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T cell receptors (TCRs) bind foreign or self-peptides attached to major histocompatibility complex
(MHC) molecules, and the strength of this interaction determines T cell activation. Optimizing the
ability of T cells to recognize a diversity of foreign peptides yet be tolerant of self-peptides is crucial
for the adaptive immune system to properly function. This is achieved by selection of T cells in
the thymus, where immature T cells expressing unique, stochastically generated TCRs interact with
a large number of self-peptide-MHC. If a TCR does not bind strongly enough to any self-peptide-
MHC, or too strongly with at least one self-peptide-MHC, the T cell dies. Past theoretical work
cast thymic selection as an extreme value problem, and characterized the statistical enrichment or
depletion of amino acids in the post-selection TCR repertoire, showing how T cells are selected to be
able to specifically recognize peptides derived from diverse pathogens, yet have limited self-reactivity.
Here, we investigate how the degree of enrichment is modified by nonuniform contacts that a TCR
makes with peptide-MHC. Specifically, we were motivated by recent experiments showing that amino
acids at certain positions of a TCR sequence have large effects on thymic selection outcomes, and
crystal structure data that reveal a nonuniform contact profile between a TCR and its peptide-MHC
ligand. Using a representative TCR contact profile as an illustration, we show via simulations that
the degree of enrichment now varies by position according to the contact profile, and, importantly,
it depends on the implementation of nonuniform contacts during thymic selection. We explain these
nontrivial results analytically. Our study has implications for understanding the selection forces
that shape the functionality of the post-selection TCR repertoire.

I. INTRODUCTION

T cell receptors (TCRs) bind peptides loaded onto ma-
jor histocompatibility complex (MHC) molecules (abbre-
viated as peptide-MHC) on the surface of antigen pre-
senting cells (APCs), and the strength of this interaction
determines T cell activation [1, 2]. Such peptides are
derived from either the host itself (self-antigens), or, po-
tentially, pathogens infecting the host (foreign antigens).
Thus, optimizing the ability of T cells to recognize di-
verse foreign antigens with high specificity, yet be self-
tolerant, is essential for the proper functioning of the
adaptive immune system. Immature T cells (or thymo-
cytes) express a distinct TCR on their surface assem-
bled through a stochastic process of gene rearrangement,
generating a highly diverse repertoire [3] that is acted
upon by selection in the thymus. There, thymocytes
are screened against a large number of self-peptide-MHC;
those that do not productively bind to self-peptide-MHC
die (this is called positive selection), and those that bind
too strongly are also eliminated (this is called negative
selection). T cells that survive thymic selection are ex-
ported to the body’s periphery where they participate
in the adaptive immune response. In this way, thymic
selection shapes the post-selection TCR repertoire to
potentially recognize diverse foreign antigens, yet limit
self-reactivity [4]. While detailed statistics of the post-

selection repertoire are now available [5–7], how thymic
selection achieves this outcome is less well-understood.

Mathematical models have shed light on various as-
pects of thymic selection (for a review, see Ref. [8]);
in particular, models that represented TCR–peptide-
MHC interactions as pairwise interactions between digit
strings [9, 10] were useful for studying how TCR cross-
reactivity can result. In Refs. [11, 12], some of the au-
thors considered a more explicit representation of inter-
amino acid interaction strengths (the Miyazawa–Jernigan
matrix [13]), and characterized the statistical enrichment
or depletion of amino acids in the post-selection TCR
repertoire, computationally [11] and analytically [12], as
a function of parameters such as the number of self-
peptide-MHC encountered during selection. These stud-
ies provided insight into how T cells are selected to be
specific for unknown foreign peptides and yet are self-
tolerant.

In the past few years, more detailed information about
thymic selection outcomes have emerged. Advances in
high-throughput sequencing have allowed researchers to
quantify the statistics of post-selection TCR sequences
in detail, revealing positional differences in the enrich-
ment of amino acids [5, 6]. Furthermore, recent experi-
ments found that pre-selection thymocytes that were ac-
tivated by self-peptide-MHC (and hence would fail nega-
tive selection) were enriched in hydrophobic amino acids
at positions 6 and 7 of the TCRβ-chain complementarity-
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Figure 1: Number of atom-atom contacts (within 4Å) between TCR amino acids and peptide-MHC molecules,
measured from crystal structures of TCR–peptide-MHC complexes (contact data taken from Ref. [7]; Protein Data
Bank IDs listed at top left of each figure). (a–d) show 4 pairs of identical TCRs bound to different peptide-MHC

molecules. Their TCRβ-chain complementarity-determining region (CDR3β) amino acid sequences are displayed on
the lower x-axes, and each bar shows the number of contacts made by that amino acid with the bound peptide-MHC
molecule. These plots are a representation of the nonuniform contact interface between a TCR and its peptide-MHC

ligand. Each site is labeled with a different color, in the same order as in Fig. 4.

