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Revealing the structure and dynamics of complex networked systems from observed data is a
problem of current interest. Is it possible to develop a completely data driven framework to deci-
pher the network structure and different types of binary dynamical processes on complex networks?
We develop a model named sparse dynamical Boltzmann machine (SDBM) as a network struc-
tural estimator for complex networks that host binary dynamical processes. The SDBM attains its
topology according to that of the original system and is capable of simulating the original binary
dynamical process. We develop a fully automated method based on compressive sensing and a clus-
tering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical
processes on model and real world complex networks that the equivalent SDBM can recover the
network structure of the original system and simulates its dynamical behavior with high precision.

I. INTRODUCTION

A central issue in complexity science and engineering
is systems identification and dynamical behavior predic-
tion based on experimental or observational data. For a
complex networked system, often the network structure
and the nodal dynamical processes are unknown but only
time series measured from various nodes in the network
can be obtained. The challenging task is to infer the
detailed network topology and the nodal dynamical sys-
tems from the available data. This line of pursuit started
in biomedical science for problems such as identification
of gene regulatory networks from expression data in sys-
tems biology [1–4] and uncovering various functional net-
works in the human brain from activation data in neu-
roscience [5–8]. The inverse problem has also been an
area of research in statistical physics where, for exam-
ple, the inverse Ising problem in static [9–13] and ki-
netic [14–20] situations has attracted continuous interest.
Recent years have witnessed the emergence and growth
of a subfield of research in complex networks: data based
network identification (or reverse engineering of complex
networks) [21–35]. In these works, the success of map-
ping out the entire network structure and estimating the
nodal dynamical equations partly relies on taking advan-
tage of the particular properties of the system dynamics
in terms of the specific types and rules. For example,
depending on the detailed dynamical processes such as
continuous-time oscillations [26, 30–33, 36, 37], evolution-
ary games [27], or epidemic spreading [28], appropriate
mathematical frameworks uniquely tailored at the spe-
cific underlying dynamical process can be formulated to
solve the inverse problem.
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In this paper, we address the following challenging
question: is it possible to develop a completely data-
driven framework for extracting the network topology
and identifying the dynamical processes, without the
need to know a priori the specific types of network dy-
namics? An answer to this question would be of signifi-
cant value not only to complexity science and engineer-
ing but also to modern data science where the goal is
to unearth the hidden structural information and to pre-
dict the future evolution of the system. We introduce a
Boltzmann machine for complex networked systems with
pairwise interactions and demonstrate that such a “ma-
chine” can indeed be developed for a large number of dis-
tinct types of binary network dynamical processes. Our
approach will be a combination of numerical computa-
tion and physical reasoning. Since we are yet able to
develop a rigorous mathematical framework, the present
work should be regarded as an initial attempt towards
the development of a general framework for network re-
construction and dynamics prediction.

The key principle underlying our work is the follow-
ing. In spite of the difference among the types of bi-
nary dynamics in terms of, e.g., the interaction patterns
and state updating rules, there are two common fea-
tures shared by many dynamical processes on complex
networks: (1) they are stochastic, first-order Markovian
processes, i.e., only the current state of the system de-
termines its immediate future; and (2) the nodal inter-
actions are local, i.e., a node typically interacts with
its neighboring nodes, not all the nodes in the network.
The two features are characteristic of a Markov network
(or a Markov random field) [38, 39]. In particular, a
Markov network is an undirected and weighted proba-
bilistic graphical model that is effective for determining
the complex probabilistic interdependencies in situations
where the directionality in the interaction between the
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connected nodes cannot be naturally assigned, in con-
trast to the directed Bayesian networks [38, 39]. In this
work, however, we make a proper modification to the
undirected Markov network to accommodate networked
systems with a directed topology. Note that a Markov
network has two types of parameters: a nodal bias pa-
rameter that controls its preference of the state choice
and a weight parameter characterizing the interaction
strength of each undirected link. In our work, the weight
parameter of an incoming (or outgoing) link is defined
to characterize the interaction from (or to) a neighboring
node in a directed network.

For a network of N nodes with xj being the state of
node j (j = 1, . . . , N), the joint probability distribution
of the state variables X = (x1, x2, . . . , xN )T is given by
P (X) =

∏
C φ(XC)/

∑
X

∏
C φ(XC), where φ(XC) is the

potential function for a well-connected network clique C,
and the summation in the denominator is over all possi-
ble system state X. If this joint probability distribution
is available, all conditional probability interdependencies
can be obtained. The way to define a clique and to deter-
mine its potential function plays a key role in the Markov
network’s representation power of modeling the interde-
pendencies within a particular system.

To be concrete, in this work we pursue the possibility
of modeling the conditional probability interdependen-
cies of a variety of binary dynamical processes on com-
plex networked systems via a properly modified Ising
Markov network with its potential function having the
form of the Boltzmann factor, exp(−E), where E is the
energy determined by the local states and their interac-
tions along with the network parameters (the incoming
link weights and node biases) in a log-linear form [40].
This is effectively a sparse Boltzmann machine [40] that
allows directed connections adopted to complex network
topologies without hidden units. (Note that hidden units
usually play a crucial role in ordinary Boltzmann ma-
chines [40]). We introduce a temporal evolution mecha-
nism as a persistent sampling process for such a machine
based on the conditional probabilities obtained via the
joint probability, and generate a Markov chain of per-
sistently sampled state configurations to form the state
transition time series for each node. We call our model
a sparse dynamical Boltzmann machine (SDBM).

For a binary dynamical process on complex networks,
such as epidemic spreading or evolutionary game dynam-
ics, the state of each node at the next time step is de-
termined by the probability conditioned on the current
states of its neighbors (and its own state in some cases).
There is freedom to manipulate the conditional probabil-
ities that dictate the system behavior in the immediate
future through the adjustment of its parameter values,
i.e., the weights and biases. A basic question is then, for
an SDBM, is it possible to properly choose these parame-
ters so that the conditional probabilities so produced are

approximately identical to those of the network dynami-
cal process with each given observed system state config-
uration? If the answer is affirmative, the SDBM can serve
as a dynamics approximator of the original system, and
the approximated conditional probabilities possess pre-
dictive power for the system state at the next time step.
When such an SDBM is found for many types of dynam-
ical process on complex networks of various directed and
undirected topologies, it effectively serves as a dynamics
approximator.

When an approximator has been found for the bi-
nary dynamics on a complex network, the topology of
the SDBM is an approximate representation that of the
original network, providing a solution to the problem of
network structure reconstruction. Previous works on the
inverse static or kinetic Ising problems led to methods
of reconstruction for Ising dynamics by maximizing the
data likelihood (or pseudo-likelihood) function via the
gradient descent approaches [9–20]. Instead of adopt-
ing these methods, as a part of our methodology to ex-
tract the network structure, we articulate a compressive
sensing [41–46] based approach, whose working power
has been demonstrated for a variety types of non-Ising
type of dynamics on complex networks [26–29, 47–49].
By incorporating the K-means clustering algorithm into
the sparse solution obtained from compressive sensing,
we demonstrate that nearly perfect reconstruction of the
complex network topology can be achieved. Using 14 dif-
ferent types of dynamical processes on complex networks,
we find that, if the time series data generated by these
dynamical processes are assumed to be from its equiva-
lent SDBMs, the reconstruction framework is capable of
recovering the underlying network structure for each type
of original dynamics with essentially zero error. This rep-
resents solid and concrete evidence that SDBM is capable
of serving as a structural estimator for complex networks
with directed and undirected interactions. In addition to
being able to precisely reconstruct the network topology,
the SDBM also allows the link weights and nodal biases
to be calculated with high accuracy. An appealing fea-
ture of our method is that it is fully automated and does
not require any subjective parameter choice.

Section II provides a general formulation of SDBM as
a structural estimator with a focus on undirected net-
works. The use of compressive sensing and the imple-
mentation of K-means algorithm is described. A param-
eter estimation scheme and degree guided solution strat-
egy are introduced. The issue of estimating link weights
and nodal bias is addressed. Section III presents recon-
struction results for a variety of model and real networks
coupled with 14 different types of dynamical processes.
Section IV contains a general discussion of the SDBM
method. A number of side issues together with certain
details of the real networks are placed in Appendices.
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II. METHOD FORMULATION

A. SDBM as a structural estimator for undirected
complex networks

1. Sparse dynamical Boltzmann machine and compressive
sensing

An SDBM with symmetric link weights is effectively a
classical Markov network. For an SDBM of size N , the
probability that the system is in a particular binary state
configuration XN×1 = (x1, x2, . . . , xN )T is given by

P (X) =
exp(−EX)∑
X exp(−EX)

, (1)

where EX is the total energy of the network in X:

EX = XT ·W ·X =
∑
i 6=j

wijxixj +

N∑
i=1

bixi, (2)

xi and xj are binary variables (0 or 1) characterizing the
states of nodes i and j, respectively, and W is a weighted
matrix with its off diagonal elements wij = wji (i, j =
1, . . . , N, i 6= j) specifying the weight associated with
the link between nodes i and j. The ith diagonal element
of W is the bias parameter bi for node i (i = 1, . . . , N),
which determines node i’s preference to state 0 or 1. The
total energy EX includes the interaction energies (the
sum of all wijxixj terms) and the nodes’ self energies
(the various bixi terms). The partition function of the
system is given by

Z =
∑
X

exp(−EX), (3)

where the summation is over all possible X configura-
tions. The state of node i at the next time step is deter-
mined by the states of all other nodes at the present time
step, XR

i , through the following conditional probability

P{xi(t+ 1) = 1|XR
i (t)} =

P{xi(t+ 1) = 1,XR
i (t)}

P{xi(t+ 1) = 1,XR
i (t)}+ P{xi(t+ 1) = 0,XR

i (t)}
, (4)

where the two joint probabilities are given by

P{xi(t+ 1) = 1,XR
i (t)} =

1

Z
exp [−

N∑
j=1,j 6=i

wijxj(t)− bi −
N∑

s=1,s6=i

N∑
j=1,j 6=i

wsjxs(t)xj(t)−
N∑

s=1,s6=i

bsxs(t)],

P{xi(t+ 1) = 0,XR
i (t)} =

1

Z
exp [−

N∑
s=1,s 6=i

N∑
j=1,j 6=i

wsjxs(t)xj(t)−
N∑

s=1,s6=i

bsxs(t)].

