32

for different weight function exponents (α) and a case with equal weights.

The power spectra obtained from the undulation and orientation analysis for different

exponents (α) of the weighing function are shown in Fig. 7 in comparison to a case with
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equal weighing of all particles within the horizon (as used in [11, 12]). The weighing function

introduced in Eqn. 8 is defined as w(rxj
) = 1 for the case with equal weights. For the results

presented in Fig. 7, a horizon radius of 2nm is chosen and the grid size is 32. It is observed

that the magnitude of the power spectra decreases as α is decreased from 8 to 2, especially

for large q. A larger weighing function exponent allows for capturing local perturbations

in the undulation and orientation analysis as compared to smaller exponents. Thus, the

magnitude gets smaller as the local perturbations get averaged for smaller exponents. The

case of equal weights (as used in [11, 12]) shows significantly smaller magnitude even for

moderately small values of q. Tab. II presents the estimated bending moduli from each of

the cases shown in Fig. 7. The estimated bending moduli gets larger as the weight function

exponent is reduced from 8 to 2 and finally to a case with equal weights. These estimated

follow from the smaller magnitude of power spectra for small exponents and equal weight

case. Similar to the horizon radius comparison, the observed change in bending moduli are

larger for orientation analysis as compared to the undulation analysis. For example, the

difference between cases with α=8 and α=2 is ∼5% from the undulation analysis and ∼14%

from the orientation analysis. The estimates of bending moduli case with equal weights is

remarkably larger as compared to any of the cases with weighted horizon averaging.

TABLE II. Estimated bending moduli for a DPPC bilayer from undulation and orientation analysis

for different weight function exponents (α) and a case with equal weights using δ=2nm and N=32.

Weight Function Exponent Undulation Analysis Orientation Analysis

α kc (×10-20J) kc (×10-20J)

8 6.99 16.34

4 7.22 18.19

2 7.37 19.06

Equal Weights 7.98 22.20

The power spectra obtained for different grid size (N) from the undulation and orientation

analysis are shown in Fig. 8. For these results, the horizon radius and the weight function

exponent are chosen to be 2nm and 8, respectively. The case with N=18 (as used in

[11, 12], but with grid based averaging) is significantly under-sampled and leads to a larger

power spectra magnitude, especially for the orientation analysis where the magnitude is
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significantly large for all values of q. The magnitude is further observed to decrease slightly

with increasing number of grid points, especially for large q. However, as seen earlier, small

variations in low q magnitude may lead to significant variations in the estimated bending

moduli. Tab. III shows a comparison of the estimated bending moduli for each of the cases

presented in Fig. 8. The case with N=18 shows significantly smaller estimated bending

modulus based on the large magnitude of the power spectra, especially from the orientation

analysis where the under-sampling is more prominent because of the local variations in

orientation vector components. As N increases further, the estimated bending modulus

increases at a successively smaller rate showing convergence in the estimated modulus.

FIG. 8. Time averaged a) undulation spectra, b) orientation spectra, c) normalized undulation

spectra and d) normalized orientation spectra for a ∼32nm DPPC bilayer with δ=2nm and α=8

for different grid sizes (N).

TABLE III. Estimated bending moduli for a DPPC bilayer from undulation and orientation analysis

for different grid sizes (N) with δ=2nm and α=8.

Grid Size Undulation Analysis Orientation Analysis

N kc (×10-20J) kc (×10-20J)

18 6.13 9.96

32 6.99 16.34

48 7.03 17.43

64 7.20 17.82
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The results presented here show that the choice of interpolation parameters may lead

to differences in the power spectra magnitude, and thus, in estimation of bilayer bending

moduli. This difference is larger for the bending moduli estimated using the orientation

analysis, since the local perturbations in orientation vector components makes it more sen-

sitive to these parameters. In choosing these parameters, the key is to preserve the local

values as far a possible during the averaging i.e. using small horizon radius and large α.

In addition, the number of regular grid points (N) should be sufficiently large to sample

the space sufficiently. However, any averaging or interpolation scheme (from unstructured

to structured data) would lead to slightly smaller power spectra magnitude, and thus, a

slightly larger estimated bending modulus.

TABLE IV. Bending moduli reported in the literature for DPPC bilayers from computational and

experimental studies in comparison to those estimated in the current work. (Note: DPPC and

DPhPC have the same MARTINI CG structure)

Reference Type of Study Size (number of lipids), time (µs) kc (×10-20J)

Previously Published Literature

DPPC [18] Undulation Analysis (CG) 6400, 0.15 4.0

DPPC [4] Undulation Analysis (Full Atomistic) 1024, 0.01 5.7

DPPC [6] Undulation with tilt correction (CG) 3200, 1 21.0

DPPC [11] Orientation Analysis (MARTINI) 2048, 2.4 13.0

DPPC [11] Orientation Analysis (Unified Atom CG) 2048, 2.4 16.0

DPPC [16] Orientation Analysis (CHARMM) 648, 0.11 15.6

DPPC [9] Buckling Analysis (MARTINI) 640, 4 14.6

DPPC [36] Shape Fluctuation Analysis (Experimental) - 15.0

Current Work

DPPC Undulation Analysis (MARTINI) 3200, 0.4 6.99

DPPC Orientation Analysis (MARTINI) 3200, 0.4 16.34

DPhPC Shape Fluctuation Analysis (Experimental) - 12.84 ± 1.97

For further verification, the results obtained from undulation and orientation analysis

are compared with the literature. Table IV shows the bending modulus for DPPC bilayers
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reported in the literature and those estimated in the current work. The bending moduli

reported in the literature from the undulation analysis are much smaller in comparison

to those with the tilt correction (which requires prior knowledge of the tilt modulus - see

Table IV ref [6]) or the orientation analysis. In addition, the orientation analysis results

reported in the literature are observed to predict the experimentally observed estimates more

closely in comparison to other computational modeling methods [9]. The estimated bending

modulus obtained in the current work using the undulation analysis is significantly smaller

from the experimental results obtained herein (Sec. V.1), as has been the case with earlier

literature. However, the estimated bending moduli from the undulation analysis obtained

in the current work are close to similar computational studies performed previously. The

bending modulus obtained from the orientation spectra based analysis in the current work

is observed to be close to the experimental results, both in the current work and those

published earlier.