determining region (CDR3β), while thymocytes passing
both positive and negative selection were enriched in
amino acids with moderate hydrophobicity at these po-
sitions [7]. These results agree with theoretical predic-
tions made in previous work [11, 12], but additionally
find varying levels of enrichment at different CDR3β po-
sitions. Furthermore, a large number of crystal struc-
tures of TCR–peptide-MHC complexes have been ana-
lyzed, that reveal a nonuniform contact interface between
TCRs and their peptide-MHC ligands (quantified, for
example, by atom-atom contact profiles — see Fig. 1),
and show that positions 6 and 7 of the CDR3β sequence
make the strongest contacts on average. Taken together,
these findings show that certain TCR positions are more
important than others for influencing thymic selection
outcomes, and that this information can be captured by
nonuniform contact profiles such as those in Fig. 1.

While Refs. [11, 12] modeled thymic selection outcomes
depending on properties of inter-amino acid interactions,
they did not account for nonuniform contacts made be-
tween a TCR and peptide-MHC. In this paper, we de-
velop a formalism to do so, and investigate how this af-
fects thymic selection outcomes. In particular, we con-
sider two possible mechanisms by which nonuniform con-
tacts are mediated during thymic selection, one of which
we term deterministic, and the other stochastic. We per-
form numerical simulations and analytical computations
to characterize the degree of enrichment of amino acids
in the post-selection TCR repertoire, and show that po-
sitions making stronger contacts end up with greater de-

grees of enrichment. While this may appear an expected
outcome, the degree of enrichment depends nontrivially
on the entire contact profile, as well as the positive and
negative selection thresholds. In addition, we find that
the interpretation of nonuniform contacts remarkably af-
fects the degree, and even sign, of enrichment. Our study
suggests a mechanistic origin for positional differences in
post-selection TCR amino acid enrichment that has been
observed in statistical analyses [5, 6] and experiments [7],
and has implications for understanding how the function-
ality of the post-selection repertoire emerges.

The paper is organized as follows: in Section II, we
develop a mathematical model of thymic selection that
incorporates nonuniform contact profiles. In Section III,
we consider two possible interpretations of nonuniform
contacts, and study their effects on thymic selection out-
comes. The stark differences in levels of enrichment be-
tween the two interpretations are explained analytically.
In Section IV, we discuss further work and conclude.

II. MODEL DESCRIPTION

Immature T cells (or thymocytes) undergo positive and
negative selection in the thymus before maturation. Each
thymocyte expresses a distinct TCR on its surface, gen-
erated stochastically through V(D)J gene recombination
and insertions and deletions of nucleotides (whose proba-
bilities have been inferred from high-throughput sequenc-
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ing data [3]), creating a diverse pre-selection repertoire.
In the thymic cortex, thymocytes are presented with self-
peptide-MHC by thymic antigen presenting cells (APCs).
Thymocytes that do not bind strongly enough to any self-
peptide-MHC die of insufficient survival signals; this is
called positive selection. Thymocytes that survive posi-
tive selection migrate to the thymic medulla, where they
are further screened against self-peptide-MHC, and those
that bind too strongly with at least one self-peptide-MHC
receive apoptotic signals and are eliminated; this is called
negative selection.

We cast this process in a mathematical model as
follows: following Ref. [11], TCR sequences, t =
(t1, . . . , tN ), of length N are generated by sampling
amino acids ti, i = 1, . . . , N , independently from a dis-
tribution ppre(ti), that is taken to be the amino acid
distribution of the human proteome [14]. While this
is highly simplified compared to how the actual pre-
selection repertoire is generated [3], it does not affect our
later results, which concern the action of thymic selection
on this distribution. Unlike Ref. [11], here a TCR has the
capacity to make nonuniform contacts, which we capture
by specifying c = (c1, . . . , cN ). We describe values and
interpretations of c in the next section.

During thymic selection, a TCR interacts with M in-
dependent self-peptide sequences, s = (s1, . . . , sN ), of
length N bound to MHC, that are also randomly gen-
erated according to ppre. Because these are mostly lin-
ear peptides, they do not have an associated c. Follow-
ing Ref. [11], we model the binding strength between a
TCR and self-peptide as pairwise interactions between
TCR amino acid ti and self-peptide amino acid si, for
i = 1, . . . , N (see Fig. 2a). Thus, the overall binding
energy, E(t, s, c), is

