
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Collective conflict resolution in groups on the move
Itai Pinkoviezky, Iain D. Couzin, and Nir S. Gov

Phys. Rev. E 97, 032304 — Published 12 March 2018
DOI: 10.1103/PhysRevE.97.032304

http://dx.doi.org/10.1103/PhysRevE.97.032304


Collective Conflict Resolution in Groups on the Move

Itai Pinkoviezky,1 Iain D. Couzin,2 and Nir S. Gov3

1Departments of Physics and Biology, Emory University, Atlanta, Georgia 30322, USA.
2Department of Collective Behaviour, Max Planck Institute for Ornithology, D-78457 Konstanz, Germany,

and Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
3Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

Collective decision making regarding direction of travel is observed during natural motion of
animal and cellular groups. This phenomenon is exemplified, in the simplest case, by a group that
contains two ’informed’ subgroups that hold conflicting preferred directions of motion. Under such
circumstances simulations, subsequently supported by experimental data with birds and primates,
have demonstrated that the resulting motion is either towards a compromise direction or towards
one of the preferred targets (even when the two subgroups are equal in size). However, the nature of
this transition is not well understood. We present a theoretical study that combines simulations and
a new spin model for mobile animal groups, the latter providing an equilibrium representation, and
exact solution in the thermodynamic limit. This allows us to identify the nature of this transition
at a critical angular difference between the two preferred directions: in both ’flocking’ and spin
models the transition coincides with the change in the group dynamics from Brownian to persistent
collective motion. The groups undergo this transition as the number of uninformed individuals
(those in the group that do not exhibit a directional preference) increase, which acts as an inverse
of the temperature (noise) of the spin model. When the two informed subgroups are not equal in
size, there is a tendency for the group to reach the target preferred by the larger subgroup. We find
that the spin model captures effectively the essence of the collective decision making transition, and
allows us to reveal a noise-dependent trade-off between the decision making speed and the ability
to achieve majority (democratic) consensus.

PACS numbers:

I. INTRODUCTION

Consider a group of animals on the move, such as a
flock of birds, a school of fish or a troop of baboons. The
mechanisms describing the coherent motion, and collec-
tive decision-making capabilities, of such animal groups
is a subject of great current interest, both for biologists
and physicists [1]. In many cases, organisms differ with
respect to their knowledge, or preferences within groups,
regarding where to go (such as with respect to foraging
areas, or of a migration route). To avoid losing the ben-
efits of group living [2–5], many species maintain cohe-
sion, with consensus being achieved via local interactions
among group members [6, 7].

When individuals differ with respect to their preferred
directions of motion, there is an inherent conflict within
the group. The simplest and general example for such a
conflict is when there are two informed subgroups, where
the conflict is measured by the angular difference (θ) be-
tween the two preferred directions, and the number of
individuals in each subgroup. It was found in simula-
tions of animal groups that when this angular difference
is larger than a critical value (θc) the group switches,
spontaneously, from compromise to a consensus decision
to move in the direction of one, or other, of the preferred
directions [8]. Experimental observations in a wild troop
of baboons [6] and pairs of pigeons [9] has demonstrated
the existance of this transition from compromise to deci-
sion as function of the angular conflict, but the nature of
this transition is still not understood. There have been
several attempts to explore the nature of this transition

using simplified models [10, 11]. However, these models
did not replicate the consensus nature of the transition
[10], or did not consider the motion of groups [11], and
thus we lack an analytically-tractable model of consensus
decision-making in groups on the move.

Thus it is not clear which properties may influence the
accuracy with which the collective decision is made to
follow the majority preferred direction, or how proper-
ties such as noise influence decision-making dynamics.
It has been shown, theoretically [12], that following the
majority, i.e. as in democracy, is often favorable since a
majority is likely to have more reliable information, and
democratic consensus reduces compromise costs by pre-
venting extreme decisions. However, with the exception
of humans, animals that live in groups do not have the
cognitive abilities to count large number of votes [13, 14].
In [15] the effect of informed subgroups of different sizes,
and strengths of preference, as well as the role of the pro-
portion of unbiased (or uninformed) individuals within
the group, on the consensus decision-making was stud-
ied. However, how collective decision-making regarding
directional preference emerges as a function of the sys-
tem’s parameters is lacking. Similarly the conditions that
optimize certain group properties, such as the capacity to
select a majority-prefered direction, are not understood.

In order to address these deficiencies, and to under-
stand more clearly the process by which collectives make
decisions, we present here a theoretical study that be-
gins with a comprehensive numerical study of a spatial
model of mobile animal groups moving in 2D space. We
then propose a simple, analytically tractable, spin model
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(first in 1D, and then extended to 2D) to allow for better
understanding of the collective conflict resolution phe-
nomenology. Unlike previous spin models, we explicitly
account for the group motion. In this model each in-
formed individual can exert a “social force” on the group
towards its preferred direction, or may not exert this
force. This behavior allows us to treat the behavior of
each informed individual as a spin degree of freedom,
which makes the model Ising-like. For simplicity, and
tractability, it is assumed that individuals (spins) inter-
act with all the other members of the group, which makes
this model fully-connected, non-spatial, and by defini-
tion, cohesive. The group moves in space according to
the sum of all exerted social forces. As in Ising mod-
els, the spin flips (individual decisions) are governed by
the interplay between the interactions and noise (tem-
perature). We solve the spin model using mean-field
method and compare to the full spatial simulation of an-
imal groups [8]. We find that there exists a trade-off
between the accuracy, with respect to selecting correctly
the majority-preferred direction, and the time traveled to
a target location. We show we can recover this new find-
ing in the fully spatial model of animal groups [8]. Since
flocking models are essentially models of active matter
[16], our model allows us to explore how much of the
phenomenology is due to the active component and what
can be explained within equilibrium theory.

II. DECISION TRANSITION IN A SPATIAL
FLOCK MODEL

We begin by studying the decision transition in a well
established spatial model of collective motion in animal
groups (which we call from now on “flock model”) [8].
In Fig.1a we show an illustration of the model, where
the two informed subgroups are mixed with unbiased, or
uninformed, individuals. The basis of this model is that
each individual tries to move in the direction of motion
of its local neighbors, similar to the well known Vicsek
model [17], with the addition of an attractive tendency,
that allows groups to remain cohesive. Note that the
alignment is not an essential feature of the spatial model,
only attraction is required (although alignment tendency
speeds up the decision-making). The basic interactions
affecting each self-propelled particle within this model
include: (i) avoidance of collisions (equivalent to imple-
menting a hard-core repulsion at a unit distance), (ii) at-
tractive interaction which directs particles towards their
near-neighbors (within a distance of 6 particle sizes), and
(iii) alignment of their motion with the average direction
of the near-neighbors. We give the full details of the
model in Appendix A.

In this model there is intrinsic noise in the velocity
vector of each individual (representing sensory, decision-
making or movement errors), which can lead to an order-
disorder transition above a critical noise value [18]. We
will restrict our study to the low noise (ordered) phase,

which allows the group to move along the compromise
direction when the angular conflict between the two in-
formed subgroups is small (θ < θc), and to achieve con-
sensus above a critical angular difference (θc). In the dis-
ordered regime, for high intrinsic noise levels, the group
does not move collectively anywhere, and thus we cannot
study the transition between compromise and decision
making.

Motivated by [10] we vary the number of individu-
als that exhibit preferred directions of travel as well as
those that do not (representing uninformed individuals,
or those who are informed but do not have a preference
regarding where to go), Nui, for a system where the an-
gular conflict is very large (θ close to π). Surprisingly, we
find that increasing the number of uninformed members
acts to order the system, and drive it from the compro-
mise to the decision phase. This transition is shown in
Fig.1b-d, where we see that increasing Nui moves the
group from a random-walk motion, described by a uni-
modal distribution of the flock center-of-mass velocity
(Fig.1b), to ballistic motion, that is characterized by a
bi-modal velocity distribution (Fig.1d). When the ve-
locity distribution is bimodal (Fig.1d) it represents per-
sistent motion of the group along one of the two pre-
ferred directions, which corresponds to a collective deci-
sion. When the velocity distribution is localized around
V = 0 (Fig.1b) the two conflicting informed subgroups
cause frequent changes in the direction of group motion,
and very nearly cancel each other, corresponding to a
compromise behavior.

