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Abstract

A conceptually new notion of hydrodynamic optical soliton tunneling is introduced in which

a dark soliton is incident upon an evolving, broad potential barrier that arises from an appro-

priate variation of the input signal. The barriers considered include smooth rarefaction waves

and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same

one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dis-

persive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave

(Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and

the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to

an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann

invariants of the reduced modulation system determines the characteristics of a soliton interacting

with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields

the tunneled soliton’s phase shift due to hydrodynamic interaction. Under certain conditions, soli-

ton interaction with hydrodynamic barriers gives rise to new effects that include reversal of the

soliton propagation direction and spontaneous soliton cavitation, which further suggest possible

methods of dark soliton control in optical fibers.
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I. INTRODUCTION

The tunneling of wavepackets incident upon a potential barrier is a defining quantum

mechanical property [1]. The linear phenomenon can be extended to nonlinear solitonic

wavepackets or solitons–localized, unchanging waveforms in which nonlinear and dispersive

effects are in balance. In the original consideration of a soliton incident upon a potential

barrier, it was found that the soliton can losslessly pass, or tunnel, through a localized

repulsive or attractive potential [2]. The connection of this so-called soliton tunneling with

quantum mechanical tunneling was established in an optical setting in [3] where a bright

optical pulse propagating in an optical fiber with anomolous dispersion was transmitted

through a localized defective region of normal dispersion–the analog of a potential barrier.

Soliton tunneling has been studied theoretically in some detail in recent years in various

physical systems including optical media [4–7], nematic liquid crystals [8, 9] and matter waves

in Bose-Einstein condensates (BEC) [10, 11]. Recent experiments observed the nonlinear

analogs of some linear quantum features including nonlinear scattering [12], reflection and

ejection [13] and soliton tunneling [14]. In a related vein, analogies between soliton tunneling

and other physical effects were considered in [15–17].

In the focusing (anomalous dispersion) regime, nonlinear optical plane wave propagation

is subject to modulational instability with respect to long wavelength perturbations [18]. In

contrast, plane wave propagation in the normal dispersion (defocusing) regime is stable and,

remarkably, exhibits many features characteristic of fluid motion [19]. The dispersive effects

in such a “fluid of light” are due to diffractive or chromatic properties of the medium. The

dispersive hydrodynamic behavior of light propagation has been considered and observed in

a number of works, see, e.g., [20–22].

Robust features of the diffraction of laser light in a nonlinear, defocusing medium and

matter waves in a repulsive BEC include dark solitons, moving depression waves whose

width is proportional to the coherence length l of the medium. In addition to solitons, these

media also support spatially extended, smooth configurations that can exhibit wavebreak-

ing and the spontaneous emergence of highly oscillatory dispersive shock waves (DSWs)

[23]. Optical DSWs have been observed in both bulk media [20] and optical fibers [24].

While the DSW oscillatory length scale is also the medium’s microscopic coherence length

l, DSWs exhibit expanding, rank-ordered oscillations spanning a larger, macroscopic coher-
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ence length scale L, which increases with time. This latter length scale also characterizes

non-oscillatory hydrodynamic flows such as expansion or rarefaction waves (RWs) and com-

pressive Riemann waves that have recently been observed in optical fibers in the context

of wavebreaking control [25]. The scale separation l � L, a natural characterization of

dispersive hydrodynamics [26], enables a mathematical description of DSWs via nonlinear

wave, Whitham averaging [23, 27], while RWs are described by the long-wave, dispersionless

limit of the original equations.

Despite the fact that solitons, RWs and DSWs are well known, fundamental features of

dispersive media, soliton-RW and soliton-DSW interactions, have been mostly overlooked.

As we show, these interactions motivate an alternative notion of optical tunneling whereby

a dark soliton incident upon a spatially extended hydrodynamic barrier in the form of a

DSW or a RW can penetrate through to the other side of the evolving hydrodynamic struc-

ture. Thus, in contrast to the traditional notion of soliton tunneling through an externally

imposed barrier, hydrodynamic soliton tunneling corresponds to the full penetration and

emergence of the soliton through an intrinsic hydrodynamic state that evolves according to

the same equation as the soliton. This generalizes the understanding of a soliton as a coher-

ent, particle-like entity that can interact elastically with other solitons [28] and dispersive

radiation [29] to one that can also interact with nonlinear hydrodynamic states and emerge

intact, i.e., without fissioning or radiation, albeit with a different amplitude that results

from a change in the background mean flow.