E(t, s, c) = Ec +

N∑
i=1

f(ci)J(ti, si), (1)

where Ec captures interactions between TCR and MHC,
J(t, s) is an interaction potential that in principle ac-
counts for biochemical and other properties of inter-
amino acid interactions, and f(ci) accounts for nonuni-
form contact at position i. Following Ref. [11], we use the
Miyazawa–Jernigan (MJ) matrix for J(t, s) [13], whose
structure largely arises from hydrophobic forces [7, 15];
hydrophobic amino acids are strongly interacting (more
negative J(t, s) values), while hydrophilic amino acids are
weakly interacting (less negative J(t, s) values). (Note
that the results that follow do not qualitatively depend
on the potential, but Ref. [7] noted the importance of
hydrophobicity for the strength of TCR–peptide-MHC
interactions, implying that use of the MJ matrix is rea-
sonable.) Reference [11] implicitly assumed that all
f(ci) = 1. Henceforth, we will specialize to one MHC
type (i.e. Ec a constant) because its diversity is much
lower than that of self-peptides (a human for example
expresses 6 different MHC class I molecules), and we are
not going to focus on how TCR cross-reactivity to other
MHC molecules can arise [9, 10].

Positive and negative selection are carried out as fol-
lows: if the strongest (minimum) interaction energy be-
tween a TCR and M independent self-peptide-MHC is
weaker (greater) than a positive selection threshold Ep,
or if it is stronger (less) than a negative selection thresh-
old En, the thymocyte dies. These hard constraints are
consistent with experiments that found relatively small
differences in TCR–ligand affinity at the negative selec-
tion threshold [16] (although they found that the posi-
tive selection threshold is softer). Thymocytes that inter-
act withM self-peptide-MHC with strongest (minimum)
binding energy within [En, Ep] survive thymic selection
and mature into naïve T cells (see Fig. 2b).
Parameter values: The CDR3 loops of a TCR typ-

ically make the greatest contacts with peptide (as op-
posed to MHC) [17]. Here, the TCR amino acid string
t represents the CDR3β sequence, which is typically of
length 10–18 [6]. During thymic selection, a thymocyte
typically interacts with 103–104 self-peptide-MHC. Real-
istic values of the difference between positive and nega-
tive selection thresholds, and the T cell activation free
energy with self-peptide alone (without MHC), are given
by Ep − En = 2.5 kBT and En − Ec = −21 kBT , respec-
tively [11, 12].
Model without nonuniform contacts: References [11,

12] considered a model with all f(ci) = 1, N = 5,
M = 103, and Ep−En and En−Ec given above. Numer-
ical simulations of this model resulted in a distribution of
TCR sequences surviving selection that was statistically
different from the pre-selection one, in that the former
was enriched in weakly interacting amino acids and de-
pleted in strongly interacting ones (see Fig. 2c). This
result was consistent with later experiments [7].

A. Theory of the post-selection TCR repertoire
distribution

Reference [12] developed an analytical theory for the
post-selection TCR repertoire distribution, valid in the
limit of N,M → ∞. Here, we extend this theory to
include nonuniform contact profiles. A self-contained
derivation is in the Appendix; we state below the es-
sential results.

A TCR with sequence t = (t1, . . . , tN ) and contact pro-
file c = (c1, . . . , cN ) experiences a distribution of binding
energies during thymic selection, with mean

µ(t, c) = Ec +

N∑
i=1

µ(ti, ci), (2)

and variance

ν(t, c) =

N∑
i=1

ν(ti, ci), (3)

where there are no cross-correlation terms in Eq. (3)
because sites are independent. In Ref. [12] (where all
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Figure 2: Mathematical model of positive and negative selection in the thymus. (a) String representation of
TCR–peptide-MHC binding. A TCR sequence of length N (here N = 5) interacts with a peptide sequence, also of
length N , bound to a MHC molecule. Each colored square represents a different amino acid. TCR and peptide

amino acids interact in a pairwise fashion (see Eq. (1)). (b) Schematic of possible thymic selection outcomes. Top:
thymocyte failing negative selection. Middle: thymocyte failing positive selection. Bottom: thymocyte surviving
positive and negative selection. (c) Enrichment curve showing the amino acid distribution of TCR sequences

surviving thymic selection, divided by the pre-selection distribution ppre(t). Parameter values (same as Ref. [12]): all
f(ci) = 1, N = 5, M = 103, Ep −En = 2.5, En −Ec = −21 (in units of kBT ). Blue dotted line: results of numerical

simulations of the model for 5× 106 independently generated TCR sequences, each encountering M = 103

independent self-peptide sequences. The statistical uncertainty is smaller than the symbol sizes, as confirmed by
simulations with 106 trials. Red solid line: prediction of Eq. (8) with β∗ obtained from Eqs. (9)–(11). Amino acids
are arranged in order of increasing [J(t, a)]a (see Eq. (6)). Enrichment curves for all i = 1, . . . , N have been averaged
together. A value of 1 implies that the amino acid is observed equally often pre- and post-selection; values greater
(less) than 1 imply enrichment (depletion) in the post-selection repertoire. Theory gave β∗ = −0.38, implying

selection for weakly interacting amino acids.

f(ci) = 1), µ(ti, ci) and ν(ti, ci) are given by

µ(ti) = [J(ti, a)]a, (4)

and

ν(ti) = [J(ti, a)
2]a − [J(ti, a)]

2
a, (5)

where [J(t, a)]a and [J(t, a)2]a are the first and second
moments of interaction strength experienced by amino
acid t when interacting with self-peptide sequences, i.e.