We next explored the role of the extend of angular
conflict. This model has been shown to exhibit a transi-
tion from averaging to consensus decision-making above a
critical angle, and it was reported in [10] that the critical
angle decreases for a bigger uninformed/unbiased sub-
population. In the phase diagram shown in Fig.1e we
see that the system can move from a compromise to a
decision state by increasing the number of uninformed
members. The transition region is where the velocity dis-
tribution changes from unimodal to bimodal, and three
peaks appear in the velocity distribution. The transi-
tion point itself is defined when these three peaks have
the same height, see Fig.1c. We see in Figs. 1f,g that
the trajectory of the group is more oriented towards ei-
ther one of the targets for larger Nui. Increasing Nui has
a similar effect as decreasing the temperature T in our
spin model (see below), indicating that the uninformed
individuals do not act simply as a source of noise [15].

This effect of the uninformed individuals within the
flock model may arise due to their ability to enhance the
spatial segregation between the two informed sub-groups.
This is demonstrated in Figs. 1f-h, where the degree of
spatial segregation is shown to be closely associated with
the compromise to decision transition (see also Fig.6). In
Fig.1h we calculate the average distance between mem-
bers in different subgroups over all pairs and we see that
the typical distance increases as time progresses: The
simulated groups start with all members mixed, both un-
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FIG. 1: (a) Illustration of the flock model. Grey agents represent the uninformed members, while the two informed subgroups
are denoted by blue (subgroup 1) and red (subgroup 2) members. The depicted group tends to go in the direction of subgroup
1. Note that two members of the losing subgroup 2 are not oriented towards their preferred direction. (b)-(d) The trajectory
of Y coordinate (top) and the probability distribution of Vy (bottom), for angular difference θ = 2.6(rad) and (b) Nui = 10,
(c) Nui = 20, (d) Nui = 80. (e) Phase diagram for the flock model, as function of the number of uninformed individuals Nui

and the angular conflict θ (the targets are at infinity). Results are obtained from simulations of a flock with two subgroups
of size N1 = N2 = 5 and ω = 0.3 (Eq.A3). The angular difference of π/2 is denoted by a vertical dashed line. We also
denote the angular difference of (b)-(d), with points corresponding to the different figures. Dashed green lines correspond to
the trajectories of (f),(g). (f),(g) Examples of trajectories towards targets at finite distances, with normalized average distance
between subgroups color-coded along them. Clouds of points are snapshots of the group along the trajectory with the color
code of (a). The targets (green points) are at (x, y) = (100,±250) relative to the flock initial location. (f) Nui = 24, (g)
Nui = 114 (h) Normalized average distance between members in different subgroups against normalized time for Nui = 24
(red) and Nui = 114 (black). (i) Mean distance between the individuals in the two informed subgroups, from simulations of
flocks containing a different number of uninformed individuals Nui (as in f-h). The mean distance is normalized by the number
of uninformed individuals.

informed and the two informed subgroups. As the group
polarizes and starts moving along the direction preferred
by one subgroup, the two subgroups separate and the
distance between them increases, with the winning sub-
group occupying the leading edge, and the losing sub-
group concentrated at the back. For larger groups this
process takes a longer time (Fig.1h), but there exists a
higher degree of segregation (normalized separation ap-
proaching 1). As the two informed subgroups are more
strongly segregated, spatially, it becomes more difficult
for the losing subgroup to interact with the winning sub-
group and to exert any influence on the motion of the
group. This means that the rate at which the velocity
changes between the two conflicting directions therefore
diminishes once a direction has been selected, which cor-
responds to a more ordered system (lower effective T ).

Similarly, the segregation between the subgroups, follow-
ing the decision transition, is proportionately stronger
for larger informed sub-groups, even when there are no
uninformed individuals [8]. As shown in Fig.1i the sep-
aration between the informed subgroups, normalized by
the number of uninformed individuals Nui, increases for
larger groups. This separation has the characteristics of
an order parameter, with a transition towards high seg-
regation above a critical value of Nui (similar to what is
shown in Fig.1e for motion towards targets at infinity).
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III. SPIN MODEL

The above results of the spatial model of animal groups
(flock model) provide us with an ability to describe, us-
ing time-consuming computer simulations, behavior that
mimics the motion of living groups [6, 15]. However, the
results of these simulations are rather opaque, and do
not allow us to gain a deep understanding of the phe-
nomena, especially the sudden transition between aver-
aging preferred directions, and deciding among them. It
is especially difficult to predict the behavior of the group
as a function of the model parameters, and to determine
which features are general, and which are model-specific.
We therefore propose now a new, analytically tractable,
spin model, which allows us to better understand the
above behavior.

In animal groups individuals appear to express their
preferred direction of motion, and affect others, predom-
inantly by moving in that direction [6, 15]. However,
since the group is typically cohesive, it may move in a
direction which satisfies the wishes of only one subgroup,
while the other subgroups effectively succumb to the col-
lective’s choice. Under this condition the losing subgroup
has a very weak ability to express its desire to move along
a different direction, and affect the others, as described
in the full spatial model above. We represent these dy-
namics in the spin model by allowing each informed in-
dividual in our model to either exert a “social force” on
the others, or not. The rule by which an informed in-
dividual switches from exerting a force to relenting, is
constructed such that an individual is “encouraged” to
exert the force if the group is already moving in that di-
rection. The motion of the group arises from the sum
of all exerted ”social forces”, and therefore the direction
of motion coincides with the force direction. Fast mo-
tion along the direction preferred by one subgroup, will
encourage more members of this subgroup to exert their
social force, and on the other hand ”depress” members
from the other (losing) subgroup from exerting a force.
We note that in the moving group the social force is of-
ten exerted by individuals attempting to move in their
preferred direction [6], but social forces exerted by other
forms of communication (vocal, for example) can be con-
sidered.

This allows us to construct an Ising model for this sys-
tem, where each informed member is represented by an
internal binary state that either applies a force (in a pre-
ferred direction), or not. The temperature in our model
describes the noise that drives the spin-flipping dynam-
ics, and corresponds to the level of ’individuality’ of the
group members [19, 20], whereby higher temperature cor-
responds to greater individuality, which means a higher
tendency to ignore the direction the group motion, and
to exert a personal influence. The rules of the model are
described in Appendix B. Note that within this minimal-
ist spin model the uninformed individuals are not explic-
itly described. As already hinted in the discussion of the
flock model above, the uninformed/unbiased individuals

seem to contribute to the noise and therefore their effect
appears in the spin model through the temperature T .

We note that we also explored an alternative spin
model, described in Appendix L. In this model the
informed individuals always apply a social force in the
preferred directions of the two subgroups. We find this
model to agree less well with the simulations of the spa-
tial (flock) model described above.

A. Group moving along a line (tug-of-war, θ = π)

We start by exploring the dynamics of our model, with
the rules as in Appendix B, when the group is moving
on a 1-dimensional (1d) track, where the informed sub-
groups are pulling towards two targets in opposite direc-
tions (θ = π). The advantage of this 1D form is that it is
an equilibrium model, which therefore allows us to uti-
lize standard thermodynamics and statistical mechanics
to extract analytic solutions.

The overall group is of size N , composed of two sub-
groups of informed individuals of sizes N1, N2, such that
N = N1 +N2. The informed members ”pull” the group,
somewhat analogous to collective carrying by ants [20].
The model is illustrated in Fig.2.

Each informed member is described by a spin variable,
corresponding to whether it exerts a force σi = 1 or not
σi = 0. The order parameter is the 1d velocity of the
group, V , defined as

V =
1

N

(
N

(1)
1 −N (1)

2

)
(1)

where N
(1)
1(2) is the number of members that exert a force

upwards (downwards). The system can be described by
the Hamiltonian

H = − 1

N

∑
i 6=j

Jijσiσj (2)