A Markov network defined in this fashion is in fact the
kinetic Ising model [14–20]. With the joint probabilities,
the conditional probability in Eq. (4) becomes

P{xi(t+1) = 1|XR
i (t)} =

1

1 + exp [
∑N

j=1,j 6=i wijxj(t) + bi]
.

(5)

We thus have

ln

(
1

P{xi(t+ 1) = 1|XR
i (t)}

− 1

)
=

N∑
j=1,j 6=i

wijxj(t)+bi.

Letting Qi(t) ≡
(
P{xi(t+ 1) = 1|XR

i (t)}
)−1−1, we have
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FIG. 1: A schematic illustration of structural reconstruction using SDBM for undirected complex networks. (a)
Reconstruction of the local connection structure of the red node in a network of 20 nodes. The connections of the network are assumed
to be unknown, so the red node can potentially be connected with any other node, as shown by the orange dashed links. Executing
compressive sensing [(c)] and the K-means clustering [Fig.2] for this node based on time series leads to its true connection structure,
marked by the red links. The link weights and the nodal bias are represented by the vector VN×1 in (c). (b) All true connections of the
network are recovered through the process in (a) for each node. The Markov blanket of the red node in (a) consists of all its nearest
neighbors, indicated by the nodes with dashed red circles. (c) A schematic illustration of the compressive sensing framework for
structural reconstruction as in Eq. (9).

lnQi(t) =
(
x1(t), . . . , xi−1(t), xi+1(t), . . . , xN (t), 1

)


wi1

...
wi(i−1)

wi(i+1)

...
wiN

bi


(6)

For M distinct time steps t1, t2, . . . , tM , we obtain the following matrix form:
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lnQi(t1)
lnQi(t2)

...
lnQi(tM )

 =


x1(t1), . . . , xi−1(t1), xi+1(t1), . . . , xN (t1), 1
x1(t2), . . . , xi−1(t2), xi+1(t2), . . . , xN (t2), 1

...
...

...
...

...
...

...
x1(tM ), . . . , xi−1(tM ), xi+1(tM ), . . . , xN (tM ), 1





wi1

...
wi(i−1)

wi(i+1)

...
wiN

bi


, (7)

which can be written concisely as

YM×1 = 	M×N ·VN×1, (8)

where the vector YM×1 ∈ RM contains the values of
lnQi(t) for M different time steps, the M × N matrix
	M×N is determined by the states of all the nodes except
i, and the first (N−1) components of the vector VN×1 ∈
RN are the link weights between node i and all other
nodes in the network, as illustrated in Fig. 1, with its
last entry being node i’s intrinsic bias.

Since the conditional probability P{xi(t + 1) =
1|XR

i (t)} depends solely on the state configuration of
i’s nearest neighbors, or i’s Markov blanket [38, 39] at
time t, as shown in Fig. 1(b), identical configurations at
other time steps imply identical conditional probabilities.
Thus, given time series data of the dynamical process, the
conditional probability can be estimated according to the

law of large numbers by averaging over the states of i at
all the time steps prior to the neighboring state config-
urations’ becoming identical. Note, however, that this
probability needs to be conditioned on the state configu-
ration of the entire system except node i, i.e., on XR

i (t),
and the average of xi is calculated over all the time steps
tm+1 satisfying XR

i (t) = XR
i (tm). This means that there

can be a dramatic increase in the configuration size, i.e.,
from ki (the degree of node i) to N−1 (the size of the vec-
tor XR

i ), which can make the number of exactly identical
configurations too small to give any meaningful statistics.
To overcome this difficulty, we allow a small amount of
dissimilarity between XR

i (t) and XR
i (tm) by introducing

a tolerance parameter, Γ (0 ≤ Γ ≤ 0.5), to confine the
corresponding Hamming distances normalized by N . In
particular, we assume XR

i (t) ≈ XR
i (tm) if the relative

difference between them is not larger than Γ. This aver-
aging process leads to


ln qi(t1)
ln qi(t2)

...
ln qi(tM )

 ≈

〈x1(t1)〉, . . . , 〈xi−1(t1)〉, 〈xi+1(t1)〉, . . . , 〈xN (t1)〉, 1
〈x1(t2)〉, . . . , 〈xi−1(t2)〉, 〈xi+1(t2)〉, . . . , 〈xN (t2)〉, 1
...

...
...

...
...

...
...

〈xi(tM )〉, . . . , 〈xi−1(tM )〉, 〈xi+1(tM )〉, . . . , 〈xN (tM )〉, 1





wi1

...
wi(i−1)

wi(i+1)

...
wiN

bi


(9)

where qi(t) ≡ 〈xi(t1 +1)〉−1−1, with 〈·〉 standing for the
averaging over all instants of time at which the condition
XR

i (t) = XR
i (tm) is met (see Appendix B for detailed

derivation of this approximation). A schematic illustra-
tion of the whole process is presented in Fig. 1, with
Eq. (9) shown graphically in panel (c).

Further explanation of our approximations and their
consequences is as follows. We first introduce the dissim-
ilarity tolerance parameter Γ where, in order to obtain
a sufficient number of similar system configurations, rea-
sonably large values of Γ are necessary. While this pro-
cedure tends to induce dissimilar configurations, a large
number of them have little effect on the estimation ac-

curacy. This is because the true conditional probability
to be estimated depends only on the configuration of a
node’s nearest neighbors, not that of the entire network.
In terms of the mean field approximation, the degree of
any node is always much smaller than the network size.
Thus, for node i with degree ki in a network of size N ,
the probability that a flipped node is not a nearest neigh-
bor of i is (N − ki)/N . Since there can be at most ΓN
flipped nodes, the probability that none of them belongs
to the nearest neighbors of i is given by [(N − ki)/N ]ΓN .
To be concrete, we set Γ = 35%. (Our extensive cal-
culations show, however, that the results are robust for
Γ values ranging from 25% to 40%.) Thus, in a repre-
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sentative case, if the number of similar configurations is
L = 7000, for the typical ratio ki/N = 0.05 the num-
ber of “good” configurations is L[(N −ki)/N ]ΓN ≈ 1160,
which is generally sufficient for accurate estimation of the
probability.

For a complex network, the degree of a typical node is
small compared with the network size. For node i, the
link weights are nonzero only for the connections with
the immediate neighbors. The vector VN×1 is thus typi-
cally sparse with majority of its elements being zero. The
sparsity property renders applicable compressive sens-
ing [41–46], through which an N dimensional sparse vec-
tor can be reconstructed via a set of M measurements,
for M � N . By minimizing the L1 norm of VN×1,

i.e., ‖VN×1‖1 =
∑N

j=1,j 6=i |wij |+ |bi|, subject to the con-
straint YM×1 = 	M×N ·VN×1, we can reconstruct VN×1

to obtain the connection weights between node i and all
other nodes in the network. One tempts to hope that,
applying the procedure to each node would lead to the
complete weighted adjacency matrix, W. However, for
compressive sensing to be effective, a suitable cluster-
ing algorithm is necessary for distinguishing the existent
from non-existent links.

2. Necessity of K-means algorithm and implementation

In previous works on reconstruction of complex net-
works based on stochastic dynamical correlations [36, 37]
or compressive sensing [27, 28], the existent (real) links
can be distinguished from the nonexistent links by setting
a single threshold value of certain quantitative measure.
The success relies on the fact that the dynamics at var-
ious nodes are of the same type, and the reconstruction
algorithm is tailored toward the specific type of dynam-
ical process. Our task is significantly more challenging
as the goal is to develop a system (or a machine) to
replicate a diverse array of dynamical processes based on
data for networks with pairwise interactions. For com-
pressive sensing based reconstruction, the computational
criteria to distinguish existent from nonexistent links dif-
fer substantially for different types of dynamics in terms
of quantities such as the solution magnitude, peak value
distribution, and background noise intensity. As a result,
a more elaborate and sophisticated procedure is required
for determining the threshold for each particular case,
suggesting that a straightforward application of compres-
sive sensing cannot lead to a general reconstruction algo-
rithm. One may also regard the solutions of the existent
links as a kind of extreme events [50–52] superimposed
on top of the random background, but it is difficult to
devise a general criterion to determine if a peak in the
distribution of the quantitative measure represents the
correct extreme event corresponding to an actual link.

Through extensive testing, we find that a previ-

ously developed unsupervised clustering measure, the K-
means [38, 39], possesses the desired traits that can be
exploited, in combination with compressive sensing, to
develop a reconstruction machine with pairwise interac-
tions. K-means can serve as a base for a highly effec-
tive structural estimator for various types of dynamics
on networks of distinct topologies. Depending on the
specific combination of the network topology and dynam-
ics, the reconstruction accuracies vary to certain extent
but are acceptable. Since the compressive sensing oper-
ation is node specific, the solutions obtained separately
from different nodes may give conflicting information as
to whether there is an actual link between the two nodes,
requiring a proper resolution scheme. We develop such
a scheme based on node degree consistency. Our recon-
struction machine thus contains three main components:
compressive sensing, K-means, and conflict resolution.
We shall demonstrate in Sec. III that the machine can
separate the true positive solutions from the noisy back-
ground with high success rate, for all combinations of the
nodal dynamics and the network topology tested.

Concretely, K-means is one of the simplest and most
popular clustering algorithms, which has been used
widely for unsupervised clustering tasks [38]. It provides
each data example an assignment to a cluster within
which the data examples are relatively close (or simi-
lar) while being distant from the ones in other clusters.
The main steps for solving a typical two-dimensional data
clustering problem via K-means are schematically illus-
trated in Fig. 2. (Note that compressive sensing solutions
of the link weights wij are one-dimensional data points,
which form two clusters in 1D, corresponding to the ex-
istent and non-existent links, respectively. The use of
2D illustration is for better visualization.) For each vec-
tor VN×1 obtained from averaging over multiple appli-
cations of compressive sensing, picking out the elements
corresponding to the existent links from the non-existent
ones with their fluctuating element values is equivalent
to a one-dimensional clustering problems with two tar-
get clusters, which is one dimension lower than the case
shown in Fig. 2. When implementing the K-means algo-
rithm, we choose the initial cluster center positions for
the two clusters as the maximum and minimum values of
the vector elements with the bias bi excluded. This is jus-
tified because the compressive sensing solution of bi can
have an overwhelmingly high absolute value, which does
not provide any structural information but can severely
disrupt the clustering process. Due to the sparsity of
complex networks, the cluster with smaller number of
components is regarded as containing the solutions of the
existent links, and the components of the other one cor-
respond to the non-existent links.
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FIG. 2: A schematic illustration of the K-means algorithm for two-dimensional data clustering. (a) The data points (solid
blue circles) to be clustered in a 2D feature space. (b) For random locations of the cluster centers (aqua, green, and red hollow circles),
each data point can be associated with the closest center. (c) The 2D space is divided into three regions through three decision
boundaries (black dashed lines). (d) Each center moves to the centroid of the data points currently assigned to it (movements shown by
the black arrows). (e) The updated cluster assignments of the data points are obtained according to the new center locations. The steps
in (c) and (d) are repeated until convergence is achieved. (f) The final cluster assignments.

