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The ‘out of the blue’ nature of recent terror attacks and the diversity of apparent motives, highlight
the importance of understanding the online trajectories that individuals follow prior to developing
high levels of extremist support. Here we show that the physics of stochastic walks, with and without
temporal correlation, provides a unifying description of these online trajectories. Our unique dataset
comprising all users of a global social media site, reveals universal characteristics in individuals’
online lifetimes. Our accompanying theory generates analytical and numerical solutions that describe
the characteristics shown by individuals that go on to develop high levels of extremist support, and
those that do not. Going forward, it is conceivable that a deeper understanding of these temporal
and many-body correlations may eventually contribute to the important task of better countering
the spread of radical propaganda online.

I. INTRODUCTION

Following the terror attacks in London, Manchester,
Washington D.C. and Paris in 2017, and Orlando, Berlin,
Nice and Brussels in 2016, authorities face the fundamen-
tal problem of detecting individuals who are currently de-
veloping intent in the form of strong support for some ex-
tremist entity – even if they never end up doing anything
in the real world. The importance of online connectivity
in developing intent [1–8] has been confirmed by case-
studies of already convicted terrorists by Gill and others
[1–5]. Quantifying this online dynamical development
can help move beyond static watch-list identifiers such
as ethnic background or immigration status. Heuristi-
cally, one might imagine that an individual who enters
an online space, wanders through the content available
and – depending in part on what they find on any given
day – feels pulled toward, or pushed away from, a par-
ticular extreme ideology. This process of individual fluc-
tuation will be made even more complex by endogenous
and exogenous factors in their own lives. Adding to the
complication, humans are heterogeneous and hence may
enter an online space at different times, spend different
amounts of time online, and may end up losing inter-
est and dropping out entirely, continuing in an uncertain
state, or developing a high level of support.

We show here that despite this wide range of possible
behaviors, a surprising level of universality arises in the
online trajectories of individuals through an extremist
space. We provide a stochastic walk model that con-
nects together all individuals, even though they may end
up with very different outcomes. Though our focus is
on individuals’ online dynamics irrespective of whether
they later carry out an extremist act or not, subsequent
analysis of media reports together with others’ postings
suggest that a significant number of individuals in our
dataset do. Our dataset is assembled using the same
methodology as Ref. [9], and includes the global pop-
ulation of ∼ 350 million users of the social media out-
let VKontakte (www.vk.com) which became the primary

online social media source for ISIS propaganda and re-
cruiting during 2015 [9]. Unlike on Facebook where
pro-ISIS activity is almost immediately blocked, sup-
port on VKontakte develops around online groups (i.e.
self-organized communities) which are akin to Facebook
groups that support everyday topics such as a sport team.

FIG. 1. (Color online) Schematic of possible individual tra-
jectories in d − ` − b space bounded by absorbing barriers
at dabs, `abs, babs such that d(t) < dabs, `(t) < `abs and
b(t) < babs. These illustrate the three possible outcomes of
interest.

II. THEORY

A. Clock-time Lifetime

Given that other forms of extremism ranging from far-
left to far-right also appear through such online groups
(e.g. the Washington D.C. shooter [10] and Maryland
attacker [11] were both members of such groups on Face-
book), and given that many social media sites allow
such community features (i.e. online groups), our re-
sults and model should have general applicability. Even
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the encrypted application Telegram allows users to set up
‘super-groups’ [8]. All these online groups tend to keep
themselves open-source in order to attract new mem-
bers, hence we were able to record the current mem-
bership of pro-ISIS groups at every instant using en-
tirely open-source information. Each individual moving
through such an online space can be classified at any time
t by what will happen to them in the future, even though
he/she may at time t still be undecided about supporting
the ideology, or may even be moving away from it. Each
individual at time t has one of four unique labels:

Future banned: At some future time, he/she will develop
and hence express such a high level of extremist support
that their account will get banned by moderators. These
individuals would likely be of most interest to authorities.

Future latent: At some future time, he/she will stop be-
ing a member of extremist groups but will not self-delete
their account, perhaps reflecting indifference to the ex-
tremist ideology.