where Jij are the multiplications of the preferred direc-
tions of spins i and j, such that Jij = +1 (ferromag-
netic interaction) if they are in the same subgroup and
Jij = −1 (anti-ferromagnetic interaction) if they are in
competing subgroups. We used here the Kac prescrip-
tion to allow for a correct thermodynamic limit [21] by
normalizing the Hamiltonian by an extra factor of 1/N
(Eq.2), and ignoring finite size corrections. In the context
of the collective motion this normalization arises natu-
rally since the velocity of the group saturates to a finite
value when all the individuals align their motion (Eq.1).
In certain situations where the individuals do indeed ’feel’
the combined forces of all the other members in an addi-
tive manner [20], one may wish to avoid the normaliza-
tion by the factor of 1/N in Eqs.1,2, which amounts to
re-normalizing the temperature according to T → T/N
(larger groups are more conformist, [20]).
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FIG. 2: (a) Upper panel: Illustration of the spin model in one dimension. The triangles represent the informed members in
the group. Blue triangles represent the individuals that exert a ”social force” (σi = 1), while the red ones represent individuals
that do not exert a force (σi = 0) on the group (Eq.2). Triangles pointing in the same direction are members of the same
informed subgroup, and tend to ”encourage” each other into the pulling state (ferromagnetic-like (Jij > 0)), while they tend
to ”supress” the members in the other subgroup into the non-pulling state (anti-ferromagnetic-like interaction Jij < 0). In
the schematic illustration there is an excess of blue members on the upper side and therefore the group moves in the positive
direction, V > 0. Lower panel: Stable solutions of Eq. 3.(b) An example of a trajectory for T = 1 > Tc, N1 = N2 = 25.
The motion looks like a Brownian motion (top) and the velocity distribution is peaked at V = 0 (bottom). (c) An example
of a trajectory for T = 0.36 < Tc, N1 = N2 = 25. The motion looks like a a run-and-tumble motion (top) and the velocity
distribution is bimodal (bottom), also shown (in dashed lines), the solutions of Eq. 3 for T = 0.36. (d) Spatial diffusion
coefficient for T > Tc (Tc = 1/2). Green points are estimated from simulation results. Blue curve is the numerical integration
of Eq. (S19), red line is B/2 = (4N)−1. (e) Spatial diffusion coefficient for T < Tc. Green points are estimated from simulation
results. Blue curve is Eq. (6) where α is estimated from simulations. (f) Spatial diffusion coefficient in semi-log scale for
different system sizes, N = 24, 50, 100 estimated from simulation data (lines are guides to the eye). The diffusion coefficient at
the critical point (Tc = 1/2) is denoted by the red point, and it has the same value for all the sizes (Eq.D13).

1. Balanced group

We start with the case of two equal-size subgroups
(N1 = N2), which we term the balanced case. Due to
the full connectivity of the system (Eq.2) the mean-field
solution is exact in the infinite N limit, and the equilib-
rium order parameter for the balanced case is given by

the standard Ising form (from Eq.1) [22]

V =
1

2
tanh

(
V

T

)
(3)

where T is the temperature. For T > Tc = 1/2 Eq.
(3) has only V = 0 solution (Fig.2a, lower panel), which
means that the steady state motion of the group is diffu-
sive, and this corresponds to the compromise state of the
group. For T < Tc there are only stable solutions with
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positive and negative signs, V = ±V0(T ). This is the
ordered regime where the group is moving with a well-
defined mean speed along the direction preferred by one
of the informed subgroups, which corresponds to the de-
cision state of the group. We therefore identify Tc with
the temperature of the decision transition.

We plot typical group trajectories for the balanced case
for both high (Fig.2b) and low (Fig.2c) T . The resulting
motion looks diffusive for high T and run-and-tumble for
low T . Note that although the run-and-tumble motion is
ballistic on short time scales, on long time scales it is also
diffusive. We therefore analyze the motion performed by
the group by calculating the effective spatial diffusion
coefficient Deff for all temperature regimes. For T >
Tc we write the following Langevin equation, expanding
Eq.3 up to cubic order in V (since the average V is small)

dV

dt
= −γ (T )V − V 3

6T 3
+
√
Bη(t) (4)

where γ (T ) = (T − Tc)/T , and the noise term is given
by (see Appendix C for a derivation of Eqs. 4,5)

B(V ) = lim
δt→0

〈
δV 2

〉
δt

=
1

N

(
1

2
− (V − h) tanh

(
V

T

))
(5)

and η(t) is a white Gaussian noise: 〈η(t)η(t′)〉 = δ(t−t′).
Note that the time is effectively renormalized by the basic
rate of individual decision making, i.e. the rate of spin
flips.

From the Langevin equation (4) we can calculate the
effective diffusion coefficient of the group for long time,
using the Kubo integral [23, 24] (see Appendix D for
details).

In the limit T � Tc we get the expected result of
the Einstein relation [25], namely, Deff = B(2γ2)−1 =
T 2(4N(T −Tc)2)−1, where B = (2N)−1 plays the role of
the temperature for the real-space Brownian motion of
the group.

At T = Tc, where γ = 0, we are left only with cubic
friction in equation (4). We find that at Tc the diffusion
coefficient has a value that is independent of the system
size N , due to the scale invariance of the critical state.
The diffusion was shown to be independent of the noise
intensity (which in our case is given by the N -dependent
B) for cubic friction [26]. We compare the diffusion coef-
ficient extracted from linear fits to the mean-square dis-
placements from simulations, to the analytic expression
(which is calculated in Appendix D - Eq.D12) in Fig.2d,
to find a very good agreement for all T > Tc. We see
that Deff is smaller for bigger systems in the compro-
mise phase (T > Tc) since the effect of fluctuations is
weaker for bigger systems (stronger cancellations), and
therefore the velocity fluctuates less, leading to a veloc-
ity distribution that is more tightly localized around the
average value of 〈V 〉 = 0.

For T < Tc the motion changes from simple diffusion,
to a run-and-tumble motion, where the group moves with
a constant velocity magnitude |V | = V0, and switches

direction stochastically. We define α(T ) as the rate of
jumping between the two symmetric solutions of Eq.3,
±V0(T ). On long time scales the diffusion coefficient for
T < Tc is given by

Deff (T ) =
V0(T )2

2α(T )
(6)

We derive this result from the general result calculated
in Appendix E. We extracted both V0(T ) and α(T ) from
the simulations and then inserted these values into Eq.
(6). In Fig.2e we see that Eq. (6) gives the correct val-
ues of the effective diffusion coefficient. The tumble rate
α(T ) was extracted from the simulations, using the decay
time of the velocity-velocity temporal correlations. For
T � Tc we find that α(T ) can be described analytically,
as it converges to the Kramer’s escape rate (see Appendix
G and Fig.11).

As shown in Fig.2e, in the decision phase (T < Tc),
the diffusion Deff increases with group size, since the ef-
fect of fluctuations is weaker for bigger systems (stronger
cancellations), and therefore the velocity fluctuates less,
leading to a velocity distribution that is more tightly lo-
calized around the average value of 〈V 〉 = ±V0, resulting
in fast ballistic motion.

2. Imbalanced group

If the subgroups are of different sizes (N1 6= N2) we use
the term imbalanced case. For N1 > N2, we get (Eq.1)

V =
1

2
tanh

(
V

T

)
+ h (7)

where h = (N1 −N2) / (2N). We see from Eq. (7) the
existence of a majority and a minority translates in the
Ising framework to an effective external magnetic field.
For large T we obtain the average velocity by expanding
Eq. (7) up to cubic order

−γ(T )V − 1

6

(
V

T

)3

+ h = 0 (8)

For T � Tc we find a linear response: V = h/γ(T ) =
Th/ (T − Tc), while at T = Tc we get a non linear re-

sponse: V = (3h/4)
1/3

. For T < Tc we numerically solve
Eq.(7), see comparison with simulations in Fig.3a. Below
a temperature T ∗ < Tc a meta-stable solution appears,
with a V having an opposite sign to h. This T ∗ is given
by (from Eq.8)

T ∗ = Tc −
(

3h

2
√

2

)2/3

(9)

Note that in the imbalanced case, as in an Ising model
with an external magnetic field, we do not have a phase
transition, since the symmetry between the two sub-
groups is already broken. Even at high temperature
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FIG. 3: (a) Velocity of the imbalanced group (N1 = 26, N2 = 24) vs the temperature. Solid curves correspond to solutions of
Eq. (7). The circles are results obtained from simulations: Blue (yellow) circles give the average positive (negative) velocity,
while green circles represent the average velocity. Vertical dashed line is T ∗ (defined in Eq. (F6)). Red line is the bias term
h = (N1 − N2)(2N)−1 = 0.02 (b) Minority probability for L = 6. Purple circles are the results of simulations. Red curve
(T > T ∗) and green circles (T < T ∗) are Pmin of Eq. (12). Inset: Corresponding Péclet number (Eq.10, using Eqs.7,S15). (c)
Conditional mean first-passage time for L = 6. Purple squares are simulation results while red curve is Eq. (13).

(T > Tc) we have a ”decision”, in the sense that the
group always drifts in the majority direction. The dif-
fusion coefficient of the group can also be calculated for
the imbalanced case, as calculated in Appendices E,F and
shown in Fig.9.

3. Accuracy and time to reach the target

We now wish to analyze the process whereby the group
reaches targets that are at some finite distance from the
initial position (along the 1D line). In general, we take
the initial position at x = L/2, while the two targets are
at x = 0, L. We are interested to find the probability
of reaching the majority vs the minority targets, as well
as the average time it takes to complete the trajectory.
These quantities are shown in Fig.3b,c, i.e. the probabil-
ity of reaching the minority target, and the conditional
mean time to reach the majority target, 〈t|+〉, respec-
tively.