3. Conflict resolution for undirected complex networks

For network reconstruction, our SDBM method is es-
sentially a “local” method as it identifies the links for
each node. Because of the sparsity condition as required
by compressive sensing, large errors can arise for the hub
nodes. A relatively large error is thus indication that
the underlying node is a hub. The errors, however, do
not pose a serious difficulty in reconstructing the whole
network, as the links associated with a hub can be in-
ferred and reconciled from the links of the other nodes
that the hub is connected with. More specifically, since
the links are bidirectional, the node on each side provides
a weighted solution of the same link. The two solutions
may be quite different, giving contradictory indication of
the existence of the link and resulting in an asymmetric
adjacency matrix. For majority types of dynamical pro-
cesses on complex networks, compressive sensing almost
always gives higher prediction accuracy for lower degree

nodes due to their connection sparsity, which holds true
especially for nodes with their degrees smaller than the
network average. Based on this fact, when encountering
contradictory solutions, we determine the link existence
by examining the lower degree side if the degree value is
equal to or smaller than the network average. For cases
where the degrees of both sides are larger than the net-
work average, we find that the false negative rates are
often high. This is because compressive sensing tends to
give over simplified results such as inducing a more than
necessary level of sparsity to the solution or causing large
fluctuations with the non-existent links so they are mixed
up with the existent ones. As a result, contradictory so-
lutions are treated as positive (existent) solutions. For
two types of dynamics, the SDBM dynamics and link-
update voter dynamics, or dynamics on real world net-
works, treating all contradictory solutions this way, re-
gardless of degree values, can improve the reconstruction
precision, albeit only slightly in some cases.
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B. Parameter estimation scheme and degree
guided solution substitution operation

1. Parameter estimation

From the reconstructed network structure, any node
i’s ki immediate neighbors, m1, m2, . . ., mki , and their
state configuration, XMB

i = (xm1
, xm2

, . . . , xmki
)T, can

be identified. Since the probability that i’s state is 1 at
the next time step depends only on i’s immediate neigh-
bors, XR

i (t) in Eq. (5) can be simplified to XMB
i (t), and

Eq. (5) can be written as

P{xi(t+ 1) = 1|XR
i (t)} = P{xi(t+ 1) = 1|XMB

i (t)} =
1

1 + exp[
∑ki

m=1 wimxm(t) + bi]
. (10)

Accordingly, Eq. (9) can be simplified as

YMB
(ki+1)×1 = 	MB

(ki+1)×(ki+1) ·V
MB
(ki+1)×1,

i.e.,


ln qi(t1)
ln qi(t2)

...
ln qi(tki+1)

 =


〈xm1(t1)〉, 〈xm2(t1)〉, . . . , 〈xmki

(t1)〉, 1

〈xm1
(t2)〉, 〈xm2

(t2)〉, . . . , 〈xmki
(t2)〉, 1

...
...

...
...

〈xm1
(tki+1)〉, 〈xm1

(tki+1)〉, . . . , 〈xmki
(tki+1)〉, 1




wim1

wim2

...
wimki

bi

 , (11)

where the ki + 1 linear equations uniquely solve
wim1 , . . . , wimki

and bi simply via

VMB
(ki+1)×1 = [	MB

(ki+1)×(ki+1)]
−1 ·YMB

(ki+1)×1.

Our parameter estimation formulation is illustrated
schematically in Fig. 3(a).

For a particular neighboring state configuration of
node i, XMB

i (t), its occurring frequency determines the
precision in the estimation of P{xi(t + 1)|XMB

i (t)} '
〈xi(t + 1)〉, which in turn determines the solution preci-
sion of Eq. (11). The occurrence of different neighboring
state configurations for the same node may differ dra-
matically. Furthermore, the accuracy in estimating the
probability P{xi(t+1)|XMB

i (t)} depends on the node de-
gree due to the increasing difficulty in finding exactly the
same configurations for larger degree nodes. Overcoming
the estimation difficulty is a highly non-trivial problem.
Exploiting the available data further, we develop a degree
guided solution-substitution operation to cope with this
difficulty, where sufficient estimation precision is guaran-

teed for most cases. A SDBM with estimated parameters
is schematically shown in Fig. 3(b).

2. Link weights and nodal bias estimation

For each node i, we rank the occurrences of all the
existing configurations of its neighbor’s states. Among
the top ones, ki + 1 are selected to ensure that the
coefficient matrix 	MB

(ki+1)×(ki+1) on the right hand

side of Eq. (11) has full rank so that the solutions,
wim1 , wim2 , . . . , wimki

, bi, are unique (the selected con-
figurations are not necessarily on the exact top, since the
real top ki+1 ones may not provide a full rank coefficient
matrix).

Due to insufficient number of samples or some partic-
ular features of a specific dynamical process, 〈xi(t+ 1)〉,
the statistical estimation of P{xi(t + 1)|XMB

i (t)} (or
P{xi(t + 1)|XR

i (t)}), can be 0 or 1, which respectively
makes 1/〈xi(t + 1)〉 or ln[1 − 1/〈xi(t + 1)〉] in Eqs. (9)
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FIG. 3: A schematic illustration of SDBM parameter estimation for undirected complex networks. (a) For the SDBM of
the same system in Fig. 1(a,b), the corresponding parameter estimation framework as in Eq. (11). The connections of the network have
already been reconstructed, so the entries in Eq. (11) can be obtained from a node’s Markov blanket [Fig. 1(b)]. The calculation is
implemented for each node in the system. (b) The values of the link weights and the nodal biases (different colors) for the corresponding
SDBM are calculated via the parameter estimation scheme in (a) and the degree guided solution substitution operation.

and (11) diverge. Without loss of generality, we set
〈xi(t + 1)〉 = ε (or 〈xi(t + 1)〉 = 1 − ε) if 〈xi(t + 1)〉 = 0
(or 1), where ε is a small positive constant.

For node i of degree ki, the total number of the pos-
sible neighboring state configurations is 2ki , so large de-
gree nodes have significantly more configurations. The
process may then regard every particular type of config-
urations as useful and accordingly lead to inaccurate es-
timate of P{xi(t+ 1)|XMB

i (t)}. Our computations show
that properly setting a tolerance in the Hamming dis-
tance that allows similar but not exactly identical con-
figurations to be treated as the same XMB

i (t) can improve
the estimation performance. For a particular neighbor-
ing state configuration with too fewer identical matches
in the observed data, configurations with difference in one
or more digits in the Hamming distance are used instead,
until a sufficient number of matches are found. For nodes
of degrees larger than, say 15, the Hamming distance tol-
erances within 2 or 3 usually lead to a reasonable number
of matches for estimating P{xi(t + 1)|XMB

i (t)}. Exten-
sive calculation shows that the small inaccuracy has little
effect on the reconstruction accuracy.

3. Degree guided solution substitution operation

For node i’s neighbors, the occurrence frequency of
a particular state configuration is generally higher for
smaller values of ki. Accordingly, the probability estima-
tion conditioned on this configuration can be more ac-
curate for smaller values of ki. More precise conditional
probabilities in turn lead to a higher estimation accu-
racy of link weights and node biases. Similar to resolving

solution contradiction in structural reconstruction, for a
pair of linked nodes, i and j of different degrees, wij

solved from the equation group of node i is likely to be
more accurate than wji obtained via node j, if ki < kj ,
even ideally they should have the identical values. As a
result, using the solution obtained from a lower degree
node as the value of the link weight provides a better
estimation. We run the calculation for all nodes in the
network one by one in a degree-increasing order so that
the link weights of the smallest degree nodes are acquired
earlier than for other nodes. For the larger degree nodes,
the link weights shared with the smaller degree nodes are
substituted by the previously obtained values, which are
treated as known constants instead of variables waiting
to be solved. This operation effectively removes the con-
tribution of the lower degree neighbors from the equation
and so reduces the number of unknown variables. A re-
duced equation group in a form similar to Eq. (11) can
be built up based on the most frequently occurring state
configurations of the remaining neighbors. When the full-
rank condition is met, maximum possible precision of the
remaining unknown link weights can be achieved. Con-
sequently, with the substitution operation, the ki link
weights of node i, which can be inaccurate if solved from
the original ki +1-equation group, can be estimated with
the maximum possible accuracy. An example of this sub-
stitution operation and the final equation group construc-
tion process is shown in Fig. 4.

Our calculations show that the application of the de-
gree guided solution-substitution operation can signifi-
cantly increase the accuracy of the estimation of the link
weights and nodes biases. For undirected complex net-
works, this operation makes the SDBM a reliable approx-
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FIG. 4: An example of degree guided solution-substitution operation and final equation group construction for
undirected networks. The target node 1, the node whose local connecting topology is to be inferred, has only two neighbors, nodes 2
and 3. Without loss of generality, we set k3 < k1 = 2 < k2 so that the link weight between nodes 1 and 3, w13, is already obtained. The
quantity PMB

s = ln(1/〈x1(t+ 1)〉s − 1) (s = 1, . . . , 4, as there are 2k1 = 4 possible (x2, x3) configurations in total) denotes the estimated
probability for x1 = 1 under configuration s at the next time step. The occurring probabilities of the corresponding (x2, x3)
configurations are listed as percentages in the left column of each panel. (a) All four (x2, x3) configurations are shown by the first two
columns of the 4× 3 matrix in the equation. (b) The contribution of the known w13 and the configurations of x3 as marked in (a) are
moved to the left-hand side of the equation. (c) In order to solve for (w12, b1)T, the two most precise PMB

s values (s = 2 and 4)
corresponding to the most frequent (x2, x3) configurations from (b) are chosen to build a linear 2-equation group. However, the 2× 2
matrix on the right-hand side does not have full rank and, hence, this equation group is ill defined (d) Configurations s = 1 and 2 are
selected to construct a 2-equation group with a full rank 2× 2 matrix on the right-hand side and relatively precise probability
estimations, and this equation group is used to solve (w12, b1)T.

imator of the original network dynamics. For example,
as will be described, for some dynamical processes de-
scribed in Tab. I, the estimation errors are dominantly
distributed at zero. For processes in other categories,
besides the dominant peak at zero, there exist multiple
small peaks at nonzero error values. These small side
peaks are a consequence of the model complexity of the
Markov networks.