[J(t, a)]a ≡
20∑
a=1

J(t, a)ppre(a), (6)

where a runs over the 20 possible amino acids t encoun-
ters. In this paper, the forms of µ(ti, ci) and ν(ti, ci)
depend on the interpretation of c and will be specified in
the next section.

For largeN andM , the minimum binding energy expe-
rienced by a TCR during selection tends to the Gumbel
distribution (see Appendix), whose peak is at

ρG(t, c) = µ(t, c)−
√

2ν(t, c)α, (7)

where α =
√
logM , and whose variance is νG(t, c) =

π2ν(t, c)/(12 logM). In the limit of N,M → ∞ (keep-
ing N ∝ logM), this distribution concentrates around
its peak, which lies somewhere between En and Ep. In
this limit, the post-selection TCR repertoire distribution
becomes (see Appendix)

ppost(ti
∣∣ci) = 1

Zβ,γ,ci
e−β[µ(ti,ci)−γν(ti,ci)]ppre(ti), (8)

where Zβ,γ,ci ensures normalization,

γ =
α√

2
∑N
i=1〈ν(ti, ci)〉β,γ,ci

, (9)

and

〈ν(ti, ci)〉β,γ,ci ≡
20∑
ti=1

ν(ti, ci)ppost(ti
∣∣ci). (10)

The value of β in Eq. (8) is chosen such that 〈ρG(t, c)〉
(from Eq. (7)) lies within [En, Ep]. ppost(ti

∣∣ci) depends
on ci explicitly, and on the full contact profile implicitly
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Figure 3: Schematic of deterministic (a) and stochastic
(b) interpretations of nonuniform TCR contact profiles.

(a) Interactions between TCR amino acid ti and
peptide amino acid si at position i are screened by a

factor ci, here represented as contacts of different sizes.
(b) Interactions between TCR and peptide amino acids
at position i are made with probability ci, 0 ≤ ci ≤ 1;
this is representated as contacts of the same size that

are either present or absent.

through γ. Also in this limit, 〈ρG(t, c)〉 becomes

〈ρG(t, c)〉β,γ,c =

N∑
i=1

〈µ(ti, ci)− γν(ti, ci)〉β,γ,ci −
α2

2γ
.

(11)
In practice, for each value of β, one iterates between

Eqs. (9) and (10) until a self-consistent value of γ is ob-
tained. Values of β corresponding to 〈ρG(t, c)〉β,γ,c = Ep
and 〈ρG(t, c)〉β,γ,c = En are found, and the one closer to
zero is taken to be β∗ (or β∗ = 0 if they straddle 0).
Intuitively, β∗ parametrizes the degree to which weakly
or strongly interacting amino acids are enriched in the
post-selection TCR repertoire; positive β∗ implies select-
ing for strongly interacting amino acids, and negative β∗
implies selecting for weakly interacting ones.

III. INTERPRETATIONS OF NONUNIFORM
TCR CONTACT PROFILES

How is the picture of Fig. 2c modified when nonuni-
form contact profiles are taken into account? We were
initially inspired by crystal structures of TCR–peptide-
MHC complexes, that show a variation in the number of
contacts made between TCR and peptide-MHC along the
TCR sequence for every structure examined (see Fig. 1);
this contact profile need not even have a single maximum.
However, when many contact profiles were added to-
gether, it appeared that positions 6 and 7 of the CDR3β
sequence made the greatest contacts with peptide-MHC
on average (see Fig. 4a), which is consistent with exper-
imental findings [7] and suggests that nonuniform con-
tact profiles are useful in capturing positional differences
that influence thymic selection outcomes. Figure 4a was
obtained by rescaling the total number of contacts mea-
sured from 53 TCR–peptide-MHC structures such that

the maximum is 1. We will make use of this representa-
tive, “average” contact profile as c in the following.

A. Deterministic screening interpretation

Motivated by crystal structure analyses, we first con-
sidered a model where every interaction between TCR
amino acid ti and self-peptide amino acid si was weak-
ened by a factor ci, 0 ≤ ci ≤ 1. This is represented by
setting f(ci) = ci in Eq. (1). In principle, there is no
reason to exclude values of ci > 1 (depending on how in-
teractions are modified by number and type of contacts),
but here we only considered reduced interactions, for ex-
ample due to screening by intervening water molecules.