We start with Fig.3b, where we find that for T < Tc
there is a large probability for the group to reach the
minority target. In order to explain this behavior we in-
vestigate the system with respect to the dimensionless
Péclet number, which allows us to characterize the con-
ditions when we expect the imbalance to dominate the
motion, which means that the group reaches the majority
target with high probability. On the other hand, when
the diffusion is dominant, the group can reach the minor-
ity target with large probability too. The Péclet number
is the ratio between the diffusion time, and the time it
takes the system to drift towards the majority target.
This ratio is given by

Pe =
L2/Deff

L/V
=

V L

Deff
(10)

When Pe � 1 the trajectory is dominated by diffusion,
while for Pe� 1 the imbalance dominates the behavior.

We can say that the transition between imbalanced and
diffusive random walks occurs roughly at Pe = 1.

In light of the Péclet number we can understand qual-
itatively the decision that the group makes (Fig.3b). For
high enough T > Tc, we find that Deff is inversely pro-
portional to the group size N (Fig.2f), so it is small com-
pared to V L for large L,N . Therefore (Eq.10), Pe � 1
which means that the system is dominated by the imbal-
ance and will reach the majority target with high prob-
ability. For low T < Tc, Deff is large and therefore
Pe � 1. This suggests that the behavior is dominated
by diffusion which gives the minority a finite probabil-
ity of winning. Furthermore, we expect the minority
probability to start increasing when Pe ' O(1). If we
increase the separation between the targets L, the Pe
is increased such that the minority probability start to
increase at lower T . These qualitative predictions are
verified in Fig.8.

We quantify the probability of reaching either targets,
as follows: Let c(x, t) be the probability density to find
the group at location x at time t. If the group performs a
imbalanced random walk it’s behavior is determined by
the equation

∂c(x, t)

∂t
= Deff

∂2c(x, t)

∂x2
− V ∂c(x, t)

∂x
(11)

where the mean drift velocity V and effective diffusion
coefficient Deff were calculated in the previous subsec-
tion.

The two targets found at 0, L are incorporated into
Eq. (11) as absorbing boundary conditions: c(0, t) =
c(L, t) = 0; and the initial condition is that the group
is in the middle: c(x, 0) = δ(x − L/2). We follow the
electrostatic analogy as described in [27], to calculate the
probability to exit from each target, as the integrated
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FIG. 4: (a) An illustration of the 2d spin model. Active spins are represented as blue members, while inactive spins as red
members. The angular difference between the two subgroups orientations is θ. In the figure, subgroup 1 exerts a stronger
force. (b), (c) The calculated minima of the free energy Geff (Eq.16), which denote the group’s direction of motion (we take
here the direction of group 2 to be along 0o). In (b) T = 0.35 (2nd order transition), and (c) T = 0.2 (1st order transition).
Blue curve is the compromise solution, while decision curves are in red. (d) Phase diagram for a group moving in 2D. The
blue dashed line is the 2nd order transition curve while the blue solid curve is the 1st order transition curve with the tricritical
point denoted as a red point. On the right example trajectories for a symmetric group with N1 = N2 = 15 and targets located
in X = 50, Y = ±50 for (from top to bottom) T = 0.7, 0.45, 0.15. Trajectories correspond to moving on the green lines in the
phase diagram. (e) Probability of reaching the minority target located at Y = −50 and X = 10 (purple), X = 20 (blue),
X = 30 (green) and X = 50 (yellow). (f) Average time to reach the majority target. Colors are as in Fig.4e.

current at that position

Pmaj =
1− e−

V L
2Deff

1− e−
V L
Deff

=
1− e−Pe/2

1− e−Pe

Pmin =
e
− V L

2Deff − e−
V L
Deff

1− e−
V L
Deff

=
e−Pe/2 − e−Pe

1− e−Pe
(12)

where Pmaj/min correspond to the majority/minority
targets respectively.

Comparing these analytic expressions with the simula-
tions, we see in Figs. 3b that for T > T ∗ (and L/2 ≥ 3)
Eq. (12) gives a good approximation (see also Figs.8).
For T < T ∗ (or for L/2 < 3) the approximation gives
a significant discrepancy compared to the simulations.
This discrepancy suggests that Eq. (12) is not valid for
small Péclet number (small T and L). An example of
this discrepancy is the T → 0 (Pe → 0) limit where Eq.
(12) predicts Pmin → 0.5, which is different from the
observation.

The discrepancy we find at T < T ∗ arises due to the
dominance of the initial conditions in determining the

final destination. In the limit of T → 0 we derive the
probability of reaching the minority based on the initial
configurations of the spins (see Appendix H). The result
can only be calculated numerically, and in Fig.3b we show
that indeed the minority probability converges to this
result (see also Fig.8).

Finally, we calculate the conditional mean time it takes
to get to the majority target, 〈t|+〉. In the limit T → 0
we expect a ballistic behavior, therefore the mean travel
time is given by

〈t|+〉 =
L

2V (T )
(13)

Indeed, we see in Fig.3c that the mean travel time con-
verges to this result at low T .

For high T > Tc we expect an imbalanced motion
(drift) towards the majority target. This motion is, on
average, with speed V (T ) so we again expect the relation
of Eq.13 to apply. Therefore, it seems that the condi-
tional mean first-passage time is given in general by this
expression for all T , as shown in Fig.3.

We note that the results of Figs. 3b,c suggest that
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there may be an optimal temperature, with respect to
minimizing both the chances of reaching the minority
target and the time taken to reach the target. The trade-
off between these two quantities is clear from Eqs. 10,13,
which depend on V (T ) in an opposite manner.

B. Group moving in 2D (arbitrary θ)

1. Fixed angular conflict (targets at infinity)

We now wish to study within our spin model a system
that is not constrained to move on a line, but free to
move in a 2d plane. For the balanced case, each of the
two equal subgroups has a different preferred direction,
differing by an angle θ ≤ π (Fig.4a). In this case the spins
in the different informed sub-groups have an overlapping
component in the direction along the angle bisector. This
means that when there is no decision to go along one of
the preferred directions, the compromise will result in
motion along this angle bisector.

As long as the two subgroups maintain fixed preferred
directions, i.e. the targets are infinitely far away, the sys-
tem is described by a time-independent Hamiltonian and
is amenable to equilibrium description. The Hamiltonian
of the system is

H = − 1

N

∑
i 6=j

p̂i · p̂jσiσj (14)

where p̂i denote the preferred directions of the two sub-
groups:

p̂1 = cos

(
θ

2

)
x̂+ sin

(
θ

2

)
ŷ

p̂2 = cos

(
θ

2

)
x̂− sin

(
θ

2

)
ŷ. (15)

Within each subgroup the dot product p̂i · p̂j is posi-
tive and therefore the interaction is ferromagnetic. How-
ever, the interaction between members from different
subgroups is anti-ferromagnetic if θ > π/2, or ferromag-
netic if θ < π/2.

We wish to solve the mean velocity of the system along
the y-direction, which is the direction of the conflict, i.e.
Vy = 1

N

∑
i

p̂i · ŷσi. Using the equilibrium distribution of

the system in the limit of N � 1, we get an effective free
energy in terms of the order parameter Vy (see Appendix
I). We can expand this free energy, as follows

Geff =
a

2
(Vy)

2
+
b

4
(Vy)

4
(16)

The system has two phases: a high T phase character-
ized by Vy = 0 and a low T phase with Vy 6= 0, while
Vx 6= 0 for every T . In Fig.4b,c we plot examples of the
minima of the free energy Geff , which denote the direc-
tion in which the group moves, as function of the conflict

angle θ. We find that the group can undergo both a sec-
ond order and first order transition, depending on the
temperature. These results, including the case of imbal-
ance between the subgroups (see Appendix J and Fig.10
for more details), are in excellent agreement with previ-
ous results obtained from spatial simulations of animal
groups [8].

As function of T and θ, we plot the phase diagram of
the system in Fig.4d. The curve a = 0 (Eq.16) defines the
second order transition curve, as long as b > 0. At the
tricritical point (T3), a = 0, b = 0, the transition changes
its nature to first order. For T < T3 the transition is
first order. As in the previous section, Tc = 1/2 is the
critical temperature at θ = π, so if T > Tc no transition
is possible. For θ < 2π/3 we find that there is no decision
phase, even in the limit of T → 0.

Note that our spin model can be used to explore con-
flicts between a larger number of biased subgroups. For
example three-way conflicts [28] can also be explored and
the corresponding compromise-decision phase diagram
exposed (see Appendix M, Fig.13).