In this paper, we analyze the tunneling of solitons through hydrodynamic states within

the framework of the integrable, defocusing nonlinear Schrödinger (NLS) equation, which is

an accurate model for nonlinear light propagation in single mode optical fibers with normal

dispersion [30]. We invoke the scale separation l � L inherent to Whitham modulation

theory in order to derive a system of asymptotic equations that describe the interaction

between narrow dark solitons and evolving, broad hydrodynamic barriers. We obtain the

conditions on the incident soliton amplitude and hydrodynamic mean flow density and ve-

locity for tunneling. One of the fundamental properties of hydrodynamic soliton tunneling

is hydrodynamic reciprocity whereby the tunneling through RWs and DSWs is described by

the same set of conditions in spite of the very different interaction dynamics. This gen-

eral property of solitonic hydrodynamics has been recently formulated and experimentally

confirmed for a fluid system [31]. We also show that tunneling is not always possible and
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that the soliton can be absorbed or trapped within the hydrodynamic flow. Moreover, we

find that soliton interaction with hydrodynamic states can lead to reversal of the soliton’s

propagation direction and spontaneous soliton cavitation.

Our analysis can be applied to a large class of dispersive hydrodynamic systems, including

dispersive Eulerian equations [23, 32] which have broad applications. The particular case

of optical hydrodynamic soliton tunneling considered here could be observed, for example,

within the experimental setting described in [22] for the generation of DSWs and RWs in

optical fibers.

II. PROBLEM FORMULATION

We consider the defocusing NLS equation

iψt = −1

2
ψxx + |ψ|2ψ, (1)

where in the context of fiber optic propagation, t is the longitudinal coordinate in the fiber,

x is the retarded time, and ψ(x, t) is the complex-valued, slowly-varying envelope of the

electric field. All variables are nondimensionalized to their typical values. See, e.g., [22]

for a detailed description of NLS normalizations and typical values of physical parameters

pertinent to the regimes considered here.

Equation (1) can be written in dispersive hydrodynamic form via the transformation

ψ =
√
ρeiφ, u = φx

ρt + (ρu)x = 0, ut + uux + ρx =

(
ρxx
4ρ
− ρ2x

8ρ2

)
x

, (2)

where ρ is the optical power and u is the chirp. In terms of the hydrodynamic interpretation

of these quantities, we will refer to ρ as a mass density and u as a flow velocity (see, e.g.,

[23]). Within this setting, the normalized coherence length is l = ρ
−1/2
0 where ρ0 is a typical

density scale. The coherence length is an intrinsic scale that, along with the coherence time

τ = ρ−10 , corresponds to a scaling invariance of the hydrodynamic equations (2). In BECs,

l is known as the healing length [33].

Equation (2) admits the localized, dark soliton solution

ρ(x, t) = ρ− a sech2[
√
a(x− ct− x0)],

u(x, t) = u±
√
ρ− a[1− ρ/ρ(x, t)],

(3)
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where a is the maximum deviation from the mean density ρ, u is the mean flow velocity,

and c = u ± √ρ− a is the soliton amplitude-speed relation. The ± in (3) is due to the

bi-directional nature of the NLS equation as a dispersive hydrodynamic system (2). When

a = ρ, the soliton is called a black soliton because its minimum is a zero density, cavitation

point.

The typical tunneling problem consists of a soliton incident on a fixed potential barrier,

either due to a change in the medium or an external effect. However, the spatio-temporal

barriers considered here evolve according to the same equation that describes the dynamics

of the medium. For an optical fiber with homogeneous, normal dispersion, this corresponds

to a time-dependent input signal that results in both a soliton and a large-scale barrier. We

assume that the hydrodynamic mean flow (ρ, u) that develops from the initial data varies

on much longer length and time scales L � l, T � τ , respectively. In this regime, the

third order dispersive term in (2) is negligible, resulting in the long-wave, dispersionless,

quasilinear equations for the mean flow ρ→ ρ, u→ u

rt +
1

2
(3r + s)rx = 0, st +

1

2
(r + 3s)sx = 0, (4)

written in diagonal form where

r = u/2−
√
ρ, s = u/2 +

√
ρ (5)

are the Riemann invariants. In fact, Eqs. (4) are the shallow water equations in one di-

mension and RWs are determined exclusively by the constancy of r or s [34]. Remarkably,

the same constant Riemann invariant determines the loci of simple wave DSWs [23], in con-

trast to viscous shock waves of classical fluid dynamics, whose loci are determined by the

Rankine-Hugoniot conditions [34].