V.3. Bending modulus of different lipid membranes

After the computational framework is verified and validated, it is further used to estimate

the bending moduli for bilayers with different lipid types. In addition to the DPPC bilayer

studied herein, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl- sn-glycero-3-

phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DOPG)

bilayers are studied to understand the effect of differences in head and tail groups on the

estimated bending moduli. The lipids DOPC, DOPE and DOPG have the same tail group

and are of the same size, but have different head groups as shown in Fig. 9. Fig. 10a-10c

shows the undulation spectra for the three lipid types and Fig. 10d-10e show the normal-

ized undulation spectra. Corresponding estimates of bending moduli for these bilayers are

presented in Tab. V along with the computational and experimental results available in

the literature. Following from the observations made earlier, the bending moduli estimates

obtained from the undulation analysis underpredict the experimentally observed bilayer

bending modulus.

Fig. 11a-11c shows the orientation spectra for the three lipid types and Fig. 11d-11e show

the normalized orientation spectra. Corresponding estimates of bending moduli for these

bilayers are presented in Tab. V. The estimates from orientation analysis are close to those
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FIG. 9. Coarse grained lipid nanostructure for DPPC, DOPC, DOPE and DOPG lipids (NC3:

choline, PO4: Phosphate, C1: butane/isopropane, C2: butene, NH3: Amine, GL0: Glycerol).

FIG. 10. Time averaged undulation spectra for a) DOPC, b) DOPE and c) DOPG bilayer, nor-

malized undulation spectra for d) DOPC, e) DOPE and f) DOPG bilayer with δ=2nm, α=8 and

N=32.

obtained from experimental investigation and from equivalent computational techniques

published earlier. The different lipid types studied here (DOPC, DOPE, DOPG) result in

similar estimates for the bending moduli i.e. 12-13×10-20J highlighting that the differences

in the head groups for these lipid types do not significantly affect the bending moduli.

However, the bending moduli for these lipids is significantly smaller (∼25%) than those

estimated for a DPPC bilayer presented in Section V.1 from experimental investigation and

orientation analysis. Thus, the difference in the tail group for the lipids is observed to lead

to a larger change in bending modulus estimates.
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FIG. 11. Time averaged orientation spectra for a) DOPC, b) DOPE and c) DOPG bilayer, nor-

malized orientation spectra for d) DOPC, e) DOPE and f) DOPG bilayer with δ=2nm, α=8 and

N=32.

VI. CONCLUSION

In the current work, estimates of bending modulus for homogeneous lipid bilayer mem-

branes are studied using the undulation and orientation analysis of coarse-grained molecu-

lar trajectories. A weighted horizon based averaging scheme is proposed to interpolate the

molecular trajectories from unstructured data to a structured grid. The weighted horizon

based averaging scheme presented reduces issues with empty cells and provides a finer grid

for Fourier analysis improving the resolution and accuracy of the bending modulus estimates.

The effect of key interpolation parameters in weighted averaging of molecular trajectories

and subsequent Fourier analysis are systematically investigated using parametric studies. It

is observed that the choice of these interpolation parameters may influence the estimated

moduli and the key consideration is retaining the local perturbations in the trajectories as

far as possible to obtain converged results.

The computational analysis is verified with computational and experimental characteri-

zation of bilayer bending moduli published in the literature and validated with experimental

characterization performed herein. It is observed that the orientation analysis predicts bend-

ing moduli which are closer to experimentally observed results as compared to the undulation

analysis, as noted in an earlier study [9]. The computational framework is further used to
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TABLE V. Bilayer bending modulus reported for different lipid types from computational and

experimental studies in the literature in comparison to those estimated in the current work.

Reference Type of Study Size (number of lipids), time (µs) kc (×10-20J)

Previously Published Literature

DOPC [16] Orientation Analysis (CHARMM) 648, 0.17 11.4

DOPC [9] Buckling Analysis (MARTINI) 640, 4 15.5

DOPE [16] Orientation Analysis (CHARMM) 648, 0.14 11.4

DOPC [21] Shape Fluctuation Analysis (Experimental) - 11.0

DOPC [36] Shape Fluctuation Analysis (Experimental) - 9.0-12.0

Current Work

DOPC Undulation Analysis (MARTINI) 3200, 0.4 3.84

DOPC Orientation Analysis (MARTINI) 3200, 0.4 12.08

DOPE Undulation Analysis (MARTINI) 3200, 0.4 3.17

DOPE Orientation Analysis (MARTINI) 3200, 0.4 12.01

DOPG Undulation Analysis (MARTINI) 3200, 0.4 4.72

DOPG Orientation Analysis (MARTINI) 3200, 0.4 12.98

study lipids of the same size, but, with different head and tail groups. It is observed that

the bending moduli are more sensitive to differences in tail groups as compared to the head

groups. The current work sheds further light on the numerical analysis techniques for esti-

mating bilayer bending moduli and establishes the difference in these estimates for different

lipid types.
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