Future self-deleting: At some future time, he/she self-
deletes their own account, perhaps because they are
scared of being tracked.

Still ongoing: He/she will remain in development. Their
account remains unbanned and they continue joining pro-
ISIS groups (and possibly leaving, though group leaving
events are rare).

We focus here on the first three individual types since
they provide us with well-defined lifetimes and timelines
in terms of the online extremist groups that they join.
Banning and self-deleting events are announced on a
user’s webpage by moderators when they occur. The
clock-time lifetimes are Tban, Tlat, and Ts−del: Tban is
the time interval between them first joining a pro-ISIS
group and their account being banned; Tlat is the time
interval between them first joining a pro-ISIS group and
them ceasing to be a member of any pro-ISIS group; and
Ts−del is the time interval between them first joining a
pro-ISIS group and them self-deleting their account. The
event-time lifetimes Lban, Llat, and Ls−del, are given by
the total number of groups that the individual joins dur-
ing the observation period. The event-time lifetime for
each individual is therefore an integer, and could if de-
sired be converted to a physical time by multiplying by
the average number of days it takes the individual to
join one new group. We model the instant of banning
as an individual hitting an absorbing barrier for the first
time at babs in a one-dimensional walk b(t), where b(t)
represents the level of extremism (i.e. pro-ISIS support)
that an individual expresses. The instant of becoming la-
tent is when an individual hits an absorbing barrier `abs
during a one-dimensional walk `(t), where `(t) represents
the desire to become latent. The instant of self-deletion
is when an individual hits an absorbing barrier at dabs in
a one-dimensional walk d(t), where d(t) represents an in-
dividual’s desire to self-delete. Though an obvious over-
simplification, such a single scalar parameter has already
been adopted in other sociological contexts to mimic as-
pects of human personality [12, 13].

Each of the ∼ 350 million VKontakte users un-
dergoes their own walk in the three-dimensional d-
`-b space in Fig. 1, characterized by the position
vector (b(t), `(t), d(t)) and with absorbing barriers at
dabs, `abs, babs such that d(t) < dabs, `(t) < `abs and
b(t) < babs. We identify 7,707 individuals that eventu-
ally hit the barrier along the b-axis in Fig. 1 (i.e. future
banned individuals); 65,169 that eventually hit the bar-
rier along the `-axis (i.e. future latent individuals); and
18,905 individuals that eventually hit the barrier along
the d-axis (i.e. future self-deleting individuals).

Two questions then arise about what type of walk
would be appropriate to describe each individual in Fig.
1, and how this might then be modeled in some approx-
imate yet tractable way that will allow mathematical
analysis for the entire population [14–21]. The correct
answer to the first question would undoubtedly depend
on the changing situations to which each individual is
exposed in their daily life, their past experiences, and
also their own unique personality – which is informa-
tion to which we do not have access, therefore making
the task of answering the second question a seemingly
impossible one. However it has already been shown for
other areas of human behavior [14, 15, 22–24] that when
seeking an average description over an entire population,
the walk that each individual takes does not have to be
an accurate reflection of what they actually do at each
timestep, but rather it needs to capture the stochastic
nature over the whole population as each individual gets
feedback from their own daily life and hence moves to-
ward or away from a given barrier in their own particular
way in Fig. 1. In this regard, we take inspiration from
the somewhat similar situation of heterogeneous individ-
uals operating in a financial market, where individuals
decide separately each day whether to move to a posi-
tion that favors an upward move in the market index
(which could be considered analogous to moving toward
the barrier in Fig. 1) or to one that favors a downward
move (analogous to moving away from the barrier in Fig.
1). Despite the complex nature of the arrival of exoge-
nous information, it is well-known that as a crude ap-
proximation the behavior of market participants can be
captured by a stochastic walk which mimics the complex
daily changes in their personal positions [15, 22–24]. As
a result, even though the details of each individual’s be-
havior are grossly over-simplified, the overall market in-
dex varies as if each individual were undergoing its own
stochastic walk [22–24]. Indeed, the simplest description
is that of a quasi-random walk [23, 24]. In a similar way,
as a first attempt at describing online extremism, we will
in this paper adopt a similar model in which individ-
uals follow a simple stochastic walk. On any given day,
therefore, a given individual either moves toward or away
from the barriers in Fig. 1. Even with this gross simpli-
fication, the mathematical formulation of an individual’s
trajectory in Fig. 1 is still in principle daunting since, a
priori, the components of the walks along each direction
could be coupled for any given individual. However for
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simplicity, we will treat each individual as executing a
1 + 1 + 1-dimensional walk [25]. As we will see in Fig. 2,
the errors in so doing effectively wash out at the average
population level, making this simple stochastic walk de-
scription a surprisingly accurate zeroth-order approxima-
tion – apart from the appearance of temporal correlations
at short lifetimes (Fig. 2). In future work, we hope to
tease out more details about these walks and relate them
to the past content of the groups that individuals joined,
or the content that they themselves posted, as well as the
nature of other endogenous factors and exogenous stimuli
to which they were exposed [16–21].