We performed numerical simulations of our model us-
ing the deterministic interpretation of the contact pro-
file of Fig. 4a, with TCRs of length N = 15 and keep-
ing the other parameter values the same as in Ref. [12]
and Fig. 2c (i.e. M = 103, Ep − En = 2.5 kBT , and
En − Ec = −21 kBT ). Statistics of TCR amino acids
in the post-selection repertoire are shown in Figs. 4b–c
(dotted lines). Enrichment curves for each site are plot-
ted in a different color. Now, the degree of enrichment
depends on position; sites corresponding to the largest ci
(sites 6 and 7) experience the greatest degree of enrich-
ment, while sites making no contact (sites 1–3, 14 and
15) have enrichment values close to 1. Furthermore, sites
making contacts are now enriched in strongly interacting
amino acids, which is opposite of Fig. 2c!

To understand this result, we repeated the theoretical
analysis of the previous section. The mean and variance
of interaction energies for amino acid ti at position i are
now modified to

µA(ti, ci) = ci[J(ti, a)]a, (12)

and

νA(ti, ci) = c2i [J(ti, a)
2]a − c2i [J(ti, a)]2a, (13)

by replacing J(ti, a) → ciJ(ti, a) in Eqs. (4) and (5).
Using these expressions in Eqs. (9)–(11), we found β∗ =
0.79 > 0, which indeed implies enrichment of strongly
interacting amino acids. Plots of Eq. (8) for each position
(solid lines in Figs. 4b–c) also resemble enrichment curves
obtained from simulations.

Upon reflection, this change is not surprising. The
contact profile of Fig. 4a has an “effective length” of∑15
i=1 ci ≈ 3.2 < 5, implying that the mean binding en-

ergy experienced by a TCR during selection is roughly
64% of that experienced in the model with N = 5 and
without nonuniform contacts, which produced Fig. 2c.
(Indeed, the same analytical computation for N = 3 and
without nonuniform contacts also gives β∗ > 0.) Thus,
it is plausible that here, TCR sequences need to be en-
riched in more strongly interacting amino acids in order
to have their strongest binding energy during selection
fall between En and Ep. Indeed, the analytical theory
makes this intuition concrete.
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Note that the analytical curves systematically under-
predict the degree of enrichment, i.e. the value of β∗
obtained from theory was slightly too small. For finiteM ,
the extreme value distribution in fact has a finite width,
and so one might underestimate β∗ by matching the peak
〈ρG(t, c)〉β,γ,c to Ep. Indeed, when we include the next-
order correction to ρG(t, c), which is positive (see after
Eq. (A.2) in the Appendix), the analytical curves match
those from simulations much better (not shown).

The results of the deterministic interpretation of the
nonuniform contact profile of Fig. 4a however contradict
the experiments of Ref. [7], which find that TCRs with
strongly interacting amino acids at sites 6 and 7 should
fail negative selection. While we have attempted to use a
realistic contact profile, relaxing some of the assumptions
we have made, such as ci ≤ 1 or the functional form of the
interaction potential being f(ci) ∝ ci, may lead to results
that better agree with experiments. Additionally, the
hypothesis of deterministic screening need not be correct,
and we were led to another interpretation of nonuniform
contacts, which we describe in the following section.

B. Stochastic binding interpretation

In fact, crystal structures are merely static pictures of
TCR–peptide-MHC binding, whereas the events leading
to T cell activation following encounters with peptide-
MHC are much more dynamic [17]. Indeed, it is known
that the CDR3β loop of TCRs is relatively flexible, with
a range of conformations that can bind different lig-
ands [18]. There also exist crystal structures of the same
TCR bound to different peptide-MHC that have different
parts of the TCR binding the different ligands [19].

These facts motivate another interpretation of nonuni-
form contacts: for every encounter during thymic selec-
tion, TCR amino acid ti binds to self-peptide amino acid
si with probability ci, 0 ≤ ci ≤ 1. This is represented
by setting f(ci) = Xi, where Xi is a Bernoulli random
variable with parameter ci. This stochastic binding in-
terpretation gives the same average interaction energy as
the deterministic one:

µB(ti, ci) = ci[J(ti, a)]a, (14)

while its variance is instead

νB(ti, ci) = ci[J(ti, a)
2]a − c2i [J(ti, a)]2a, (15)

which has one factor of ci multiplying [J(ti, a)
2]a (as op-

posed to two in Eq. (13)).
We performed numerical simulations of this model, and

obtained a post-selection repertoire shown in Figs. 4d–e
(dotted lines). Again, the degree of enrichment is greater
for sites making greater contacts. However, unlike the
deterministic interpretation, here sites making contacts
are enriched in weakly interacting amino acids. Repeat-
ing the previous analytical computations using Eqs. (14)
and (15) also give β∗ = −0.38 < 0. Thus, the argument

that we made previously was incomplete; even though the
“effective length” here is roughly 3.2 as well because the
mean interaction energies are equal (Eqs. (12) vs. (14)),
their variances are different, and it is the variance that
nontrivially modifies thymic selection outcomes! Be-
cause of the larger variance here, it is plausible that
weakly interacting amino acids are sufficient for hav-
ing the strongest of M binding energies reach below Ep.
Again, the analytical theory makes this intuition con-
crete.