We consider the problem of a dark soliton (3) incident upon a barrier that evolves from

step initial data in the mean flow ρ(x, 0), u(x, 0), where

ρ(x, 0) =

ρ− x < 0

ρ+ x > 0
, u(x, 0) =

u− x < 0

u+ x > 0
. (6)

As we will show, the long-time evolution of soliton-hydrodynamic barrier interaction is

determined by the far-field flow conditions ρ± and u±. Therefore, our theory generalizes to

soliton tunneling through arbitrary hydrodynamic barriers with given far-field conditions.
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FIG. 1: Hydrodynamic soliton tunneling configurations. a) soliton-RW collison b) soliton-DSW

collision c) RW overtaking soliton d) DSW overtaking soliton.

The step initial conditions (6) generally evolve into a combination of two waves: RWs

and/or DSWs each characterized by a simple-wave locus of the dispersionless limit system

(4) [23, 35]. Therefore, we shall be imposing a simple-wave constraint on the initial mean

flow data (6), i.e., we assume that either r(x, 0) or s(x, 0) found from (5) is constant across

x = 0 so that the mean flow will evolve into a single expanding hydrodynamic wave, either a

RW or a DSW. Due to the bi-directional nature of the NLS equation, there are four distinct

configurations, defined by the direction of the jump (up or down) of the Riemann invariant

r or s across x = 0. We will focus on the two cases that result in a RW or a DSW when

r(x, 0) is constant. These two configurations along with an incident dark soliton moving to

the left or right define four basic cases of hydrodynamic soliton tunneling considered here

and shown in Fig. 1.

We pause briefly to note some common terminology in the nonlinear waves literature

[23]. The RW and DSW depicted in Fig. 1 are referred to as a 2-RW and a 2-DSW,

respectively because their characteristic wave speeds degenerate to the fastest long wave

speed u0 +
√
ρ0 when ρ+, ρ− → ρ0, u+, u− → u0. The other two cases where s(x, 0) is

constant correspond to a 1-RW or a 1-DSW because their speeds degenerate to the slowest

long wave speed u0−
√
ρ0. These 1-waves can be obtained from the 2-waves considered here

with the reflection invariance x→ −x, u→ −u of Eqs. (2).
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To describe how the mean flow couples to the soliton amplitude during the interaction, we

utilize Whitham modulation theory [27]. The general framework for Whitham modulation

theory encompasses slow modulation on the space and time scales L and T of a periodic

wave’s parameters, which lead to a system of quasi-linear partial differential equations (PDE)

for the parameter evolution. For the NLS equation, the modulation equations are a system

of four equations that can be written in diagonal form [23, 36–38]

∂ri
∂t

+ Vi(r)
∂ri
∂x

= 0, i = 1, . . . , 4. (7)

The Riemann invariants r satisfy r4 ≥ r3 ≥ r2 ≥ r1 and vary on the much larger spatiotem-

poral scales L and T than the scales l and τ of the soliton (3). The characteristic velocities

are computed via

Vi(r) =

(
1− λ

∂iλ
∂i

)
U, (8)

where ∂i = ∂
∂ri

, and

λ =
2K(m)√

(r4 − r2)(r3 − r1)
, U =

1

2

4∑
j=1

rj, (9)

are the wavelength and phase velocity, respectively. Here, K(m) is the complete elliptic

integral of the first kind and m = [(r2 − r1)(r4 − r3)]/[(r4 − r2)(r3 − r1)] . The characteristic

velocities exhibit the ordering Vi ≤ Vj if 1 ≤ i ≤ j ≤ 4. The wave amplitude is a =

(r2− r1)(r4− r3). By setting all but one Riemann invariant constant, we obtain an equation

for a simple wave of modulation, which we call a j-wave, where j is the index of the non-

constant, varying Riemann invariant.

The equations (7) are consistent with the wave conservation law

kt + (kU)x = 0, k = 2π/λ. (10)

Soliton-mean field interaction is described by the soliton limit of the NLS-Whitham

Eqs. (7), which is achieved when r2 = r3 (see, e.g., [23]). By analyzing the expression

Eq. (8) for the characteristic velocities in the soliton limit r2 = r3, it is possible to establish

that the limiting modulation system consists of shallow water equations (6) where s = r4,

r = r1 and the equation for the merged Riemann invariant r3 is [23]

r3,t +
1

2
(r + 2r3 + s)r3,x = 0, (11)
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with

r3 = ū/2±√ρ̄− a, (12)

where the two signs are due to bi-directionality (cf., the second formula in Eq. (3)).