With this assumed decoupling in place, solving for the
observational period T in a generic single dimension x(t)
with a single absorbing barrier at xb solves the problem
for each of these dimensions and yields a lifetime distri-
bution for the entire process. Allowing for the possibility
of a non-zero drift velocity u towards the respective bar-
rier xb, the Fokker-Planck equation for any component
x(t) in Fig. 1 becomes:

{
( ∂
dt −D

∂2

∂x2 + u ∂
∂x )G(x, t;x0, t0) = δ(x− x0)δ(t− t0)

G(xb, t;x0, t0) = 0

(1)
where x ≤ xb, 0 ≤ t − t0 ≤ T . T is the observation
period and D is the diffusion coefficient, assumed to be
time-independent. For the simulations, we consider the
discrete version with unit diffusion speed ∆x/∆t = 1,
with D = (1 − u2)/2 and u = 2p − 1 where p is
the probability of moving forward at each timestep.
The solution is G(x, t;x0, t0) = Θ(t − t0)K(x, t;x0, t0),
where the propagator K(x, t;x0, t0) = Φ(x − x′) −
exp [−u(xb − x)/D]Φ[x− (2xb− x′)], x′ = x0 + u(t− t0),

and Φ(x) = exp [−x2/(4Dt)]/
√

4πDt. To mimic human
heterogeneity, we consider a uniformly distributed initial
condition at t = t0 = 0:

f1D(x, t) =

{
δt,0/xm xb − xm ≤ x < xb
0 elsewhere

(2)

where δ is the Kronecker delta and xm is a normalization
constant. xm = T∆x/∆t in the simulations. This is
reasonable since individuals located below x = xb − xm
can never reach the boundary and hence can be ignored.
The probability distribution

P1D(x, t) =

T∑
t0=0

∫ xb

xb−xm

dx0K(x, t;x0, t0)f1D(x0, t0)

=
1

2xm

{
ψ

(
xb + ut− x√

4Dt

)
+ ψ

(
xm + x− xb − ut√

4Dt

)
− exp

[
−u(xb − x)

D

][
ψ

(
xb + xm − ut− x√

4Dt

)
+ ψ

(
x+ ut− xb√

4Dt

)]}
,

where ψ(x) is the error function; and the total probability

RS(t) =

∫ xb

−∞
dxP1D(x, t)

=
1

2xmu

{(
D − xmu+ tu2

)
Ψ

(
xm − tu
2
√
Dt

)
−D exp

(xmu
D

)
Ψ

(
xm + tu

2
√
Dt

)
+ 2u

√
Dt

π

[
e−

(xm−tu)2

4Dt − e− tu2

4D

]
−
(
2D + tu2

)
ψ

(
u

2

√
t

D

)
+ 2xmu− tu2

}
,

where Ψ(x) is the complementary error function. The
distribution of clock-time lifetimes