Another way to think of this is in terms of extreme val-
ues in lengths. During each interaction, a subset of posi-
tions of a TCR interact with self-peptide amino acids. In
the negative selection-dominated regime, TCRs are more
likely to be eliminated because of one interaction that
is too strong, rather than all M interactions being too
weak. Performing the analytical computation for N ≥ 7
and without nonuniform contacts gives β∗ = −∞, imply-
ing that no TCR that makes 7 or more contacts during
selection should survive. Also, the analytical theory for
N = 6 and without nonuniform contacts gives β∗ = −1.7,
implying that TCRs making 6 contacts during selection
have a high probability of failing negative selection too.
Thus, the majority of TCRs that survive selection will
have made their strongest interaction with ∼5 contacts,
and indeed, the enrichment curves for sites 6–9 resemble
that of Fig. 2c (where N = 5).

The predicted curves from Eq. (8) (solid lines in
Figs. 4d–e) agree well with numerical results. Note that
the theory predicts that site 7 is less enriched than site
6, even through c7 > c6 (compare black and red solid
curves in Fig. 4d)! That the degree of enrichment is not
monotonically related to ci can be seen by differentiat-
ing µB(ti, ci) − γνB(ti, ci) w.r.t. ci, which reveals that
according to the theory, there is an optimum 0 < ci < 1
that gives the greatest enrichment, which is different for
each amino acid (because it depends on [J(t, a)]a and
[J(t, a)2]a). (Repeating this calculation for the deter-
ministic model however gives an optimal ci that is nega-
tive, implying that there is monotonicity for that case.)
Numerical simulations however do not show this non-
monotonicity, and so we believe this is a manifestation of
finite M and N .

To summarize, we have shown how two possible inter-
pretations of nonuniform TCR contacts modify thymic
selection outcomes in different ways. We have also ex-
plained our results using an analytical theory valid in
the limit of large N and N ∝ logM .

IV. DISCUSSION

In this paper, we presented a formalism to incorporate
information about TCR structure, through its nonuni-
form contact profile, into a model of thymic selection. We
showed how this leaves statistical signatures at different
positions of post-selection TCR sequences. Importantly,
we showed how these signatures depend on implementa-
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(a)

(b) (c)

(d) (e)

Figure 4: Thymic selection with nonuniform contact profiles. (a) Total number of atom-atom contacts for 53
TCR–peptide-MHC crystal structures, rescaled such that the maximum is 1 (contact data taken from Ref. [7]; see
Protein Data Bank IDs therein). (b–e) Numerical simulations (dotted lines) and analytical computations (solid
lines) for deterministic (b–c) and stochastic (d–e) interpretations of nonuniform contacts. Each colored line

represents the degree of enrichment of amino acids at a position along TCR sequences surviving thymic selection.
For ease of viewing, sites 1–7 are plotted in (b,d) and sites 8–15 in (c,e). To create the dotted lines, 5× 106

simulations were performed for each model with independently drawn TCR and self-peptide sequences. Solid lines
are plots of Eq. (8) with β∗ obtained from Eqs. (9)–(11). Strongly interacting amino acids were enriched (β∗ > 0)
for the deterministic model, but depleted (β∗ < 0) for the stochastic model. Parameter values: N = 15, M = 103,
Ep − En = 2.5, En − Ec = −21 (in units of kBT ). Note: in (c) and (e), the curves for sites 8 and 9 almost coincide

as c8 and c9 are almost equal.
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tion of nonuniform contacts, as a deterministic screening
of interactions, or as probabilities of stochastic binding
events. In the actual thymus, these and other scenar-
ios probably play a role, and it would be interesting to
quantify their relative effects.

While we have added a further degree of realism
to modeling TCR–peptide-MHC interactions, many fea-
tures have been left out, such as:

• We did not account for nonuniform contacts with
MHC. This is important because a TCR binding
more strongly with MHC might require weaker in-
teractions with peptide in order to be activated;
this has been studied previously to explain TCR
cross-reactivity with foreign MHC molecules [9, 10].
Mathematically, this may be included into the
model by modulating Ec by f(cc).