III. RESULTS

A. Structural estimation: an illustrative example

Table I lists the 14 dynamical processes on model net-
works and the underlying conditional probabilities. The
implementation of these processes on complex networks
is detailed in Appendix C. For each type of dynamics,
10 different network realizations are generated for both
BA scale-free and ER random topologies. For any node
in a particular network realization, the corresponding
connection weight vector VN×1 is obtained by averag-

ing over 100 compressive sensing implementations. The
elements corresponding to the existent nodes are distin-
guished from the non-existent links by feeding the aver-
aged VN×1 into the K-means algorithm. The unweighted
adjacency matrix is then obtained. In practice, for very
large networks, longer time series and higher computa-
tional resource are required due to the exponential in-
crease in the number of system configurations, but the-
oretically there is no upper bound in the network size.
The data amount is characterized by the number of mea-
surements M normalized by N ,

To gain insights, we test the structural estimation
method for an SDBM itself [Figs. 5(a-c)] and three dif-
ferent types of dynamical processes [Figs. 5(d-f)] by feed-
ing the time series data generated by the SDBM into the
framework and comparing the reconstructed SDBM with
the original machine. The time instants t1, t2, . . . , tM
needed to construct Eq. (9) are chosen randomly from
T time instants in total. For each node, compressive
sensing is implemented a multiple of times to obtain the
averaged relevant quantities. As shown in Fig. 5, the av-
eraged solutions from the compressive sensing algorithm
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TABLE I: Description of the 14 dynamical processes on model networks and the conditional probabilities. The quantity
P 0→1
i or P 1→0

i is the probability that the state of node i (of degree ki) becomes 1 at the next time step when its current state is 0, or
vice versa, conditioned on its current neighboring state configuration. The number of i’s neighbors in state 1 is ni.

Category Dynamics Type P 0→1
i P 1→0

i

I SDBM 1
1+exp[

∑N
j=1,j 6=i wijxj(t)+bi]

exp[
∑N
j=1,j 6=i wijxj(t)+bi]

1+exp[
∑N
j=1,j 6=i wijxj(t)+bi]

II Ising Glauber [53] 1

1+exp[ 2J
κ

(ki−2ni)]

exp[ 2J
κ

(ki−2ni)]

1+exp[ 2J
κ

(ki−2ni)]

SQ-SG [54] 1
1+exp[(rki−ni)/κ]

exp[(rki−ni)/κ]
1+exp[(rki−ni)/κ]

SQ-PDG [54] 1
1+exp[(b−1)(ki−ni)/κ]

exp[(b−1)(ki−ni)/κ]
1+exp[(b−1)(ki−ni)/κ]

III Minority game [55–59] ki−ni
ki

ni
ki

Voter [60, 61] ni
ki

ki−ni
ki

Majority
vote [60, 61]


Q if ni < ki/2

1/2 if ni = ki/2

1−Q if ni > ki/2


1−Q if ni < ki/2

1/2 if ni = ki/2

Q if ni > ki/2

IV Link-update voter [62, 63] ni
〈k〉

ki−ni
〈k〉

Language model[64, 65] S(ni
ki

)α (1− S)( ki−ni
ki

)α

Kirman [66, 67] c1 + dni c2 + d(ki − ni)

V CP [68, 69] ni
ki
λi µi

SIS [70–73] 1− (1− λi)ni µi

VI SG [74] * *

PDG [75, 76] * *

appear as sharp peaks at places that correspond to the
existent links, despite the large differences among the
values. This means that, while most existent links can
be predicted against the null links, the accuracy of the
solution so obtained is not sufficient for the actual el-
ement values of VN×1 to be determined. For the null
links, the corresponding solutions generally appear as a
noisy background. For the ideal case where wij is zero,
the background noise can be quite large especially for the
large degree nodes, as shown in Figs. 5(b) and 5(d). Fur-
ther calculations indicate that averaging a larger number
of simulation runs can suppress the background noise to
certain extent, but it cannot be eliminated and may be-
come quite significant for various types of dynamics.

B. Performance of SDBM for undirected networks

Our working hypothesis is that, for a networked sys-
tem with a certain type of nodal dynamics, there ex-
ists an equivalent SDBM. Reconstructing the structure

of the SDBM would simultaneously give the topology of
the original networked dynamical system. Accordingly,
the time series data generated from the original system
can be used to reveal its underlining interaction struc-
tures through the corresponding SDBM. In particular, we
directly feed the original time series into the framework
of compressive sensing and K-means for SDBM to gener-
ate the network structure, and test whether the structure
generated by the SDBM based reconstruction represents
that of the original network. The similarity can be quan-
tified by the error rates of the existent and non-existent
links.

Figure 6 demonstrates the performance of network
structural estimation for SDBM dynamics on random
and scale-free networks in terms of the data amount
for SDBMs built up for systems with different original
topologies. We define R1

e and R0
e as the estimation error

rates for the existent and non-existent links, namely, the
false positive and the false negative rates, respectively.
We see that, for a wide range of the values of M/N ,
the success rates of the existent and non-existent links,
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FIG. 5: Solution examples of compressive sensing and K-means clustering results. Presented are the reconstruction results
for a single node - the target node, for different networks and dynamical processes. Each panel is for a specific network structure and a
specific type of dynamical process, where the actual and null links associated with the target node are indicated. The compressive
sensing solutions (green squares) are compared, element-wise, with the true values of the original connection vectors (dark purple
triangles), where the x-axis is the index of nodes with different degree values for different network topologies and dynamics types. The
target nodes and the correctly detected existent connections via the K-means are marked as light blue and light purple bars, respectively.
The false negative and the false positive estimations are marked as red and gray bars, respectively. For all cases, the measurement
amount is M = 0.4N . The restriction on the Hamming distances is set to be Γ = 0.35 for all examples, and a small change in Γ would
not affect the qualitative results. (a) A node with the smallest degree k = 2 in a BA scale-free network of size N = 100 and average
degree 〈k〉 = 4 with SDBM dynamics. (b) The node of the largest degree k = 18 in the same network. (c) A node of degree k = 8 in an
ER random network of size N = 100 and average degree 〈k〉 = 4 with SDBM dynamics. (d) The node with the largest degree k = 19 in a
BA scale-free network of size N = 100 and average degree 〈k〉 = 4 with prisoner’s dilemma game (PDG) dynamics. (e) A node of degree
k = 11 in a real world social network of size N = 67 subject to CP dynamics. (f) A node of degree k = 10 in a real world electrical circuit
network of size N = 122 with Language model dynamics. In (d-f), the element values of the original connection vector are set to unity
since no true weight values are given. For cases (a,b,c,f), there are no false negative detections, i.e., all existent links have been
successfully detected. For cases (a,c,e), there are no false positive detections, i.e., no non-existent links are mistaken as existent ones. A
detailed description of the dynamical processes is given in Tab. I.

1−R1
e and 1−R0

e , respectively, are nearly 100% for homo-
geneous network topology. For heterogeneous (scale-free)
networks, the success rate 1−R1

e tends to be slightly lower
than 100%, due to the violation of the sparsity condition
for hub nodes, leading to the difficulty in distinguishing
the peaks in the distribution of the compressive sensing
solutions from the noisy background. For M/N = 1,
the success rates are reduced slightly, due to the non-
zero dissimilarity tolerance Γ that introduces a linear de-
pendence between different equations into Eq. (9). The
reason is that, in a compressive sensing problem, the M
measurements are required to be linearly independent of
each other. However, if M is too large, linear indepen-
dence between each pair of measurements may be lost,

due to the finite length of the available time series. Since
each measurement in Eq. (9) is from the average of many
configurations that are similar but not exactly identi-
cal, for a large value of the tolerance parameter Γ, some
configurations can be similar in more than one measure-
ment and appear in multiple equations, destroying the
linear independence between those measurements. Thus,
increasing the value of M would compromise the linear
independence of the equations, leading to poor recon-
struction performance. Our calculation shows that this
situation does not arise unless M is quite close to N .
Since M must be smaller than N and the solution sought
is sparse, the algorithm can indeed be regarded as a com-
pressive sensing problem. Empirically, for computational
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FIG. 6: Structural estimation success rates and parameter estimation errors versus the normalized data amount. For
SDBM dynamics on (a) ER-random and (b) BA scale-free networks, the success rates of detection of existent links and identification of
nonexistent links, 1−R1

e (green circles) and 1−R0
e (white circles), respectively, versus the normalized data amount M/N with error

bars. The absolute values of the errors in estimating the link weights and the nodal biases for the existent links (purple squares) and
non-existent links (white squares) are also shown. Most data points have quite small error bars, indicating the performance stability of
our method. High performance structural and parameter estimations are achieved insofar as M/N exceeds about 10%.

efficiency, M is chosen below 0.5N (e.g., is M = 0.4N),
which makes our SDBM framework free of any subjective
parameters.

Tab. II shows the performance in terms of the per-
centage error rates R0

e and R1
e . The 14 types of dy-

namical processes are taken from the fields of evolution-
ary game theory, opinion dynamics, and spreading pro-
cesses, covering a number of focused research topics in
complex networks. Strikingly, for all the dynamics with
diverse properties, we find that that, for each and ev-
ery dynamics-network combination, zero or nearly zero
error rates are obtained for both the existent and non-
existent links, revealing a strong similarity between the
original networks and the ones generated from SDBM,
regardless of the type of dynamics. The nonzero error
rates in Tab. II come mainly from the high degree nodes.
Consequently, as indicated in Tab. II, the reconstruction
accuracy for networks of homogeneous topology is gener-
ally higher than that for heterogeneous networks.