F (t) =
−dRS(t)

dt

−
∫ T

0
dtdRS(t)

dt

=
−dRS(t)

dt

RS(0)−RS(T )
, (3)

from which we obtain

F (t) = Z−1
{
u

[
ψ
(xm − tu

2
√
Dt

)
+ ψ

(
u

2

√
t

D

)]

+

√
4D

πt

[
e−

tu2

4D − e−
(xm−tu)2

4Dt

]}
,

(4)

where the normalization constant

Z =

(
2D

u
+ Tu

)
ψ

(
1

2
u

√
T

D

)
+
D

u
e

xmu
D Ψ

(
xm + Tu

2
√
DT

)
+

(
xm − Tu−

D

u

)
Ψ

(
xm − Tu
2
√
DT

)
+ Tu

+ 2

√
DT

π

[
e−

Tu2

4D − e−
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]
.

When u→ 0,

F (t)|u→0 = Z−10

√
D

πtx2m

[
1− exp

(
− x2m

4Dt

)]
; (5)

and therefore

F (t)|u→0; t�x2
m/(4D) ∼ t−1/2, (6)

where the normalization constant

Z0 = 1 +

√
4DT

πx2m

[
1− exp

(
− x2m

4DT

)]
− ψ

(
xm√
4DT

)
.

Hence our theory predicts an approximate power-law dis-
tribution for clock-time lifetimes that are not too large,
with a negative scaling exponent of magnitude 1/2, which
is much smaller than that of the first-hitting time of con-
ventional 1-D Brownian motions (≥ 3/2, cf. [21]), indi-
cating the existence of high heterogeneity in users’ initial
condition.
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FIG. 2. (Color online) (a), (c) and (d) show the distribution
of clock-time lifetimes for individuals with the three types of
future outcomes shown in Fig. 1, together with our theoretical
predictions. The legend in (a) applies to all. (b) enlarges (a)
for short lifetimes. One standard deviation error bands are
shown. The results with the TC (i.e. temporal correlation)
effect for (c) and (d) are similar to the respective no-TC case,
and hence are not shown.

Figures 2(a), (c) and (d) show that despite their very
different origins and meanings, all three distributions
tend to follow the same analytical 1/2 power-law for in-
termediate clock-time lifetimes. Moreover this agreement
can be improved by adding a small u in Eq. (4) (e.g. Fig.
2(a)). A full numerical simulation of our model yields
even better overall agreement (green curves). Deviations
arise at short clock-time lifetimes for future-banned in-
dividuals (Figs. 2(a)-(b)). However the good agreement
can be restored if we add temporal correlations (TC, i.e.
memory) to our walk model: with probability q, an indi-
vidual changes his/her x(t) value at time t by adopting
the same change that occurred in an earlier timestep ran-
domly chosen from the last m timesteps. Even the sim-
plest case of m = 1 shows good agreement (blue curves
in Fig. 2).

B. Event-time Lifetime

Consistent with previous work suggesting that people
are highly heterogeneous in how long they take to do
something [16], we find that the empirical event-time life-
time can be quite different from the corresponding clock-
time lifetime. This motivates us to look at event-time.

FIG. 3. (Color online) (a) Exact diagrammatic expansion [26]
of the probability that a randomly chosen individual ends
up as banned (denoted as ‘b’), self-deleting (‘d’) or latent
(‘l’) after joining L = 0, 1, 2, . . . online groups of any type.
L = 0, 1, 2 terms are shown explicitly. (b) Terms from (a)
evaluated empirically by counting the fraction of individu-
als who end up as ‘b’,‘d’ or ‘l’ after joining exactly L online
groups (i.e. event-time lifetime is L). (c)-(e) Expansion terms
from (a) for a specific event-time lifetime (different subscripts
for L are used to distinguish the user types), where here n
only counts the number of future-banned groups (B) joined
(see text) and hence the maximum n appears bounded from
above by the event-time lifetime. Points are empirical results.
Solid lines are our temporal correlation (TC, i.e. memory)
model results determined using Maximum Likelihood Esti-
mation (MLE). Dashed lines are null model (i.e. binomial
distribution). (f) MLE q values vs. event-time lifetime in our
model. MLE p value ≈ 0.73 in all cases.