Thus, effectively, Eq. (11) is the equation for the soliton amplitude a(x, t). Crucially for

our consideration, the soliton amplitude here is a spatiotemporal field, satisfying a PDE,

while in standard soliton perturbation theories [39], the soliton amplitude has only a tem-

poral dependence that satisfies an ODE along the soliton trajectory. The trajectory and

dynamics of a single soliton from the amplitude field can be interpreted as the introduc-

tion of a fictitious train of non-interacting solitons of the same amplitude and some small

wavenumber 0 < k � 1, which necessarily satisfies the wave conservation equation (10) with

U = 1
2

(r + 2r3 + s) = c, the soliton amplitude-speed relation. Using the limiting system

(4), (11), the wave conservation equation (10) can be written in diagonal, Riemann invariant

form

(kp)t + c (kp)x = 0,

p = exp

− s∫
s0

dcs
ds

1
2

(r + 3s)− cds

 ,
(13)

where s0 is some fixed reference value, e.g., s−.

Thus, the initial conditions (6) for the hydrodynamic barrier should be complemented by

similar conditions for the soliton amplitude field and the small wavenumber,

a(x, 0) =

a− x < 0

a+ x > 0
, k(x, 0) =

k− x < 0

k+ x > 0
, (14)

where only the incident amplitude a+ is given at the onset (recall the configurations in

Fig. 1).

The hydrodynamic soliton tunneling problem then consists in finding (i) the transmitted

soliton amplitude a−; (ii) the stretching (contraction) coefficient k+/k− for the soliton train

that determines the soliton phase shift due to tunneling.

Concluding this section, we note that the long wave limit of the Whitham equations

demonstrates that while the soliton amplitude is coupled to the evolving mean flow, the

mean flow itself evolves independently of additional localized nonlinear waves.
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FIG. 2: Hydrodynamic soliton tunneling configuration of the Riemann invariants for soliton-RW

interactions.

III. HYDRODYNAMIC SOLITON TUNNELING

We shall consider the basic tunneling configurations depicted in Fig. 1, which are defined

by constancy of one of the hydrodynamic Riemann invariants r, s in the step initial data (6).

Without loss of generality, one can choose (ρ−, u−) = (1, 0), the remaining configurations can

be deduced from scaling, Galilean shifts, and reflection symmetries associated with Eq. (2).

We note that, given step initial conditions, the hydrodynamic system (4) is valid only if

the resulting wave is a RW. This implies that the reduced single-phase modulation system

(4), (11), (13) describes only soliton-RW interactions (cases (a) and (c) in Fig. 1). Indeed,

soliton DSW interaction is more complicated and generally requires consideration of two-

phase NLS modulation equations [37]. Remarkably, however, we will show that the soliton-

DSW tunneling conditions for cases (b) and (d) can be found from the soliton-RW tunneling

conditions via hydrodynamic reciprocity.

Let us assume that r(x, 0) has no jump across x = 0 and the jump in s(x, 0) resolves

into a RW. The modulation equations (4), (11), (13) with step initial conditions for s, r3

and kp found from (6), (14) imply the simple wave solution in which r = r1, r3, and kp

are constant for all (x, t) but s = r4 is varying in a self-similar fashion, s = s(x/t). This

4-wave modulation solution describes the hydrodynamic tunneling configurations (a) and

(c) in Fig. 1. An example 4-wave evolution is shown in Fig. 2.

The tunneling problem now essentially reduces to finding the constant values of r3 and

kp given the constant value of r = u+/2−
√
ρ+ = u−/2−

√
ρ− = −1 and the initial jump

for s found from (6) so that the Riemann invariants resemble those in Fig. 2. The solution

for s(x/t) will then define the soliton trajectory through a hydrodynamic RW barrier.
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The requirement of constancy of r3 defined by Eq. (12) when evaluated with (6) and (14)

yields a simple algebraic expression for the transmitted soliton amplitude through a RW

a− = a+ − 2(
√
ρ+ ±

√
ρ+ − a+)(

√
ρ+ − 1). (15)

Importantly, tunneling through the hydrodynamic barrier requires 0 < a− ≤ 1. The ± in

Eq. (15) corresponds to the two branches of r3 with “−” corresponding to the collision case

depicted in Fig. 1(a) and “+” the overtaking case depicted in Fig. 1(c). The transmitted,

or tunneled, soliton amplitude-speed relation is then

c− = ±
√

1− a−

=
1

2
(r + r3 + s−) ,

(16)

with a− given by Eq. (15). The expression for the soliton velocity c− in terms of Riemann

invariants is a convenient representation that inherently incorporates the appropriate sign

±. We shall also explore implications of constancy of kp.

2-DSW

1-RW

⇢̄�, a�

x

t

⇢̄+, a+

FIG. 3: Time reversibility of initial data (ρ+, a+) and (ρ−, a+) with ρ+ < ρ−. Forward temporal

evolution results in soliton interaction with a 2-DSW (upper half plane) and backward evolution

results in soliton interaction with a 1-RW. Soliton trajectories are depicted with solid and dashed

curves.