For certain types of evolutionary game dynamics, espe-
cially for the snowdrift game (SG) [74] and the prisoner’s
dilemma game (PDG) [75, 76] with the Fermi updat-
ing rule [76], information about the state configuration
of the second nearest neighbors is required to calculate
the payoffs of the first nearest neighbors. In such a sys-

tem, the next move of a target node is determined by
comparing its payoff with those of its neighbors. This
implies that, using solely the state configuration infor-
mation of the Markov blanket, without the aid of the
payoff information that requires the state information of
the second nearest neighbors, is insufficient to determine
the state of the target node into the immediate future,
rendering inapplicable our SDBM based reconstruction.
Contrary to this intuition, we find that for both SG and
PDG, high reconstruction accuracy can be achieved, as
shown in Tab. II. Recall that our reconstruction method
is formulated based on the independence assumption of
Markov networks, i.e., in order to reconstruct the local
structure of a target node, it should be completely inde-
pendent of the rest of the system when the configuration
of its Markov blanket is given. The results in Tab. II in-
dicate that our SDBM based algorithm performs better
than anticipated in terms of the reconstruction accuracy.
In fact, the independence assumption can be made to
hold by adopting a self-questioning (SQ) based updating
rule. In this case, excellent reconstruction accuracy is
obtained, as shown in Tab. II.

For evolutionary game dynamics (e.g., PDG and SG)
and binary dynamical processes (e.g., CP and SIS), there
were previous methods based on compressive sensing for
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TABLE II: Reconstruction error rates for undirected networks. For the same dynamical processes in Tab. I, the error rates (in
percentages) in uncovering the existent and non-existent links, R1

e and R0
e , respectively. ER-random and BA scale-free networks of size

N = 100 and average degree 〈k〉 = 4 are used as the underlining network supporting the various dynamical processes. The normalized
number of measurements used in compressive sensing is M/N = 0.4 for all cases. All results for comparison (in parentheses) except one
for the CP dynamics, which are available from the current literature, are from Ref. [35]. The comparison result for CP are from Ref. [28].

Category Dynamics Type R0
e / R1

e (%, ER) R0
e / R1

e (%, BA)

I SDBM 0.0 / 0.1 0.1 / 3.4

II Ising Glauber [53] 0.0/0.0 (0.0/0.0) 0.0/0.0 (0.3/0.8)

SQ-SG [54] 0.0 / 0.0 0.0 / 3.2

SQ-PDG [54] 0.0 / 0.0 0.3 / 3.3

III Minority game [55–59] 0.0 / 0.6 0.0 / 0.2

Voter [60, 61] 0.0/0.0 (0.0/0.0) 0.0/0.0 (0.2/0.6)

Majority vote [60, 61] 0.0/0.0 (0.0/0.0) 0.0/0.1 (0.1/0.3)

IV Link-update voter [62, 63] 0.0 / 0.0 1.8 / 3.6

Language model[64, 65] 0.0/0.0 (0.0/0.0) 0.0/0.4 (1.6/3.3)

Kirman [66, 67] 0.0/2.3 (0.0/0.0) 0.0/3.8 (7.0/14.2)

V CP [68, 69] 0.0/1.4 (0.1/0.0) 0.0/0.4 (0.3/0.0)

SIS [70–73] 0.3/5.2 (0.2/0.5) 0.1/15.6 (2.3/1.4)

VI SG [74] 0.0 / 1.7 0.0 / 9.4

PDG [75, 76] 0.1/9.6 (0.0/0.0) 0.1/9.8 (0.7/1.6)

network reconstruction [27, 28]. In terms of the false
positive and negative rates, our SDBM method in gen-
eral does not offer better results. The reason is that
the reconstruction task is still essentially based on com-
pressive sensing. Thus, from the standpoint of inferring
network structures, our SDBM method is not advanta-
geous as compared with the previous methods. However,
the SDBM method is applicable to wider classes of net-
work dynamical processes. An additional appealing fea-
ture of the SDBM method lies in its ability to create a
“replica” of the underlying networked dynamical system
based solely on data. This may have potential applica-
tions in complex systems identification and prediction.

The structural estimation results reported so far are
based on model network topologies. Real world complex
networks have also been used to test our framework, with
results exemplified in Figs. 5(e,f) (see also Appendices D
and E). For various combinations of the network topol-
ogy and dynamical process, high reconstruction accuracy
is achieved, where for a number of cases the error rates
are essentially zero. There are a few special cases where
the errors are relatively large, corresponding to situations
where the globally frozen or oscillating states dominate
the dynamical process so that too few linearly indepen-
dent measurements can be obtained. Overall, the equiva-
lent SDBM correspondence holds and our reconstruction
scheme for real world networks is effective.

C. Dynamics approximator for undirected complex
networks

In Table I, the complex network dynamics are cate-
gorized in terms of the specific probabilities P 0→1

i and
P 1→0
i . In particular, category I is for the SDBM dynam-

ics and category II contains dynamical processes with
P 0→1
i and P 1→0

i having a mathematical form similar
to that of the SDBM. For category III, the forms of
P 0→1
i and P 1→0

i for the three types of dynamics are
quite different. Despite the differences among the dy-
namical processes in the three categories, they share a
key property: i.e., P 0→1

i + P 1→0
i = 1, which plays a

critical role in implementing the parameter estimation
algorithm. For the processes in categories IV and V, we
have P 0→1

i + P 1→0
i 6= 1, where P 1→0

i is a time-invariant
constant for the nodal dynamics in category V.

We first test our parameter estimation scheme using
the state time series generated by the SDBM, which can
be validated through a direct comparison of the esti-
mated parameter values with their true values, as ex-
emplified in Figs. 5(a-c). However, since the parameters
only affect the system collectively (not individually) in
the form of the product summation [Eq. (5)] and our
goal is to assess the predictive power, we introduce an
alternative validation scheme. For each particular sys-
tem configuration, the acceptable parameter estimation
results would serve as a base to generate another SDBM
with identical conditional probabilities for each node at
each time step, as compared with those of the original
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system. (A visual comparison between the conditional
probabilities of the original system and that generated
via the reconstructed SDBM is presented in Appendix
F). Figure 7(a) shows the error distributions of the esti-
mated conditional probability time series, where an over-
whelmingly sharp peak occurs at 0, indicating an excel-
lent agreement between the estimated and the true pa-
rameter values.

For typical dynamical processes on complex networks,
our goal is to find the equivalent SDBMs whose true pa-
rameter values are not available. In this case, the per-
formance of the parameter estimation scheme can be as-
sessed through the reconstructed conditional probabili-
ties. Based on the recovered network structure, the time
series of the network dynamics are fed into the parame-
ter estimation scheme, and the link weights and the nodal
biases are obtained to form a system obeying the SDBM
dynamics. Corresponding to the categories in Table I, the
distributions of the estimation errors between the original
conditional probability P{xi(t + 1) = 1|XR

i (t)} and the
one generated by the newly constructed SDBM are shown
in Fig. 7, where panels (a-f) show the error distributions
corresponding to the six types of dynamics in categories
II and III in Table I, respectively. In each case, a sharp
peak at zero dominates the distribution, indicating the
equivalence of the reconstructed SDBM to the original
dynamics. Given a particular type of complex network
dynamics, the SDBM resulting from our structural and
parameter estimation framework is indeed equivalent to
the original dynamical system. The limited amount of
data obtained from the original system renders impor-
tant state prediction of the system, a task that can be ac-
complished by taking advantage of the equivalence of the
SDBM to the original system in the sense that the SDBM
produces approximately equal state transition probabil-
ities in the immediate future, given the current system
configuration. The SDBM thus possesses a significant
predictive power for the original system. Regardless of
the type of the dynamical process, insofar it satisfies the
relation P 0→1

i +P 1→0
i = 1, the reconstructed SDBM can

serve as a dynamics approximator.

For an SDBM, the relation P 1→1
i = 1−P 1→0

i = P 0→1
i

holds in general. However, for the dynamical processes in
categories IV and V, we have P 1→1

i 6= 1−P 1→0
i = P 0→1

i

so that a single SDBM is not sufficient to fully character-
ize the dynamical evolution. Our solution is to construct
two SDBMs, A and B, each associated with one of the
two cases: xi(t) = 0 and xi(t) = 1, respectively. The
link weights wA

ij (or wB
ij) and the nodal bias bAi (or bBi )

for node i in SDBM A (or B) are computed for all the
time steps t satisfying xi(t) = 0 (or xi(t) = 1), leading
to P{xi(t + 1) = 1|XR

i (t)} for xi(t) = 0 (or xi(t) = 1)
from SDBM A (or B). Using this strategy, the dominant
peaks at zero persist in the error distributions for the dy-
namical processes in category IV, as shown in Figs. 7(g-

i). For the epidemic spreading dynamics (CP and SIS)
in category V, the fixed value of P 1→0

i for each node i
can be acquired through P 1→0

i ' 〈xi(t1 + 1)〉t1 , where
〈xi(t1 + 1)〉t1 stands for the average of xi(t1 + 1) over all
values of t1 satisfying xi(t1) = 1. Through this approach,
SDBM B is in fact a network without links but with each
node’s bias satisfying µi = exp(bi)/[1 + exp(bi)], where
µi is node i’s recovery rate. Figures 7(j) and 7(k) show
the error distributions of the conditional probability re-
covery for the spreading processes, where we see that
the errors are essentially zero. If the method of solv-
ing SDBM B in category IV is adopted to the dynami-
cal processes in other categories, i.e., without any prior
knowledge about P 1→0

i , the resulted SDBM would have
nearly identical link weight values with respect to SDBM
A (in categories I-III) or have close-to-zero link weights
and µi ' exp(bi)/[1 + exp(bi)] for category V, despite
that their conditional probability recovery errors may be
slightly larger than those in Fig. 7. The persistent occur-
rence of a dominant peak at zero in the error distribution
suggests the power of combined SDBMs as a dynamics
approximator, regardless of the specifics of the transition
probability. When limited prior knowledge about P 1→0

i

is available, SDBM B can be simplified or even removed
without compromising the estimation accuracy. In gen-
eral, the approximator has a significant short-term pre-
dictive power for arbitrary types of dynamics on complex
networks.