We represent the probability of an individual ending up
in one of the three possible outcomes in Fig. 1, as an
expansion with respect to L (Fig. 3(a)) where each term
is the probability that this (i.e., an individual ending up
in one of the three possible outcomes) happens (i.e. life-
time ends) after joining L online groups [26] (L is the
event-time lifetime). Figure 3(b) shows the distributions
of these empirically determined expansion terms. The
fact that the distribution for future banned users is the
broadest, suggests that future banned users tend to be
the most active in joining groups.

In order to check further if the distributions are power-
law distributions, we tried fitting the three empirical
distributions using a (discrete) power law distribution,
following the standard maximum-likelihood method of
Clauset et al. [27]. We took the minimum event-time
lifetime for fitting to be 1. We found the estimated power-
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law exponents to be α =2.1, 1.6, and 1.9 for the future
latent, future banned, and future self-deleting users, re-
spectively. However, the p-value in each case is small
(< 0.05) which suggests that a power-law form can be
rejected with high confidence [27]. Hence, there is no
strong statistical support for a power law.

Instead, to look for meaningful patterns, we move to
conditional probabilities. In the following analysis, we
attach different subscripts to L in order to distinguish
the user types (i.e., Lban for future banned users, Llat

for future latent users, and Ls−del for future self-deleting
users. Figures 3(c)-(e) shows results conditioned on the
event-time lifetime from (b) and counting as n the num-
ber of future-banned groups joined during the lifetime,
i.e. n in Figs. (c)-(e) only counts groups who will them-
selves get banned by moderators. These are of the most
interest since by definition they will develop the most
extreme content.

Just as for clock-time, Figs. 3(c)-(e) show that a
stochastic walk model without temporal correlations
(TC) provides poor agreement for short event-time life-
times. Similar to before, we therefore introduce TC and
hence memory: At each step, with probability q the in-
dividual decides to join a group of the same type (i.e.
either future-banned or not) as they did in one of their
last m joining events, randomly chosen from m. Hence
with probability (1−q)p, they join a future-banned group,
and with probability (1−q)(1−p) they join a non future-
banned group. m acts as a memory length, q is the proba-
bility of making a decision according to this memory, and
p determines individual preference for a specific group
type. The model simulation is over 10,000 individuals. q
is the dominant parameter in determining the model fit.

As an illustration, we describe here the analysis for the
future-banned users. Stochastic simulations show that
increasing m strengthens the memory effect significantly
only when q is sufficiently large (e.g. above ∼ 0.7); there-
fore, for most values of q, the profile of the distribution
Po→b(nB|Lban) is primarily determined by q. Hence we
let m = 1 for simplicity, and estimate q and p for each
value of Lban from the empirical data using maximum
likelihood estimation (MLE), and perform a model fit
to the empirical results by simulation. For the memory
model with m = 1, the likelihood for an individual i to
have a path Si = {Si[t]|Si[t] ∈ {0, 1}, t = 0, 1, 2, ..., L−1}
(Si[t] = 0 corresponds to joining a future-banned group,
and Si[t] = 1 corresponds to joining a non future-banned
group) is given by

Li =

L−2∏
t=0

{p+ q − Si[t+ 1]q + 2Si[t+ 1]Si[t]q

− pq + Si[t](1− 2p− 2q + 2pq)}.

(7)

Therefore, p and q are given by

arg max
(q,p)

L̄ ≡ 1

N

N∑
i=1

Li

:= {(q, p)|0 ≤ q ≤ 1 & 0 ≤ p ≤ 1}.