2. Fixed targets at a finite distance

We now wish to explore the motion of the group in
2D, where the targets are fixed. We give the details of
the simulation in Appendix K. As the two subgroups are
always oriented towards the targets, their desired direc-
tions p̂1 and p̂2 depend on the instantaneous position of
the group, and therefore vary with time. The connectiv-
ity is Jij = p̂i · p̂j (see Eq. (14)) so the Hamiltonian is
now time dependent and the system is not anymore in
equilibrium.

For large T � Tc, the system does not undergo a deci-
sion transition (Fig.4d), and the trajectories have a bal-
listic motion of the group until it reaches the line con-
necting the two targets (X = 0), where θ ' π. The
group continues by diffusion towards one of the targets.
At low T the motion is again ballistic towards the X = 0
line, but there is a point along the motion where, as the
targets are approached, the critical angle is inevitably
reached and a transition occurs, and one subgroup wins
over the other. If T is very low, this choice is practically
irreversible, while at temperatures just below Tc there
can be several switches in direction.

We next explore the 2D motion of imbalanced groups,
N1 6= N2. We see in Fig.4e that when the group starts the
motion at an angle that is larger than θc(T ), the behav-
ior is similar to the 1d case (Fig.2(b)), and the probabil-
ity for the minority’s success is increasing monotonously
as T decreases. However, when the group starts at a
smaller initial angle (θ < θc(T )), we find that the prob-
ability of reaching the minority target abruptly vanishes
at T → 0. The reason behind this new regime is the
following: when the system is moving in the compromise
regime, the two subgroups enhance each other, which en-
ables the majority group to give a small drift velocity
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in its preferred direction. When the system then crosses
the critical angle, this small drift velocity biases the de-
cision in the majority’s direction. When the temperature
is now increased, this small bias that the majority pro-
duced during the compromise motion is washed away by
the larger noise, leading to an increase in the probability
to reach the minority-preferred direction. At even higher
temperatures the system behaves again as in the 1d case,
since it reaches the line joining the two targets before any
decision (if at all) is made.

As in 1d (Fig.3b,c) the 2d results suggest a trade-off
in the group decision-making process, measured by the
time taken (distance moved) to reach the majority target,
and the accuracy of the decision. For low T , the group
reaches a decision quickly, making the travel time and
path length very short. As in natural settings, animal
groups are exposed to both predation and competition
for resources, making fast decision-making important for
survival. However, low T also implies existence of meta-
stable states in the system, which allow the minority sub-
group to strongly affect the outcome. Assuming that the
majority is more likely to have the correct (better) in-
formation, there may be selection against the minority-
wining scenario. Therefore to minimize the combined
costs of travel time and accuracy, selection may be such
that groups may exhibit an effective T of intermediate
values when starting with a large conflict angle θ. When
the group starts with a compromise state, for small ini-
tial θ, we find that at very low T both the accuracy is
high (low probability of reaching the minority target),
and the travel time is low. This is therefore the ’optimal’
regime when groups have a long initial trajectory along
the compromise direction, before the conflict gives rise
to the decision transition. In order to achieve this low-T
window, that minimizes both the errors and travel time,
the group needs to have access to the information about
the targets at very large distances. This may be the case
for migrations, or when individuals remember distant for-
aging areas, but may not always be possible, and could
also be costly in terms of time and energy resources.

C. Comparison between the spin and flock models

The spin model results for motion in 2D, such as the
phase diagram and the trajectories shown in Fig.4d, re-
semble qualitatively the results we obtained using the
flock model (Figs.1e-g). The role of temperature in the
spin model is analogous to the inverse of the number
of uninformed (unbiased) individuals in the flock model.
However, to demonstrate the applicability of our spin
model, we tested if the trade-off we found in the spin
model between accuracy and travel time as function of
temperature, is found also in the flock model.

For this comparison, we recall that increasingNui has a
similar effect as decreasing the temperature T in our spin
model (compare Figs. 1e and 4d). Note that when there
are no uninformed individuals (Nui = 0), there is still

a finite effective temperature T that can be associated
with the mapping between the spin model and the flock
model, and this T also decreases for larger flocks, i.e.
flocks with larger informed subgroups [8].

We tested the trade-off between accuracy and efficiency
using the flock model when the angular difference be-
tween targets is 180◦; this setting corresponds to the 1D
process of section III A. Fig.5a shows results which are
similar to the trade-off in 1D for the spin model (see
Figs. 3b and c). As seen in Fig.5b, the trade-off that
we found for the 2D spin model (Fig.4e-f) is manifested
also in the full flock model, demonstrating the impact of
the meta-stable minority state at low temperature (large
Nui).

Note that in [15] the probability of the minority’s suc-
cess was studied in a regime of small groups, with a more
persuasive minority. In this regime, with a very small un-
informed population, increasing the number of unbiased
individuals was found to actually facilitate the majority
decision. A similar trend is shown in Fig.11 for the spin
model when the minority subgroup applies a stronger so-
cial force per individual. The probability of reaching the
minority target decreases with decreasing T , which cor-
responds to larger uninformed population.

IV. DISCUSSION

We have presented a simple spin model, which is ana-
lytically tractable, and describes the basic features of the
decision transition observed for moving animal groups.
This model allows us to calculate the decision transition
phase diagram, and to make predictions, which we then
corroborated using simulations of a detailed flock model,
regarding the trade-off between speed and accuracy of
the group motion. An advantage of our spin model is
that unlike the flock models that are inherently out of
equilibrium, our model is in thermal equilibrium (for
the case of preferred directions rather than localized tar-
gets). This allows to investigate which properties of the
decision transition dynamics arise from non-equilibrium
rather than equilibrium aspects of the system.

Unlike previous attempts to model group decision mak-
ing and social behavior using spin models [11, 19, 29, 30],
where the spin degree of freedom represented only the di-
rection of motion chosen by the individual, the spin de-
gree of freedom in our model describes the ”state” of the
individual, i.e. whether that individual applies a social
force or not.

We find that the role played by noise (temperature) in
our spin model is analogous to the inverse of the num-
ber of uninformed individuals in the flock model. This
correspondence could be related to the observations that
individuals tend to behave in a more conformist man-
ner in larger groups [20]. In addition we find that as a
function of the temperature (and therefore the number
of uninformed individuals in the flock) there is a trade-
off between the speed with which the group can reach a
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FIG. 5: Trade-off with N1 = 6, N2 = 5 and ω = 0.3. The locations of the targets compared to the group’s initial position are
(a) X = 0,∆Y = 500, (b) X = 250,∆Y = 500.

target, and the probability that the majority-preferred
target will be the one selected (based on the available
information). This trade-off could drive the evolution of
social animals to optimize their group size and interac-
tion strength.

Our simple spin model allows us to explore the collec-
tive decision making process in more complex regimes
and environments, without resorting to costly simula-
tions of spatial flock models, as well as provide analytical
solutions that give deeper understanding.

We note that our model may serve as a basis for the
description of other forms of collective decision making
phenomena, in cellular, animal, and under some circum-
stances possibly even human, groups. For example, our
results may indicate that a high level of individuality
(such that T > Tc) can assure that the majority target
is reached, although there are frequent changes of the
global direction of motion. On the other hand, at low
temperature (high conformity) there is a larger probabil-
ity for the minority to gain the upper hand, which may be
detrimental. A similar analogy between temperature and
the inverse of the system’s size has been found in [20] for
collective transport by ant groups, in genetic population
models [31] and in ecological models [32].

It is tempting to draw an anaolgy between our model,
and models for decision making in the brain [33]: The
instantaneous group velocity plays the role of the firing
rate of the neurons, and the group’s position is the in-
tegrated firing rate. We can therefore propose that the
sizes of neuronal groups, and their intrinsic noise levels,
may be optimized in networks that control decision mak-
ing processes. This analogy may be further explored in
the future.