The conditional probability recovery error is called
the “training error,” since it is obtained from the same
data set used to build (or “train”) the approximator and
the data points generated from the same system that
have not been used in the training process can be ex-
ploited to validate or test the actual performance of the
trained model [38], which in our case is the approxima-
tor. As a result, the time series generated from the
original complex network system after the approxima-
tor is built can be used as the test data set. (Absence
of hyper-parameters in the reconstruction process means
that cross validation is unnecessary.) In most cases, the
training errors are generally smaller than the test errors,
since the training data set is already well-fitted by the
model (the approximator) in the training process, while
the test data are new and may be out of the fitting range
of the current model. Feeding the state configurations
of the test data set into the approximator, we calculate
the corresponding conditional probabilities using Eq. (5)
and compare them to the true values. The results re-
veal a clear advantage of the approximator built from
our scheme, i.e., the training and test errors are nearly
identical, indicating the absence of any over-fitting is-
sues [38].
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FIG. 7: Distributions of the conditional probability estimation errors for various complex network dynamics. The
distributions of δ = |P{xi(t+ 1) = 1|XR

i (t)}−P est[xi(t+ 1) = 1|XR
i (t)]| for the dynamical processes in categories I to V from Table I for

ER random (green bars) and BA scale-free (blue bars) networks, where P est[xi(t+ 1) = 1|XR
i (t)] denotes the conditional probability

estimated from the corresponding SDBM approximator through the original state configuration times series, where 1 ≤ i ≤ N and
1 ≤ t ≤ T .

TABLE III: Reconstruction error rates for directed networks. For the same dynamical processes in Tab. I, the error rates (in
percentages) in uncovering the existent and non-existent links, R1

e and R0
e , respectively. ER-random and BA scale-free networks of size

N = 100 and average degree 〈k〉 = 4 are used as the underlining network supporting the various dynamical processes. The normalized
number of measurements used in compressive sensing is M/N = 0.4 for all cases.

Category Dynamics Type R0
e / R1

e (%, ER) R0
e / R1

e (%, BA)

I SDBM 0.0 / 0.1 0.2 / 7.11

II Ising Glauber [53] 0.0 / 0.0 0.0 / 0.0

SQ-SG [54] 0.0 / 0.0 0.0 / 1.3

SQ-PDG [54] 0.5 / 1.2 0.7 / 2.5

III Minority game [55–59] 0.0 / 1.6 0.0 / 0.0

Voter [60, 61] 0.0 / 0.0 0.3 / 0.5

Majority vote [60, 61] 0.0 / 0.0 0.0 / 0.1

IV Link-update voter [62, 63] 0.1 / 1.1 0.6 / 2.0

Language model[64, 65] 0.2 / 3.6 0.0 / 0.0

Kirman [66, 67] 0.0 / 0.0 0.1 / 2.5

V CP [68, 69] 0.0 / 2.1 0.0 / 2.5

SIS [70–73] 1.6 / 4.5 1.2 / 14.2

VI SG [74] 0.1 / 0.9 0.1 / 13.5

PDG [75, 76] 0.2 / 4.4 0.3 / 11.7
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FIG. 8: A schematic illustration of reconstruction of
network structure and parameter estimation for directed
complex networks. (a) Reconstruction of the local inward
connection structure of the blue, red, pink and green nodes in a
directed network of 13 nodes. Among these four nodes, there are
bidirectional links between the blue and the red nodes and
between the red and the green nodes. Links between other pairs
of nodes are directional, if exist. Executing compressive sensing
and the K-means clustering for each of the four nodes identifies
its true incoming links, marked by the links with the same color
of the node and pointing inward. (b) For the SDBM of the system
in (a), the parameter estimation framework is implemented for
the black node, and its incoming links are marked with different
colors, indicating different values in general. The calculation is
repeated for every node in the system.

D. Extension to directed complex networks

Our SDBM methodology for undirected networks can
be adapted to directed networks, because of its node-wise
implementation scheme. In a directed network, the link
weights between node i and j, wij and wji, do not have
equal values. In fact, these are weights of the two links in
the opposite directions between the same pair of nodes.
The weights solved by Eqs. (9) and (11) correspond to
all the links pointing to node i and all pointing from i’s
nearest neighbors. By estimating the values of the inward
link weights for each node in the network, we obtain a
directed SDBM as a structural estimator and dynamics
approximator of the underlying directed network. The
structural and parameter estimation processes are illus-
trated in Figs. 8(a) and 8(b). Since the conflict resolu-
tion scheme designed for undirected networks applies to
symmetric links only, it is not adopted for directed net-
works. The structural estimation results are presented in
Tab. III. In most cases, we observe only small changes
in the precision as compared with the undirected case.
For some types of dynamics, R0

e increases slightly, indi-
cating that the main challenge of reconstructing directed
networks is to reduce the false positives. Nonetheless, in
general, the results demonstrate the effectiveness of the
SDBM method for directed complex networks.

For a node (say i) in an undirected network, if the pro-
cedure yields an incoming link from node j, then j must
necessarily have an outgoing link to i, with wij ≈ wji

(except for a few hub nodes, where the local sparsity
condition is violated with relatively large reconstruction
errors). This property of approximately symmetric inter-

actions, however, does not hold for most nodes in directed
networks. This provides a practical strategy to distin-
guish an undirected from a directed network when the
symmetry of the network topology is unknown a priori:
if most of the reconstructed links are symmetric (asym-
metric), there is a high likelihood that the underlying
network is undirected (directed). Ambiguities can arise
for the links associated with the hub nodes, for which the
SDBM method would fail. Since real complex networks
are typically sparse, the hub nodes are relatively few, and
we expect that our method is still capable of providing
an approximate picture of the interaction patterns as to
whether majority of the links are undirected or directed.

IV. DISCUSSION

Reconstructing complex dynamical systems from data
is a frontier field in network science and engineering
with significant applications. We focus on binary dy-
namical processes and ask the following question: is it
possible to build a “machine” to reconstruct, from data
only, the underlying complex networked dynamical sys-
tem and to make predictions? While this paper does
not provide a mathematically rigorous solution, signifi-
cant and (in some cases) striking results are obtained,
which give strong credence that such a machine may be
possible. In particular, we combine compressive sens-
ing and clustering algorithm to construct a general class
of network structural estimators and dynamics approx-
imators. For networks with symmetric or asymmetric
interactions, universality is fundamentally possible due
to the fact that many dynamical processes on complex
networks are of the Markov type and the interactions
among the nodes are local. As a result, utilizing basic
tools from and statistical physics, we can build up an
energy based Markov-network-like model (e.g., a sparse
dynamical Boltzmann machine) to construct a estima-
tor and approximator for different types of complex net-
work structures and dynamics. For a large number of
representative dynamical processes studied in this paper,
we demonstrate that such a SDBM can be reconstructed
based on compressive sensing and the scheme of K-means
using data only, without requiring any extra information
about the network structure or the dynamical process.
The working of the SDBM is demonstrated using a large
number of combinations of the network structure and dy-
namics, including many real world networks and classic
evolutionary game dynamics. An SDBM with its param-
eters given by the equations constructed from the time
series along with the estimated network structure is able
to reproduce the conditional probabilities quantitatively
and, accordingly, it is capable of predicting the state con-
figuration at least in a short term. We demonstrate that,
for certain types of binary dynamics, the approximator
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can reproduce the dynamical process statistically, indi-
cating the potential of its serving as a generative model
for long term prediction in such cases (Appendix G).

While we assume binary dynamics, in principle the
methodology can be applied to other types of dynamical
processes. In particular, Eq. (4) can be readily extended
to the conditional probability of each possible state value
λj , i.e., P{xi(t + 1) = λj |XR

i (t)} = P{xi(t + 1) =
λj ,X

R
i (t)}/

∑
s P{xi(t + 1) = λs,X

R
i (t)}. A potential

difficulty is that the configuration space of the system
states grows exponentially with the number of choices
of λj so that, given a finite amount of data, the num-
ber of time instances corresponding to each particular
configuration decreases exponentially, leading to a signif-
icant reduction in the estimation precision of the condi-
tional probability. For network structural reconstruction,
in principle there is no theoretical limitation. A practi-
cal limitation is that, due to the exponential growth of
the number of possible configurations as the network size
is increased, the required computations would increase
dramatically. In our study, the largest network tested
is a real-world circuit network of 512 nodes. Dealing
with networks of more than a few thousand nodes would
be computationally extremely demanding at the present.
The sparsity condition as required by compressive sensing
poses another practical limitation. In fact, performance
on networks with high average degree is poor. Another
limitation is that complete information (data) from all
system components is needed. How to deal with systems
where only partial information is available is an open is-
sue.

Our effort represents an initial attempt to realize a gen-
eral estimator and approximator, and the performance
of our method is quite competitive in comparison with
the existing reconstruction schemes designed for specific
types of dynamics (on undirected networks) - see Tab. II.
In realistic applications, the data obtained may be dis-
continuous or incomplete. In such cases, the short-term
predictive power possessed by the estimator and approxi-
mator can be exploited to overcome the difficulty of miss-
ing data, as the Markov network nature of the SDBM
makes backward inference possible so that the system
configurations during the time periods of missing data
may be inferred. When long term prediction is possible,
the approximator has the critical capability of simulating
the system behavior and predicting the chance that the
system state enters into a global absorption phase, which
may find significant applications such as disaster early
warning. Another interesting reverse-engineering prob-
lem lies in the mapping between the original dynamics
and the corresponding parameter value distribution of
the reconstructed SDBM. That is, a certain parameter
distribution of the SDBM may indicate a specific type
of the original dynamics. As such, the correspondence
can be used for precisely identifying nonlinear and com-

plex networked dynamical systems. It is also possible to
assess the relative importance of the nodes and links in
a complex network based on their corresponding biases
and weights in the reconstructed SDBM for controlling
the network dynamics. These advantages justify our idea
of developing a machine for data-based reverse engineer-
ing of complex networked dynamical systems, calling for
future efforts in this emerging direction to further de-
velop and perfect the network structural estimator and
dynamics approximator.
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APPENDICES

A. Model complexity and representation power

For dynamical processes in categories I and II, the
transition probabilities P 0→1

i all have the form 1/[1 +
exp(Ani + Bki)], where A and B are constants, and ni
denotes the number of node i’s neighbors whose states
are 1. We have

[1+exp(Ani+Bki)]
−1 = {1+exp[

ki∑
m=1

wimxm(t)+bi]}−1,

which gives

ki∑
m=1

Axm(t) +Bki =

ki∑
m=1

wimxm(t) + bi. (12)

In the ideal case where an absolutely accurate estimate
of P{xi(t + 1) = 1|XR

i (t)} can be obtained, Eq. (12)
holds for any possible neighboring state configurations.
We thus have wim = A and bi = Bki, and the probabili-
ties conditioned on these configurations sharing the same
values of ni in the approximator are all equal to P 0→1

i .
This means that, in theory, the conditional probabilities
can be reconstructed with zero errors. In fact, a one-to-
one mapping between the coefficients indicates that the
model complexity of the SDBM provides the approxima-
tor with sufficient representation power to model the dy-
namics processes in categories I and II. Practically, since
the statistical estimations of P{xi(t+1) = 1|XR

i (t)} may
not be absolutely identical under different neighboring
configurations with the same values of ni due to random
fluctuations, we have wim ≈ A so that the conditional
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TABLE IV: Description of the 9 real-world networks used in our study (N - number of nodes; L - number of edges).