(8)

FIG. 4. (Color online) Evolution of the many-body correla-
tion measure 〈IQR〉 (i.e., average IQR) between different sub-
populations of individuals. As in Fig. 3(a), ‘b’ means future
banned, ‘l’ means future latent, ‘d’ means future self-deleting,
and ‘any’ means irrespective of individual type. For exam-
ple, ‘b—d’ means between future banned and future latent
individuals. One standard deviation error bands are shown
around the null model result. In principle, each empirical
curve has its own null model, obtained by randomizing the
timestamps t of the time series si(t) (and sj(t)). Since these
null model results are all very similar, we only show the result
for the ‘any—any’ case.

When doing the simulation for a given Lban, we do a
separate stochastic simulation of 10,000 individuals; and
since there is no history in the first step, we randomly
assign the initial memory for each individual. We follow
the same procedure for the other two types of individuals.

Figure 3(f) shows that q, and hence the impact of mem-
ory, is most prominent for short event-time lifetimes –
consistent with the conclusion for clock-time lifetimes in
Fig. 2. This could have an important implication for au-
thorities, since it suggests that among individuals who
will eventually express the most extreme support and
hence become banned (i.e. future-banned individuals)
the ones with shorter lifetimes will exhibit more tempo-
ral correlations and hence will exhibit more predictability
in their trajectories: and it is precisely these rapidly-
developing individuals who likely carry the highest risk
of committing future acts.

C. Many-Body Correlations

Having characterized and quantified the trajectories of
individuals, and established the increasing importance of
temporal correlations at short lifetimes in both clock-
time and event-time, we move to examine many-body
correlations, i.e. the correlations between individuals.
Though a full theory generalizing the expansion in Fig.
3(a) awaits future development, Fig. 4 shows the surpris-
ing strength and complexity of correlations that evolve
over time in the system. Specifically, it shows the av-
erage information quality ratio (IQR) [28] of the group
joining and leaving events for pairs of individuals of a
given type, where

IQR(Xi;Xj) =
I(Xi;Xj)

H(Xi;Xj)
. (9)
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Here Xi and Xj are two random variables measured si-
multaneously, I(Xi;Xj) is the mutual information of the
two random variables, and H(Xi, Xj) is their joint en-
tropy. IQR is normalized and lies within [0,1]. A higher
value means stronger correlation: e.g. IQR = 1 means
there is a one-to-one correspondence between Xi and Xj ;
IQR = 0 means knowing Xi says nothing about Xj . In
our case, Xi and Xj represent the behaviors of individ-
uals i and j when measured simultaneously (i.e. on the
same day), therefore IQR becomes an effective measure
of particle-particle correlations. More specifically, Xi and
Xj are given by the signs (si and sj) of the net change
of the number of group memberships of user i and j on
the same day, respectively.

We now describe the calculation of the average IQR
(i.e. 〈IQR〉) on day t between the future banned and the
future self-deleting users (denoted as b—d) in Fig. 4(a).
First, we pick an individual i from the sub-population of
future banned individuals, and an individual j from the
sub-population of future self-deleting individuals, whose
signs of the net change of the number of group mem-
berships on day t′ are si(t

′) and sj(t
′) (si(t

′) & sj(t
′) ∈

{−1, 0, 1}), respectively. For 〈IQR〉 of day t, the statis-
tics are calculated from the (t − 10)’th day to the
(t + 9)’th day (i.e. a moving window of size 20 days).
Hence, the joint probability distribution for day t is given
by PXi,Xj

(xi, xj) =
∑t+9

t′=t−10[δsi(t′),xi
δsj(t′),xj

]/20, from
which the marginal probability distributions PXi

(xi) and
PXj

(xj) can be easily calculated; therefore the mutual in-
formation is given by

I(Xi;Xj) =
∑
xi,xj

PXi,Xj
(xi, xj) log2

[
PXi,Xj (xi, xj)

PXi
(xi)PXj

(xj)

]
,

the joint entropy is given by

H(Xi;Xj) = −
∑
xi,xj

PXi,Xj
(xi, xj) log2[PXi,Xj

(xi, xj)],

and eventually, the IQR between i and j is given by

IQR(Xi;Xj) =
I(Xi;Xj)

H(Xi;Xj)
. (10)

We ignore pairs of users whose joint entropy is zero
since they represent mostly trivial cases in which no join-
ing/leaving events occurred. Next, we average over all
combinations of the user pairs to obtain (〈IQR〉 on day t.
Since our dataset is so large, we sampled 2000 users for
each individual type 10 times to obtain the mean values
and their standard deviations. In addition, to improve
the display we smoothened the curve by averaging over
every 10 days when plotting the curves. We have in-
vestigated the effect of changing these choices of time
windows and find that our main results and conclusions
are unchanged.