Examples of future extensions of our model may in-
clude making the strength of the social forces dependent
on the individual’s history, as well as giving each indi-
vidual more than two choices (i.e. described by spins of
higher order).
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Appendix A: Rules of the spatial flock model

The i’th particle’s location is ~ci and its direction of
motion ~vi. The direction of motion for each agent is
updated with the following steps:

The first step is avoidance from other members; if ~di is
the desired direction, it becomes after this step,

~di(t+ dt) = −
∑
j 6=i

~cj(t)− ~ci(t)
|~cj(t)− ~ci(t)|

(A1)

where ~di represents the chosen direction if avoidance was
the only interaction. The sum is taken over particles in
a radius α = 1 around particle i. The next step occurs
only if there are no particles inside the radius α. These
are the attraction and alignment interactions:

~di(t+ dt) =
∑
j 6=i

~cj(t)− ~ci(t)
|~cj(t)− ~ci(t)|

+
∑
j

~vj(t)

vj(t)
(A2)

where the sum is over particles in radius ρ = 6 around

particle i. Normalizing the direction, d̂i = ~di/di, and
taking the information into account we get

d̃i =
d̂i + ωp̂

|d̂i + ωp̂|
, (A3)

where d̂i is the direction chosen after taking into account
the repulsion, alignment and attractive interaction; ω is
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the weight of the information so ω = 0( 6= 0) for unin-
formed (informed) agents; p̂ is the direction of the in-
formed members and is defined as in Eq. 15. In this
work we take ω = 0.3 for the informed members.

Appendix B: Dynamics of the spin model

We chose the dynamics of the system to follow Glauber
dynamics [34]. The rate for jumping between states l and
k is:

rl→k =
1

1 + exp
(

∆Hlk
T

) (B1)

where ∆Hlk is the energy difference between the two
states with the Hamiltonian of Eq. 2. In the thermo-
dynamic limit of N � 1 we can write the individual
spin-flip rates as a function of the order parameter, V ,
defined in Eq. 1:

r
(1)
1→0 =

1

1 + exp
(

2V
T

) , r
(2)
1→0 =

1

1 + exp
(
− 2V

T

)
r

(1)
0→1 =

1

1 + exp
(
− 2V

T

) , r
(2)
0→1 =

1

1 + exp
(

2V
T

) . (B2)

where the upper index 1, 2 denotes the subgroup (1 point-
ing upwards, and 2 downwards), and the lower index 0, 1
denotes the spin state. By defining the rates in this man-
ner we have rescaled time in units of the basal decision-
making frequency. Therefore the mean of V for a imbal-
anced walker has the dynamics [35]

dV

dt
= −V +

1

2
tanh

(
V

T

)
+ h. (B3)

Appendix C: Equations of motion for velocity
moments

In this section we derive Eqs.4 and 5. We begin by
looking at the system at a very small time interval, δt
s.t. at most there can be only one event. We define the
instantaneous change in the velocity as δV and it takes
values of

δV =

{
+1/N ; P+ = r+δt
−1/N ; P− = r−δt

(C1)

where P+, P− are the probabilities for each value and
r+, r− are the rates that each value occur. Eq. 4 is
computed from the following

d〈V 〉
dt

= lim
δt→0

〈δV 〉
δt

= lim
δt→0

P+ − P−
Nδt

=
r+ − r−
N

. (C2)

The rates are given by

r+ = N
(0)
1 r

(1)
0→1 +N

(1)
2 r

(2)
1→0

r− = N
(1)
1 r

(1)
1→0 +N

(0)
2 r

(2)
0→1 (C3)

and by using N1 = N
(0)
1 + N

(1)
1 = N/2 + Nh (recall

h = (N1 −N2)(2N)−1) and Eqs. (B2) we get

r+ =

(
N

2
+Nh−N (1)

1 +N
(1)
2

)
1

1 + e−
2V
T

r− =

(
N

2
−Nh+N

(1)
1 −N (1)

2

)
1

1 + e
2V
T

(C4)

Substituting the rates in Eq. (C2) and using V = (N1 −
N2)(2N)−1 yields,

d〈V 〉
dt

=
1

2

(
1

1 + e−
2V
T

− 1

1 + e
2V
T

)
+ h− V

=
1

2
tanh

(
V

T

)
+ h− V (C5)

and by approximating 〈V 〉 ≈ V we get the equation for
the average velocity.

We now develop Eq. 5. From Eq. (C1) we see that〈
δV 2

〉
=
P+ + P−
N2

(C6)

and therefore,

B(V ) = lim
δt→0

〈δV 2〉
δt

=
r+ + r−
N2

. (C7)

and using the rates from Eq. (C4) we get Eq. 5.

Appendix D: Calculation of diffusion coefficient -
balanced case

In this appendix we describe briefly the calculation in
[24]. Consider the following Langevin equation:

dV

dt
= F (V ) +

√
Bη(t) (D1)

where 〈η(t)η(t′)〉 = δ(t−t′). We describe how to calculate
the effective diffusion coefficient Deff . The correspond-
ing Fokker-Planck equation of the Langevin equation is:

∂W (V, t)

∂t
= −∂F (V )W (V, t)

∂V
+
B

2

∂2W (V, t)

∂V 2

= LFPW (V, t) (D2)

where W (V, t) is the probability density of V at time
t and in the second row we wrote the equation with the
Fokker-Planck operator. The diffusion coefficient is given
by the Kubo formula:

Deff =

∞∫
0

dt 〈V (0)V (t)〉 (D3)

The autocorrelation is given by,

〈V (0)V (t)〉 =

∫ ∫
V V ′W (V, t;V ′, 0)dV dV ′

=

∫
V eLFP (V )tVWst(V )dV =

∫
V ω(V, t)dV (D4)
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FIG. 6: Average number of neighbors from opposing subgroups. Different colors correspond to different subgroups. Results for
(a) Nui = 24, (b) Nui = 114. Notice that in the ordered state the two subgroups are segregated from each other.

where Wst is the stationary probability distribution of V .
We then insert this result back in Eq. D3,

Deff =

∫ ∞
0

dt

∫ ∞
−∞

dV V ω(V, t)

=

∫ ∞
−∞

dV V

∫ ∞
0

dtω(v, t) =

∫ ∞
−∞

dV V ρ(V ) (D5)

Since ω(V, t) = eLFP (V )tVWst(V ) it is evolving according
to,

∂ω(V, t)

∂t
= −∂F (V )ω(V, t)

∂V
+
B

2

∂2ω(V, t)

∂V 2
(D6)

and by performing integration in time we get,

−VWst(V ) = − d

dV
F (V )ρ(V ) +

B

2

d2ρ(V )

dV 2
(D7)

Integrating this equation, with boundary conditions
Wst(V → ±∞) = 0, we get:

ρ(V ) = Wst(V )

∫ V

−∞
dV ′

2f(V ′)

BWst(V ′)
(D8)

with

f (V ) = −
V∫

−∞

dV ′V ′Wst (V ′) . (D9)

. Inserting the result for ρ in Eq. D5 and performing
integration by parts we finally get,

Deff =

∞∫
−∞

dV
2f (V )

2

B ·Wst (V )
(D10)

Applying this result to our problem we get that Wst given
by

Wst =
e−

3γ2

2B T 3√
3γT 3K1/4

(
3γ2

2B T
3
)e− γV 2+ V 4

12T3
B (D11)

where Kn(x) the modified Bessel function of the second
kind. After calculating f (V ) the integral in Eq. (D10)
becomes

Deff =
π

2

√
3T 3

γ

e−
9γ2

2B T 3

K1/4

(
3γ2

2B T
3
) ∞∫
−∞

dV erfc

(
6γT 3 + V 2

√
12BT 3

)2

e
γV 2+ V 4

12T3
B (D12)

where erfc is the complementary error function, erfc =
1− erf. The integral in Eq. (D12) can be calculated for

T = Tc, where γ = 0, to be

Deff =
3Γ
(

1
4

)
16 (5184)

1/4
Γ
(

5
4

) (3π −
√

2 · 3F2

(
3

4
, 1,

5

4
;

3

2
,

7

4
; 1

))
= 0.365622... (D13)
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where Γ(x) is the Euler Gamma function and pFq is the
generalized hypergeometric function.

Appendix E: Calculation of diffusion coefficient for
T < T ∗

Here we calculate the spatial diffusion coefficient for
the imbalanced case. Consider a particle with two pos-
sible velocities, (V1,−V2). The transition rate from −V2

to V1 is α1 and the transition rate from V1 to −V2 is
α2. We now estimate the velocity auto-correlation to es-
timate Deff from Eq. (D3). We begin by writing the
master equations

dP (V1, t)

dt
= α1P (−V2, t)− α2P (V1, t)

dP (V2, t)

dt
= α2P (V1, t)− α1P (−V2, t) (E1)

which are solved by

P (V1, t) =
α1

α1 + α2
−
(

α1

α1 + α2
− P (V1, 0)

)
e−(α1+α2)t

P (V2, t) =
α2

α1 + α2
+

(
α1

α1 + α2
− P (V1, 0)

)
e−(α1+α2)t

(E2)

The auto-correlation in the long time limit is then

〈V (0)V (t)〉 = 〈V (0)V (t)|V (0) = V1〉
α1

α1 + α2

+ 〈V (0)V (t)|V (0) = −V2〉
α2

α1 + α2
(E3)

Calculating the conditional means one gets,

〈V (0)V (t)〉 =
α1α2(V1 + V2)2

(α1 + α2)3
e−(α1+α2)t + 〈V 〉2 (E4)

where 〈V 〉 = α1

α1+α2
V1 − α2

α1+α2
V2 and as we estimate

Deff in the moving frame we use 〈V (0)V (t)〉 − 〈V 〉2 in
Eq. (D3). This yields

Deff =
α1(T )α2(T ) (V1 + V2)

2

(α1(T ) + α2(T ))
3 (E5)

To get the results in Figs. 2d-f,9 we first extract the
rates from simulations results of the time distributions
the group is with positive or negative velocity.