Type Index Name N L Description

Trust
1 College Student [77, 78] 32 96 Social network

2 Prison Inmate [77, 78] 67 182 Social network

Protein

4 Protein-1 [78] 95 213 Protein network

5 Protein-2 [78] 53 123 Protein network

6 Protein-3 [78] 99 212 Protein network

Food Web

12 Seagrass [79] 49 226 Food Web

13 Grassland [80] 88 137 Food Web

14 Ythan [80] 135 601 Food Web

Circuits 3 s208a [81] 122 189 Logic circuit

probabilities generated by the approximator may differ
from each other slightly and also from the true probabil-
ity P 0→1

i . As a result, random recovery errors can occur.

For dynamical processes in categories other than I and
II, the simple coefficient-mapping relation between the
corresponding xm(t) terms on the two sides of Eq. (12)
become nonlinear, due to the fact that the specific forms
of P 0→1

i differ substantially from that of the SDBM. In
this case, each particular neighboring state configuration
produces a distinct equation. There are 2ki equations
in total, while the number of unknown variables to be
solved is only ki + 1 (wim for m = 1, . . . , ki and bi). For
ki ≥ 2, there are thus more equations than the number of
unknown variables. As a result, the representation power
of the SDBM approximator is limited by its finite model
complexity so that, even in principle, the approximator
may not be able to fully describe the original dynami-
cal process. In our framework, we calculate the Markov
link weights and the node biases according to the ki + 1
most frequently appeared neighboring state configura-
tions. A consequence is that imprecise conditional prob-
ability estimations can arise for the configurations with
relatively lower occurring frequency, giving rise to the
nonzero peaks in the error distribution in Fig. 7. How-
ever, interestingly, with respect to the precision of the
conditional probabilities produced by the approximator,
the SDBM parameters do not show a significantly strong
preference towards the most frequently occurring config-
urations. In practice, the estimated conditional proba-
bilities for the majority of the less frequently occurring
configurations also fall within a close range of the true
values. This phenomenon suggests the power of the ap-
proximator to work beyond the limit set by its theoretical
model complexity. This is the main reason for the emer-
gence and persistence of the dominant peak at zero in

the error distribution.

B. Justification for the approximation 〈lnQ〉 ≈ ln q

The approximation 〈lnQ〉 ≈ ln q is used in the main
text when deriving Eq. (9) from Eq. (7). For simplicity,
we write P{xi(t + 1) = 1,XR

i (t)} as p1 in the following
derivation. For one particular state configuration (mea-
surement) in Eq. (7), we randomly shuffle all its similar
configurations and partition them into l buckets of the
same size. Letting ln(1/p̃1

j − 1) denote the estimation of
lnQ in bucket j, we have

〈lnQ〉 = 7〈ln(
1

p1
− 1)〉 =

∑l
j=1 ln(1/p̃1

j − 1)

l
(13)

= ln l

√√√√ l∏
j=1

(
1

p̃1
j

− 1) ≤ ln[
1

l

l∑
j=1

(
1

p̃1
j

− 1)]

= ln[〈 1

p1
〉 − 1]

where the equality holds if all the summation elements
have equal values, so the geometrical and algebraic means
are the same. When there are a sufficiently large number
of similar configurations in each bucket, we have

p̃1
1 ≈ p̃1

2 ≈ p̃1
3 ≈ . . . ≈ p̃1

l ≈ 〈x(t+ 1)〉 (14)

and thus

1

p̃1
1

≈ 1

p̃1
2

≈ 1

p̃1
3

≈ . . . ≈ 1

p̃1
l

≈ 1

〈x(t+ 1)〉
, (15)

so that the equal sign in Eq. (13) holds. Accordingly, we
have 〈lnQ〉 ≈ ln[〈 1

p1 〉−1]. Using Supplemental Eqs. (14)
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and (15), we obtain

〈 1

p1
〉 =

1

l

l∑
j=1

1

p1
j

≈ 1

〈x(t+ 1)〉
. (16)

Consequently, we have lnQ ≈ 〈lnQ〉 ≈ ln q.

This approximation can be further justified empiri-
cally. We have calculated ln q versus 〈lnQ〉 for a wide
range of the bucket size and found that, for different
bucket size, the distributions all concentrate on the diag-
onal line with insignificant variances, indicating the effec-
tiveness and accuracy of our approximation. Similar re-
sults have been obtained, regardless of network topology
and dynamics property. We note that a similar approx-
imation method was used by Shen et al. in their work
of reconstruction of propagation networks from binary
data [28].

C. Implementation details of 14 dynamical processes
on complex networks

All types of network dynamical processes studied in
the main text, except for PDG and SG, are implemented
in the following way. At each time step t, the probabil-
ities for node i to have a state xi(t + 1) = 1 and 0 at
the next time step conditioned on the state configuration
of i’s neighbors, i.e., P 0→1

i and P 1→0
i , are calculated ac-

cording to Table 1 in the main text. If xi(t) = 0 (or 1),
then it is switched to state xi(t+ 1) = 1 (or 0) with the
probability P 0→1

i (or P 1→0
i ) or remains at 0 (or 1) with

the probability 1− P 0→1
i (or 1− P 1→0

i ).

Listed below is a detailed description of the dynam-
ical processes and the parameter settings. (Reasonable
changes in parameter values do not affect the reconstruc-
tion performance).

SDBM. The dynamics is described in detail in the
main text. The network parameters (link weights and
node biases) are uniformly chosen between 0.3 and 0.7 in
our calculation.

Ising Glauber. Opinion dynamics models often
adopt the classic Ising model of ferromagnetic spins [53].
The temperature parameter κ characterizes the level of
“rationality” of the individuals, which represents the
uncertainties in accepting the opinion. The coupling
strength parameter J (or the ferromagnetic-interaction
parameter) characterizes the intensity of the interaction
between the connected nodes. The simulation parame-
ters are κ = 1 and J = 0.1.

Majority vote. The majority-vote model [60, 61]
is a non-equilibrium spin model. Spins tend to align
with the neighborhood majority under the influence of
noise with parameter Q quantifying the probability of
misalignment. In our simulations, we set Q = 0.3.

Minority game. In the minority game model [55–
59], each individual chooses the strategy adopted by the
minority of its neighbors with a higher probability than
that for the majority. The probability for node i to be
1 at the next time step is proportional to the number
of its 0-state neighbors, ki − ni. We then have P 0→1

i =
(ki − ni)/ki and P 1→0

i = ni/ki.

Voter and link-update voter. In the voter
model [60, 82], each node i adopts the state of one of
its randomly selected neighbors. If i is currently inac-
tive (state 0), while there are ni neighbors in the active
state (state 1), it becomes active with the probability
P 0→1
i = ni/ki. An active node i becomes inactive with

the probability P 1→0
i = (ki − ni)/ki. The voter model is

similar to the minority game model but with the defini-
tion of P 0→1

i and P 1→0
i swapped.

The link-update voter model is a variant of the voter
model [62, 63].

Language model. In the language model [64, 65],
the 0 and 1 states stand for an individual’s two primary
choices of the language. The probability of switching
language is proportional to the fraction of the speakers in
its neighborhood, raised to the power α and multiplied by
the status parameter s or 1−s of the respective language.
In our simulations, we use α = 0.5 and s = 0.6.

Kirman ant colony model. In the model[66, 67],
to choose between stock market trading strategies, nodes
move from the non-adopted state (state 0) to the adopted
state (state 1) with the probability P 0→1

i = c1 + dni,
where c1 represents the individual strategy, which is in-
dependent of the influence of its neighbors. The param-
eter d quantifies the herding behavior, whereby a non-
adopted-state individual copies the strategy of their ni
adopted-state neighbors. A node i with ni of its ki neigh-
bors in the adopted state has ki−ni neighbors in the non-
adopted state. Due to the herding effect, the probability
for the transition from an adopted state to a non-adopted
state is P 1→0

i = c2 + d(ki − ni). In our simulations, we
set c1 = c2 = 0.1 and d = 10/N , where N is the network
size.

SIS and CP. In the susceptible-infected-susceptible
(SIS) disease-spread model [70, 83, 84], an infected in-
dividual transmits disease to node i in its neighborhood
with the probability λi. If a susceptible node i has ni in-
fected neighbors, the probability that it will be infected
is P 0→1

i . The recovery rate P 1→0
i = µi is kept con-

stant for node i. When simulating the SIS model, all
infected neighbors of node i affect i. In particular, for
each infected neighbor, a random number is drawn and
checked if it is smaller than λi, and i gets infected if any
of the random number is smaller than λi. We thus have
P 0→1
i = 1 − (1 − λ)ni , where the second term gives the

chance for i to remain susceptible.

For the contact process (CP) model [68, 69], at a time
step, each node i randomly selects one of its ki neighbors
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TABLE V: Structure reconstruction error rates of 5 real-world networks associated with 11 typical complex network
dynamics. The percentage error rates of the non-existent and the existent links detection (R0

e / R1
e , %) are listed for all combinations

of the network structure and dynamics. Each entry denotes the error rates R0
e / R1

e corresponding to a particular type of dynamics
(shown in the column) for a real-world network topology (shown in the row). The result for each combination is obtained with
M = 0.4N measurements used in each implementation. For some combinations, there exists a global absorption state in which the
system state configuration freezes, or a vibration state where the system switches between only a small number of configurations. In such
a case, no sufficient number of linearly independent measurements can be obtained to implement compressive sensing. The entries
associated with these cases are marked by “* / *”.