• Stochastic binding events may be correlated be-
tween neighboring TCR positions. Mathematically,
this introduces cross-correlation terms into the vari-
ance of interaction energies (Eq. (15)), and makes
the Legendre transform and self-averaging within
the theory more complicated (see Appendix).

• The pre-selection TCR distribution resulting from
V(D)J recombination is not factorizable into∏N
i=1 ppre(ti), which also introduces correlations

into Ppost(t).

• The same TCR amino acid may contact more
than one peptide-MHC amino acid, and the same
peptide-MHC amino acid may contact more than
one TCR amino acid.

Nonuniform contact profiles are a step towards mod-
eling the complicated, structure-dependent nature of
TCR–peptide-MHC interactions. However, a more in-
formed method should be developed to infer such a pro-
file from crystal structures. For example, we made use
of measurements of the number of peptide-MHC atoms a
distance of 4Å away from TCR amino acids, but charac-
teristic distances should depend on the kind of interaction
(hydrogen bonding, van der Waals, etc.).

We limited computations in this paper to one contact
profile to illustrate its effect on thymic selection out-
comes. Separately, it would be interesting to characterize
the statistics of contact profiles from crystal structures.
This task however is limited by the relatively small num-
ber of crystal structures known, as opposed to the large
quantities of high-throughput sequencing data available.
We note that an additional step needs to be taken to
connect the model in this paper to statistics of aligned
TCR sequences that appear in, e.g., Refs. [5, 6] (which do
not focus on residues making contact with peptide-MHC
but rather the entire aligned CDR3 region, and hence do
not find enrichment at TCR positions corresponding to
recent experiments [7]): the model should be run sepa-
rately for different contact profiles, and the enrichment

curves should be averaged together according to the pass-
ing rates for the different contact profiles. Note that this
is a possible mechanism for obtaining enrichment of an
amino acid at one position in a sequence alignment, and
depletion of the same amino acid at another, because
these positions might feature in different contact profiles
that have different β∗. This also implies that the results
from an average contact profile are, in general, different
from running the model for separate contact profiles and
averaging the results together, because the former does
not account for different passing rates. Thus, it would be
interesting to attempt the inverse problem of inferring
differential contacts and binding tendencies at different
positions of a TCR sequence from positional differences
in the post-selection TCR repertoire, but this is compli-
cated by the under-determinacy of the problem.

Inferring overall patterns determining a TCR’s speci-
ficity to peptide-MHC from knowledge of TCR–peptide-
MHC crystal structures is challenging because there is
no one canonical way by which a TCR interacts with
peptide-MHC [17, 20, 21]; the same TCR may bind dif-
ferent peptide-MHC in very different ways [19]. Predict-
ing TCR sequences that recognize a given set of peptide-
MHC by inferring “sequence motifs” of TCRs has been
achieved very recently [22, 23]. We believe that analyzing
thymic selection outcomes has implications for antigenic
specificity, because surviving thymic selection involves in-
teractions with a large number of self-peptide-MHC, and
thus features relevant for thymic selection outcomes are
also relevant for antigenic specificity. The interpretations
of nonuniform contacts we studied here have distinct and
measurable effects on the post-selection repertoire, and
thus they probably play a role in antigenic specificity as
well, which perhaps gives a mechanistic basis for the se-
quence motifs discovered in the recent studies [22, 23].

Recently, a paper that also modified the thymic selec-
tion model of Refs. [11, 12] to include positional differ-
ences in TCR–peptide-MHC interactions appeared [24].
In essence, for a given TCR, they drew the values of
f(ci)J(ti, si) in Eq. (1), i = 1, . . . , N , independently
from a Gaussian distribution. Thus, they reduced thymic
selection to an extreme value problem with a random
energy model, in which “TCRs” and “amino acids” lose
their meaning; this contradicts studies that find predic-
tive features determining specificity that are based on
TCR amino acid sequences [7, 22, 23]. However, their
model is simpler to analyze and may be a useful null
model, and it would be interesting to compare it with a
statistical ensemble of contact profiles. The authors also
commented that the model of Refs. [11, 12] fell short in
that very few self-peptides (i.e. the most strongly inter-
acting ones) perform the job of negative selection equally
effectively as the full panel ofM = 103–104 self-peptides.
While this is true (which follows directly from specify-
ing an inter-amino acid interaction potential), it is not
known how large this fraction is for the real thymic se-
lection process. Experimentally, this could be tested by
engineering the thymus to contain peptides consisting of
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only strongly interacting amino acids [4]. Also, it is pos-
sible that these peptides are somehow found rarely or not
at all in the thymus, because self-peptides are chopped-up
versions of actual proteins. Large values of M are likely
still required to randomly generate such special peptides.
We note that the model we study here moves away from
the limitations they raised, as different TCRs with differ-
ent contact profiles need not bind equally strongly with

the same, strongly interacting peptide.
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Appendix: Derivation of the post-selection TCR
repertoire distribution for large N , M