Appendix F: Calculation of diffusion coefficient -
imbalanced case

The Langevin equation of the imbalanced case (up to
cubic order in V ), for T > Tc, is

dV

dt
= −γ(T )V − 1

6

(
V

T

)3

+ h+
√
Bη(t) (F1)

We linearise Eq. (F1) around V ∗(T ) defined as the solu-
tion of Eq. 7. Switching to the new variable u = V −V ∗
in Eq. (F1) we get

du

dt
= −

(
γ(T ) +

V ∗2(T )

2T 3

)
u+
√
Bη(t) (F2)

up to linear order in u and the diffusion coefficient is

Deff =
B

2
(
γ(T ) + V ∗2(T )

2T 3

)2 (F3)

We see in Fig.9a that Eq. (F3) is a good approximation
down to T ' 0.6.

In order to obtain a description for lower temperatures,
we resort to a numerical calculation of Deff by using
Eq. (D10), where Wst is the solution of the FP-equation
including the tanh (V ) term

Wst =
exp

(
− 2
B

(
V 2

2 −
T
2 log cosh

(
V
T

)
− hV

))
1/2+h∫
−1/2+h

dV ′ exp
(
− 2
B

(
V ′2

2 −
T
2 log cosh

(
V ′

T

)
− hV ′

))
(F4)

and

f (V ) =

V∫
−1/2+h

dV ′ (V ′ − 〈V ′〉)Wst (V ′) . (F5)

The domain of the probability distribution in Eqs. (F4-
F5) is [−1/2 + h, 1/2 + h] as the velocity cannot have
values outside this interval. We compare it with the data
obtained from simulation in Fig.9b to find a good agree-
ment.

T ∗ = Tc −
(

3h

2
√

2

)2/3

(F6)

For T < T ∗ the walk is ballistic on short time-scales while
on long time-scales it is a imbalanced random walk due
to the jumps between the stable and meta-stable speeds.

Appendix G: Kramer’s escape formula

The probability density of V evolves according the fol-
lowing Fokker-Planck equation:

∂W

∂t
=

∂

∂V

(
V − 1

2
tanh

(
V

T

))
W +

B

2

∂2W

∂V 2
(G1)

We consider a quasi-stationary scenario, ∂W/∂t ≈ 0. In
this case we can integrate Eq. G1 to get the approximate
current,

J =
Be

2
BG(Vmin)W (Vmin, t)∫ A
Vmin

dV e
2
BG(V )

(G2)
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FIG. 7: Comparison between the rate of changing direction
of speed (1d motion) and the Kramer’s escape rate (Eq. G7)
for a symmetric system with N = 50 spins.

where G is the free energy of the Ising model:

G (V ) =
V 2

2
− T

2
log cosh

(
V

T

)
(G3)

, B = B (Vmin) is the velocity diffusion coefficient calcu-
lated from Eq. 5 for V = Vmin, Vmin is the location of the
free energy minimum and A is a point beyond the bar-
rier such that the particle escaped from the minimum.
On the other hand, the quasi-stationary probability of
being around the minimum is given by

p = W (Vmin, t)e
2
BG(Vmin)

∫ V2

V1

dV e−
2
BG(V ) (G4)

where V1, V2 are points nearby Vmin. We note that
J = p · r where r is the escape rate from the minimum.
Therefore, we get from Eqs. G2 and G4,

r =
J

p
=

B

2
∫ A
Vmin

dV e
2
BG(V )

∫ V2

V1
dV e−

2
BG(V )

(G5)

Finally, we note that the integrals in Eq. G5 have the
most contribution from either Vmin or Vmax (the location
of the barrier). Therefore, we use the following approxi-
mations:

G(V ) ≈ G(Vmin) + G′′ (Vmin) (V − Vmin)2

G(V ) ≈ G(Vmax) + G′′ (Vmax) (V − Vmax)2 (G6)

Performing these Gaussian integrals from −∞ to +∞
leads us to the Kramer’s escape rate[24]:

r =

1

2π

√
G′′ (Vmin) |G′′ (Vmax) | exp−

(
G (Vmax)− G (Vmin)

B (Vmin)

)
(G7)

and Vmax is the maximum (or the barrier) of the en-
ergy the particle needs to cross (in our case, Vmax = 0).
We compare Eq. (G7) with simulation results for the bal-
anced scenario in Fig.11. We see that Kramer’s formula
agrees with the data for T . 0.38.

Appendix H: Minority probability in the limit T → 0

Our initial conditions are such that each spin is active
with probability 1/2. Therefore, the initial V is negative
with probability P−, zero with probability P0 and posi-
tive with probability P+. In the limit T → 0 the target
that is reached is determined by the sign of the initial V .
We get,

Pmin = P− +
24

50
P0. (H1)

We can see the initial condition of each side as a random
walk. A spin +1 corresponds to a positive step of the
walk and a spin −1 corresponds to step in the negative
direction. Since one side has 26 steps and the other 24
steps we have a walker with 26 steps and the other with
24 steps. Within this framework, P−(+) is the probability
the 24(26)-walker is at the greatest position while P0 is
the probability the two walkers are at the same position.
We first consider a case where the two walkers make N2

steps (24 in this example), and then the majority (N1)
walker gets a bonus of N1−N2 (i.e. two in our example)
steps. The difference between the two walkers after n
steps, Yn, is given by a random walk with pauses. No-
tice that if the difference of the two walkers is Yn then
there is a difference of Yn/2 positive spins between the
two sides. The probability of difference is a sum over
trinomial distributions

P (Yn = 2k) =
1

2n

n/2∑
m=0

n!

(n− 2m)!(m− k)!(m+ k)!

(
1

2

)2m

(H2)
We find the following exact results

P (Yn = 0) =

(
n− 1

2

)
!

√
πn!

P (Yn = ±2) =
n(n− 1)

(
n− 1

2

)
!

√
π(n+ 2)!

(H3)

For bigger differences we can get numerical estimates.
Note that Yn = −2 implies that there is one more posi-
tive spin in the minority direction (before we counted the
two extra spins). In this case the only way to get a mi-
nority dominated side (corresponding to P−) is that the
extra two spins in the majority side are negative. This
occurs with Prob. = 1/4. Taking all the combinations
into account we get

P− = P (Y24 = −2)
1

4
+ P (Y24 = −4)

3

4
+ P (Y24 < −4)

P+ = P (Y24 = −2)
1

4
+ P (Y24 = 0)

3

4
+ P (Y24 > 0)

P0 = 1− P− − P+ (H4)

Going back to Eq. (H1) and substituting numbers we get

Pmin = 0.39911 (H5)
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FIG. 8: Péclet number for (a) L = 6, (b) L = 20, (c) L = 40. The system parameters are as in Fig.3. Blue curve is a
calculation using Eqs. 7 & 10 for T > T ∗. The green circles are estimated from simulations for T < T ∗. The corresponding
minority probabilities for (d) L = 6, (e) L = 20, (f) L = 40. Purple circles are the results of simulations. Red curve (T > T ∗)
and green circles (T < T ∗) are Pmin of Eq. 12, using for Pe the calculation given by the blue line or the green circles in (a-c),
respectively. Horizontal black line is the estimation of Pmin for T → 0 shown in Eq. H5.

Appendix I: Order parameter calculation for a
group moving in 2D

We wish to characterize the group moving in 2D with
the Hamiltonian of Eq. 14. The equilibrium behavior can
be derived from the partition function which is (assuming
N � 1):

Z = Trσ exp

 1

NT

(∑
i

p̂iσi

)2
 . (I1)

By introducing the auxiliary fields ~Vtot and using the

identity
∞∫
−∞

dxdye−a(x2+y2)+bx+cy = (π/a)e(b2+c2)/4a we

get:

Z ∼ (I2)

Trσ
∫
dVxdVy exp

(
−NT

(
~Vtot

)2

+ 2
~Vtot·

∑
i
p̂iσi

T

)
.

with a = N/T . After summing over σi and a bit of
algebra the partition takes the form of

Z ∼
∫
dVxdVye

−NT G(~Vtot,T) (I3)

with

G =
(
~Vtot

)2

−T
2

(
log

(
1 + e2

~Vtot·p̂1
T

)
+ log

(
1 + e2

~Vtot·p̂2
T

))
.