Dynamics Type Social-1 Social-2 Protein-1 Protein-2 Protein-3

Ising Glauber 0.2 / 3.8 0.0 / 0.0 0.0 / 0.0 1.0 / 0.0 0.0 / 0.0

Minority game 0.0 / 0.0 0.0 / 7.0 3.7 / 0.0 * / * * / *

Voter 0.0 / 0.0 0.0 / 4.2 3.9 / 0.8 * / * * / *

Majority vote 0.0 / 0.0 0.0 / 32.4 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0

Link-update voter 3.0 / 2.5 0.1 / 7.0 0.2 / 0.0 0.0 / 0.0 2.7 / 0.0

Language model 0.2 / 0.0 0.0 / 0.0 0.1 / 0.0 2.1 / 0.0 * / *

Kirman 0.0 / 0.0 0.5 / 34.5 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0

CP 0.2 / 0.0 0.0 / 7.0 0.0 / 0.0 * / * * / *

SIS 4.7 / 2.5 0.0 / 14.1 0.4 / 0.0 * / * * / *

SG 0.9 / 5.0 0.5 / 2.8 1.8 / 0.0 1.6 / 0.0 * / *

PDG 0.5 / 0.0 0.9 / 4.2 2.4 / 0.0 3.3 / 0.0 13.9 / 16.0

TABLE VI: Structure reconstruction error rates of 4 additional real-world networks associated with 11 types of
complex network dynamics. Table legends are the same as for Tab. V.

Dynamics Type Food Web-1 Food Web-2 Food Web-3 Circuit

Ising Glauber * / * 0.0 / 0.0 * / * 0.0 / 0.0

Minority game 0.1 / 0.0 1.0 / 0.0 0.4 / 0.3 0.8 / 0.0

Voter 0.1 / 0.0 0.7 / 0.0 0.6 / 1.7 2.0 / 0.0

Majority vote 0.4 / 0.0 0.0 / 0.0 1.5 / 0.0 0.0 / 0.0

Link-update voter 1.1 / 0.0 15.7 / 0.0 * / * * / *

Language model 0.2 / 0.0 0.3 / 0.0 0.0 / 4.4 0.0 / 0.1

Kirman * / * 0.0 / 2.2 * / * 0.0 / 0.0

CP 0.4 / 0.5 0.0 / 0.7 5.3 / 1.5 0.0 / 0.0

SIS 1.3 / 9.4 4.7 / 8.0 17.3 / 17.3 * / *

SG 2.1 / 16.1 8.4 / 25.6 6.2 / 23.0 8.3 / 4.8

PDG 2.8 / 7.6 8.4 / 19.0 8.8 / 15.3 23.0 / 14.3
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and check whether it is an infected node. If yes, it will
transmit the disease to i with the probability λi. Since
the chance of getting an infected node selected is ni/ki,
the probability of infecting node i at the current time
step is (ni/ki)λi.

Evolutionary game models: SG, SQ-SG, PDG,
and SQ-PDG. The implementation of evolutionary
game dynamics, PDG [75, 76, 85, 86] and SG [74], is
slightly more complicated. In the PDG model, the follow-
ing two processes occur at each time step. (1) Game play-
ing and payoffs. Each agent plays the classical prisoner’s
dilemma game (PDG) with all its nearest neighbors, and
the total payoff is the sum of the payoffs gained in its two-
player games with all the connected agents. Each player
may choose either to cooperate, C, or to defect, D, in a
single encounter. If both players choose C, both will get
payoff R. If one defects while the other cooperates, D
gets T , while C gets S. If both defect, both get P , where
T > R > P > S. The PDG parameters in our work are
chosen to be R = 1, T = b > 1, and S = P = 0 [75]. (2)
Strategy updating. At each time step, agent i randomly
chooses a neighbor j and imitates j’s strategy with the
probability Pi→j = {1+exp [−(Uj − Ui)/κ]}−1, where Ui

and Uj are the payoffs for agents i and j, and κ is the
level of agents’ “rationality” representing the uncertain-
ties in assessing the best strategy. The only difference
between PDG and SG is the choice of the game parame-
ter values. In SG, the parameters are chosen to be R = 1,
T = 1 + r, S = 1− r, and P = 0, where 0 < r < 1. The
probability that node i chooses to be cooperative or de-
fective at the next time step requires information about
its neighbors’ states and payoffs at the current time step.
This violates the interdependency assumption underly-
ing a Markov network. It is thus difficult to analytically
calculate the probabilities P 0→1

i and P 1→0
i . We find,

however, that the structure of this non-Markov network
can be successfully reconstructed by SDBM, a Markov
network.

A self-questioning mechanism [54] can be introduced
to ensure the interdependency properties of the Markov
networks for PDG and SG. At the strategy updating
stage, we define the probability that a cooperative node
i chooses a defective strategy at the next time step to be
P 0→1
i = {1+exp [−(UC

i − UD
i )/κ]}−1, where UC

i and UD
i

are the payoffs obtained while adopting the cooperative
and defective strategies, respectively. The probability of
choosing a cooperative strategy is P 1→0

i = 1 − P 0→1
i .

For PDG, we have UC
i = ki − ni and UD

i = b(ki − ni).
For SG, we have UC

i = (ki − ni) + (1 − r)ni and
UD
i = (1 + r)(ki − ni), where ni denotes the number

of defective neighbors. In our simulations, nodal states
0 and 1 denote cooperation and defection, respectively,
and we set b = 1.2, r = 0.7, and κ = 2 for all cases of the
evolutionary game dynamics.

D. Real-world networks

Table IV lists the names, types, sizes of the real-world
networks used for topology reconstruction in the main
text.

E. Reconstruction accuracy for real world networks

Tables V and VI list the reconstruction accuracy for
a number of real world networks with various dynamical
processes.

F. Visual comparison between the conditional
probabilities

Figures 9(a-d) present a visual comparison between the
conditional probabilities P{xi(t + 1) = 1|XR

i (t)} of the
original SDBM and of the estimated SDBM calculated
from Eq. (5) in the main text. We see that the two time
series of P (xi(t+1) = 1|XR

i (t)) are visually indistinguish-
able.

G. SDBM as a generative model for different types
of dynamics

In real world applications, it is often the case that little
information about the details of the dynamical processes
is available, i.e., the time series data can be regarded as
from a “black box.” Say the data generation mechanism
can be uncovered based solely on the observed data, i.e.,
the black-box dynamics is simulated to reproduce the
“pseudo” time series bearing the same statistical proper-
ties of the original data. The model is deemed generative
in the sense that it has the same data generating mech-
anism as that of the original system. Such a generative
model captures the essential dynamical and statistical
properties of the original system, which can be exploited
for long term statistical prediction through simulation.
Here we investigate the potential for the SDBM approx-
imator to serve as a generative model of the original dy-
namics. A basic requirement is that the long-term con-
ditional probability recovery error accumulated at each
immediate time step does not drive the model behavior
significantly off the trajectory generated by the original
dynamical process. Due to the stochastic nature of the
original dynamical system and its approximator, starting
from a particular state configuration, reproducing simi-
lar conditional probabilities in the immediate future does
not guarantee a similar state configuration. In fact, the
deviation in the configuration at the next time step may
lead to further and larger deviations, and so on.

Figure 10 shows three examples: two positive cases
where the prediction is reasonable and one negative case
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FIG. 9: Comparison between the conditional probabilities of the original system and that generated via the
reconstructed SDBM. (a) Conditional probability P{xi(t+ 1) = 1|XR

i (t)} versus time t for the original system with SDBM dynamics
for a BA-scale free network and (b) the conditional probability from the reconstructed approximator using the configuration time series
of the original system, where 1 ≤ i ≤ N (the y-axis) and 1 ≤ t ≤ T (the x-axis). Time series of the conditional probability
P{xi(t+ 1) = 1|XR

i (t)} from the original system with SIS dynamics for a BA-scale free network (c) and from the reconstructed
approximator (d).

where the task fails. For those examples, the approxima-
tor is initialized from a random configuration and runs
for the same amount of time as the original time series.
In the positive cases (SQ-SG and SIS), the conditional
probability time series generated by the approximator are
visually similar to the original data, indicating that the
observed data are qualitatively and quantitatively repro-
duced by the approximator. In addition, for each node,
its conditional probability value P{xi(t+ 1) = 1|XR

i (t)}
can be treated as a random variable, p, whose distri-
butions in the true system should be similar to that pro-
duced by the approximator if it can indeed serve as a gen-
erative model. To characterize the similarity in the dis-
tributions, one could use some standard statistical mea-
sures such as the Kullback-Leibler divergence [87], the
Jensen-Shannon divergence [88], the Bhattacharyya dis-
tance [89], or the Hellinger distance [90]. However, we
find that the performance of these metrics are not stable.
It is more effective to directly compare each node’s 〈p〉
and ∆p values from the original data and the approxima-
tor, e.g., for the three examples shown in Figs. 10(c,f,i).
The result is that, except for a few nodes, the values of
〈p〉 and ∆p obtained from the data and SDBM agree with

each other for the two positive cases, but there is a sub-
stantial difference for the negative case. Our calculation
also shows that there are cases where the approximator
reproduces similar values of 〈p〉 and ∆p for a substantial
fraction of the nodes in the network, but with deviations
for the remaining nodes. We conclude that the SDBM
approximator can serve as a generative model for some
systems. Improvement is necessary to generalize the gen-
erative power of SDBM (see Supplementary Note 3 for
detailed simulation results for different types of dynam-
ics).

We have also carried out a comparison study between
the conditional probabilities of the original system and of
the approximator using its self-generated state configura-
tion time series for all types of dynamics studied except
for the non-Markovian classic PDG and SG, whose con-
ditional probability time series are difficult to compute.
We find that in about half of the cases, namely, SDBM it-
self, Ising Glauber, SQ-SG, SQ-PDG, the Kirman model,
CP, and SIS, the reconstructed SDBM approximators are
capable of serving as a generative model of the original
time series data, so the reconstructed SDBMs can be used
to simulate the long-term behavior of the corresponding
original systems.
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FIG. 10: Comparison between the conditional probabilities of the original system and the approximator using the
self-generated state configuration time series. (a,d), (b,e), and (c,f): the conditional probability P{xi(t+ 1) = 1|XR

i (t)} time
series generated from the original state configuration time series (upper panel) and from the SDBM approximator using the state
configuration time series generated by itself (lower panel) for SQ-SG, SIS, and Voter dynamics on ER random networks, respectively.
(g,h,i) The mean and standard deviations of p = P{xi(t+ 1) = 1|XR

i (t)} for each node i for all time steps for SQ-SG (g), SIS (h), and
Voter dynamics (i), respectively, on ER random networks, calculated from the original system (red circles) and the approximator (blue
squares), where 1 ≤ i ≤ N (the x-axis).
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