Here, we provide a self-contained derivation of a the-
ory for the post-selection TCR repertoire distribution,
extending Ref. [12] to capture a nonuniform contact pro-
file. The probability that a TCR with sequence t and
contact profile c survives selection, P (post

∣∣t, c), is equal
to the probability that the minimum of M binding ener-
gies it encountered lies within [En, Ep]. Now, the bind-
ing energy E(t, s, c) between a TCR and self-peptide se-
quence s bound to MHC will be Gaussian distributed for
large N , by the Central Limit Theorem (because Eq. (1)
contains a sum of N independent, but not identically dis-
tributed, f(ci)J(ti, si)), with mean µ(t, c) and variance
ν(t, c) given by Eqs. (2) and (3), respectively. And if
E(t, s, c) is Gaussian distributed, then the limiting dis-
tribution of minMk=1E(t, s(k), c) as M → ∞ will be the
Gumbel distribution, which has cumulative distribution
function

PG(min
k
E(k) < E) = 1− exp

[
− exp

(
E − aM (t, c)

bM (t, c)

)]
,

(A.1)
where

aM (t, c) = µ(t, c)−
√
2ν(t, c)α, (A.2)

with α =
√
logM − 1

4
√
logM

(
log logM + log 4π

)
+

O((logM)−3/2) (depending only on M), and

bM (t, c) =

√
ν(t, c)

2 logM
+O((logM)−3/2

)
. (A.3)

The peak of this distribution is ρG(t, c) = aM (t, c), and
its variance is νG(t, c) = π2

6 b
2
M (t, c). In the main text
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of this paper, we used the leading-order value of α, α =√
logM (see after Eq. (7)).

Using Bayes’ rule, the posterior distribution of TCR
sequences surviving selection, P (t

∣∣post, c), is given by

P (t
∣∣post, c) = P (post

∣∣t, c)Ppre(t)∑
t P (post

∣∣t, c)Ppre(t)

∝
[
PG(E < Ep)− PG(E < En)

]
× Ppre(t)

=

{
exp

[
− exp

(
En − aM (t, c)

bM (t, c)

)]
− exp

[
− exp

(
Ep − aM (t, c)

bM (t, c)

)]}
× Ppre(t). (A.4)

While this is exact within the Gaussian approximation,
it is not immediately obvious how to make progress
quantifying the enrichment of post-selection TCR amino
acids by direct marginalization, i.e. P (ti

∣∣post, c) =∑
{tj}j=1...N\i

P (t = (t1 . . . tN )
∣∣post, c).

Reference [12] made progress in the limit of N,M →
∞, keeping N ∝ logM , when the extreme value dis-
tribution concentrates around its peak, ρG(t, c), which
lies somewhere between En and Ep. Now, we ask: what
is the probability distribution that minimizes the rela-
tive entropy (or Kullback–Liebler divergence) to the pre-
selection distribution Ppre(t), given the constraint that
ρG(t, c) lies between En and Ep? The answer is

P (t
∣∣post, c) = 1

Zβ,c
e−β(µ(t,c)−

√
2ν(t,c)α)Ppre(t), (A.5)

where Zβ,c ensures normalization, and we have used
Eq. (A.2). Here, β is a Lagrange multiplier constrain-

ing the value of 〈µ(t, c) −
√
2ν(t, c)α〉 ≡

∑
t

(
µ(t, c) −√

2ν(t, c)α
)
P (t

∣∣post, c) to lie between En and Ep. The
optimal value of β, β∗, is the one as close to 0 as pos-
sible that satisfies this constraint. The mapping from
hard constraints on the extreme value to a constraint on
its mean is analogous to that from the microcanonical to
the canonical ensemble in the thermodynamic limit [12].

The marginal distribution of amino acid ti at position
i of post-selection TCR sequences, P (ti

∣∣post, c), may be
obtained from Eq. (A.5) by taking a sum over 20N−1

terms. However, in the N → ∞ limit, ν(t, c) self-
averages, i.e.

∑N
i=1 ν(ti, ci) →

∑N
i=1〈ν(t, ci)〉; thus, per-

forming the double Legendre transform on ρG(t, c) w.r.t.
ν(t, c) (equivalently Hamiltonian minimization [25]), and
replacing ν(t, c) by its self-averaged value

∑N
i=1〈ν(t, ci)〉,

Eq. (A.5) factorizes into Eq. (8) of the main text, where
γ (given by Eq. (9)) is the conjugate variable to ν(t, c).
After the Legendre transforms w.r.t. ν(t, c), 〈ρG(t, c)〉
becomes Eq. (11). How β∗ is found in practice is de-
scribed after Eq. (11) of the main text.