(I4)
In the limit N � 1 the integral in Eq. (I3) is dom-

inated by ~V ∗tot = argmin
Vtot

G
(
~Vtot, T

)
. Thus we can get

the mean velocity components in the system by solv-
ing the equations ∂G

∂Vx
= 0, ∂G∂Vy = 0. By the form if

the resulting equations we see that the auxiliary field is
~Vtot = 1/N

∑
p̂i〈σi〉.

Writing (Vx, Vy) = (fx cos
(
θ
2

)
, fy sin

(
θ
2

)
) and solving

the equation for fx up to second order in fy to find

fx = fx0 +
2

T

sin
(
θ
2

)4
tanh

(
fx0 cos( θ2 )

T

)
1− 2T + cos (θ)− 2T cosh

(
2fx0

cos( θ2 )
T

) (fy)
2

fx0 =
1

1 + e−
2fx0 cos( θ2 )

2

T

. (I5)

Inserting these results into the equation of Vy : ∂G
∂Vy

= 0

we can think of it as derived from an effective free energy:
Geff = a

2 (fy)
2

+ b
4 (fy)

4
with
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a =

2 exp

(
−2

fx0 cos( θ2 )
2

T

)
sin
(
θ
2

)2
T

(
1 + exp

(
−2

fx0 cos( θ2 )
2

T

))2 − 1 (I6)

b =
sin
(
θ
2

)6
cosh

(
fx0 cos( θ2 )

2

T

)4

1 + 3T + cos(θ)− 2(1− T + cos(θ)) cosh

(
2
fx0 cos( θ2 )

T

)
− T cosh

(
4
fx0 cos( θ2 )

T

)
6T 3

(
2T − 1− cos(θ) + 2T cosh

(
2
fx0 cos( θ2 )

T

)) . (I7)

The model exhibits both second and first order tran-
sitions. The transition changes its nature at the tri-
critical point where a = 0, b = 0. solving it we get
T3 = 0.318747, θ3 = 2.19153.

Appendix J: Asymmetric groups

We also calculate the order parameter for subgroups of
non equal sizes. The equivalent of the free energy in Eq.
I4 is

G =
(
~Vtot

)2

−

T

2

(
(1 + ε) log

(
1 + e2

~Vtot·p̂1
T

)
+ (1− ε) log

(
1 + e2

~Vtot·p̂2
T

))
.

(J1)

where ε is the strength of the asymmetry between the
two subgroups. We show the groups directions in Fig.10.

Appendix K: Dynamics of a group moving to a
target

Consider two targets located at (x1, y1) = (X,Y )
and (x2, y2) = (X,−Y ) with the group starting from
(xg(0), yg(0)) = (0, 0). As for the one dimensional case,
at each time step one of the spins is updated by Glauber

dynamics, r =
(

1 + e
∆H
T

)−1

(using the Hamiltonian H

in Eq. 14), and the location of the group is updated

xg(t+ ∆t) = xg(t) + Vx∆t

yg(t+ ∆t) = yg(t) + Vy∆t. (K1)

We take the convention that in a single time unit, on
average, all the particle are updated. Therefore, each
update is defined as ∆t = 1/N .

Appendix L: Second Spin model

In this model the informed individuals in each sub-
group do not switch between applying a social force or

not, as in the spin model explained in the main text,
but rather they are always applying a social force. How-
ever, they can switch between applying this social force
in their own preferred direction, or in the direction of
the competing subgroup. In this model the spin variable
describes the direction along which the force is applied.
Each spin feels, in addition to the total applied force, also
an internal magnetic field that gives it a bias to point in
its preferred direction.

The new model model Hamiltonian is:

H = − J
N

∑
i 6=j

p̂ip̂j − ĥ1

∑
i∈1

p̂i − ĥ2

∑
i∈2

p̂i (L1)

where p̂i = cos(θ/2)x̂ ± sin(θ/2)ŷ are the spin degrees

of freedom and ĥ1(2) = h (cos(θ/2)x̂+ (−) sin(θ/2)ŷ) are
the magnetic fields that denote the two preferred direc-
tions, which are constant. The Hamiltonian describes a
ferromagnetic interaction of each spin with the average
field of the other spins, in addition to its internal bias.
The Hamiltonian can be rewritten in terms of variables
si = ±1 as p̂i = cos(θ/2)x̂ + si sin(θ/2)ŷ. The Hamilto-
nian takes the form of:

H = − J
N

sin

(
θ

2

)2∑
i 6=j

sisj − h sin

(
θ

2

)2∑
i∈1

si

+ h sin

(
θ

2

)2∑
i∈2

si (L2)

We see in Eq. L2 that the angular conflict θ can be fac-
tored out of the entire Hamiltonian, which is not the case
for the Hamiltonian in the main model (Eq.14). Standard
Mean Field procedure leads to the means of the two sub-
groups:

〈s〉1 = tanh

(
2Jm+ h

T
sin

(
θ

2

)2
)

〈s〉2 = tanh

(
2Jm− h

T
sin

(
θ

2

)2
)

(L3)

where m =
∑
si/N is the average magnetization. The
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FIG. 9: Diffusion of imbalanced groups. (a) Spatial diffusion coefficient for T > T ∗. Green points are estimated from
simulation results. Blue curve is the numerical integration of Eq. (D10) (using Eqs. F4,F5), red line is the approximation
given in Eq. (F3). (b) Spatial diffusion coefficient for T < T ∗. Green points are estimated from simulation results. Blue curve
is Eq. (E5) where α is estimated from simulations.
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FIG. 10: Group direction with unequal subgroups (ε = −0.1 in Eq. J1) for (a) T = 0.4, (b) T = 0.1. The darker red curve is
the minimum of the free energy (lighter red curve is the metastable solution).

self-consistent equation for the order parameter is then,

m =
tanh

(
2Jm+h

T sin
(
θ
2

)2)
+ tanh

(
2Jm−h

T sin
(
θ
2

)2)
2

(L4)

By defining T ′ = T/ sin
(
θ
2

)2
we get a model that is in-

dependent of the angular difference. Therefore, for the
critical temperature we write,

Tc(θ) = Tc(π) sin

(
θ

2

)2

(L5)

which suggest that a transition is possible for every finite
angular difference (Fig.12), with the critical angle vanish-
ing in the limit of T → 0 (or Nui →∞), which does not
seem to agree with the results of the flock model (Fig.1e).

Appendix M: Decision-making between three
preferred directions

In this case the directions are defined as:

p̂0 = x̂

p̂1 = cos

(
θ

2

)
x̂+ sin

(
θ

2

)
ŷ (M1)

p̂2 = cos

(
θ

2

)
x̂− sin

(
θ

2

)
ŷ. (M2)

and the Hamiltonian has the same form as in Eq. 14.
A similar analysis to the one in the two directions case
leads to the following free energy:

G =
(
~Vtot

)2

−

T

3

(
log
(

1 + e2VxT

)
+ log

(
1 + e2

~Vtot·p̂1
T

)
+ log

(
1 + e2

~Vtot·p̂2
T

))
.

(M3)
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FIG. 11: Probability of reaching the minority target located
at Y = −50 and X = 10 starting at (X,Y ) = (0, 0) but
with different intrinsic forces for the individuals within the
two groups. Nmaj = 11, Nmin = 10 and from bottom to top:
β = fmin

fmaj
= 1, 1.05, 1.1, 1.11, 1.13.

Analyzing this system we find two tricritical points. The
structure of the free energy landscape is such that com-
plete decision is never the minimum of the landscape.
The transition is between a compromise of all three direc-
tions to a compromise of two directions. As the angular
difference is increasing the compromise state changes to
be formed from the two backward directions. We show
the phase diagram and the free energy minima configu-
rations in Fig.13.
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FIG. 12: Phase diagram for the second spin model, showing
the transition line between compromise and decision regimes
according to Eq.L5.
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FIG. 13: Phase diagram for a decision between three directions. Dashed curve is second order transition while solid curve is the
first order curve. Red points are tricritical points. within each region the configuration of the free energy minimum is shown.
Inset: a zoom-in of the region next to the second tricritcal point.
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