The resulting average IQR values between trajectories
from different sub-populations (Fig. 4(a)) and within the
same sub-population (Fig. 4(b)) are all stronger than

expected from a null model in which the order of the
timestamps for xi and xj is randomly shuffled. In ad-
dition, the average IQRs peak around days when there
are more group creation and banning events than usual.
The many-body correlations between future banned users
(‘b—b’ in Fig. 4(b)) are typically the strongest during
most of the days and exceed the null model by many
standard deviations, suggesting that individuals who will
go on to develop the most extreme forms of support are
the most synchronized. It also suggests a new dynamical
collective phenomenon by which a relatively small sub-
set of individuals manage to develop coordination within
a much larger reservoir of individuals. By contrast, the
correlations between future self-deleting individuals are
comparable to the null model result, suggesting that the
movement toward deciding to self-delete is mostly a per-
sonal one.

III. DISCUSSION AND CONCLUSION

In summary, we have identified statistical universali-
ties in the trajectories of individuals wandering through
an online extremist space, despite the heterogeneity in
individuals’ behaviors and final outcomes. Our findings
establish the importance of temporal correlations at short
lifetimes in both clock-time and event-time. These may
help provide theoretical insights for impeding the devel-
opment and spread of extremism online through the de-
velopment and deployment of a new generation of social-
media algorithms (see for example, the preliminary study
in Ref. [29]). Our data and results may also help open
the path toward a fuller many-body theory of human be-
havior [17–20] in which single-particle propagators (in-
dividuals) successively scatter through dynamical groups
that themselves comprise other single-particle propaga-
tors, thereby yielding a coupled hierarchy of propagators
in a full diagrammatic expansion [26].

Assuming that terrorist events emerge from a complex
chain of behaviors, such a real-world chain would un-
doubtedly include many complex steps such as adopting
an extremist ideology, thinking about engaging in vio-
lence, acquiring the necessary materials and/or training,
and finally committing the offense [2], while the Inter-
net facilitates the development of this chain of behaviors
[3–5]. Previous studies have primarily focused on statis-
tical analysis of the correlations between various factors
and the off-line terror attacks, with the aim of identifying
potential extremists at an early stage [2–5]. This identi-
fication faces the challenge that there may be no simple
set of factors that can effectively distinguish high-risk in-
dividuals from lower-risk ones[1–3], and also that each
individual’s development toward radical ideology and ex-
tremist behavior is likely highly dynamic. As a result, an
extremist can emerge from a group that may previously
have been identified as very unlikely to produce extrem-
ists. In this work, we adopted a different approach by
looking for universal patterns and principles of human
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behaviors in a typical online extremist network and mod-
eling them with classical physics approaches. As Gill et
al. point out in Ref. 5, there is an important cautionary
statement that violent radicalization should be framed
as cyber-enabled rather than as cyber-dependent. More-
over, enabling factors differ from case to case depend-
ing on need and circumstance. Despite this, we hope
that the present paper will stimulate new collaborations
at the interface between emergent quantitative modeling
and existing expertise in case-study approaches. While
mitigating the risk of future events is certainly a stretch,
our work might conceivably be further developed to help
indicate which individuals show radical support online
and identify others who do, too. This in turn could help
devise strategies to better counter the spread of radical
propaganda online. We also are aware that the vast ma-
jority of individuals who are flagged as showing radical

support will never actually commit any illegal act. How-
ever, knowing that they do can help inform the reactions
of security forces, together with the contextual factors
and specific circumstances of every individual, as high-
lighted by studies such as the one of Gill et al. in Ref.
5.
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