The formulae (15) and (16), in spite of their simplicity, exhibit a number of remarkable

implications. These include soliton tunneling, soliton trapping, the spontaneous emergence
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of a cavitation point, and soliton direction reversal. Furthermore, the obtained conditions in-

corporate the fundamental notion of hydrodynamic reciprocity established for uni-directional

systems of the Korteweg-de Vries (KdV) type in [31]. This states that the tunneling con-

ditions are the same for both the RW and DSW. This concept enables the application of

Eqs. (15) and (16) to soliton-DSW interaction.

To extend the reciprocity result of [31] to the hydrodynamic optical tunneling considered

here, we consider a general case where the left background state is (ρ−, u−) (not necessarily

(1, 0)) and take either r(x, 0) or s(x, 0) constant. This generalization will require considera-

tion of both branches of r3 in Eq. (12) and in the tunneling condition (15). Hydrodynamic

reciprocity ultimately results from the time and space reversibility of the NLS equation (1).

We first consider the soliton-DSW interaction case where ρ− > ρ+ so that the DSW is

known as a 2-DSW [23]. The soliton is initially located to the right of the DSW so that

the hydrodynamic transition across the DSW satisfies a 4-wave modulation curve in which

r = r1 = const (see [23, 35])

u− − u+ = 2(
√
ρ− −

√
ρ+). (17)

The nonlinear superposition of a soliton and a DSW can be achieved by considering the

modulation of two-phase (quasi-periodic) solutions of the NLS equation (1) [37]. There-

fore, a description of the full soliton-DSW modulation would require the integration of the

two-phase Whitham equations. However, we can determine all the results of soliton-DSW

interaction by invoking continuity of the modulation solution for negative time.

If we now consider t → −t for the Whitham modulation equations (7), then the char-

acteristic velocities −Vi are re-ordered. The same initial data ρ− > ρ+ and the locus (17)

corresponds to the generation of a 1-RW. If a soliton of amplitude a− is initialized to the

left of the RW, then soliton-RW interaction is determined by the constancy of r3 so that the

tunneled soliton amplitude satisfies

a+ = a− − 2
(√

ρ− ±
√
ρ− − a−

) (√
ρ− −

√
ρ+
)
, (18)

where the ± corresponds to the same branch of r3 that is taken. The relation (18) corre-

sponds to a 1-wave modulation of the time-reversed Whitham equations. This is a global

relationship that must also hold for the corresponding 4-wave soliton-DSW modulation of

the non-reversed Whitham equations due to continuity of the modulation solution away
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ã+ = ā�
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FIG. 4: Sketch of configurations demonstrating hydrodynamic reciprocity. Horizontal arrows refer

to temporal evolution and vertical arrows connote the transformation to the reciprocal initial

condition.

from the origin. This analysis is pictured in Fig. 3 where, for negative time, a soliton-RW

interaction is pictured and a soliton-DSW interaction is shown for positive time.

Equation (18) can be inverted to obtain a− in terms of a+ and ρ±. If we set ρ− = 1 and

u− = 0, then Eq. (18) and Eq. (15) are equivalent. The tunneling condition (15) is the same

for both soliton-RW and soliton-DSW interaction.

Another way to understand hydrodynamic reciprocity is schematically pictured in Fig. 4.

Rather than reversing time, this Figure depicts spatial reversal. A soliton of amplitude a+

initially placed to the right of a jump with ρ− < ρ+ results in soliton interaction with a

2-RW and a− satisfying Eq. (18). Now, consider a spatially reversed jump with ρ̃± = ρ∓

so that ρ̃− > ρ̃+. With a soliton of amplitude ã+ = a− initially placed on the right, the

soliton interaction with a 2-DSW results in the tunneled amplitude ã− = a+. This is the

bi-directional generalization of the uni-directional hydrodynamic reciprocity condition noted

in [31].

In what follows, we compare the modulation theory predictions for hydrodynamic op-

tical soliton tunneling with numerical simulations of Eq. (1) for initial data comprised of

a smoothed step Eq. (4) and a soliton. We use a standard 6th order finite difference spa-

tial discretization with Dirichlet boundary conditions. Time evolution is achieved with the

standard 4th order Runge-Kutta method. The numerical evolution was validated by the

numerical evolution of the exact solitary wave solution on a uniform background Eq. (3).

Comparisons between the transmitted soliton amplitude predicted by Eq. (15) and nu-

merical simulations are given in Fig. 5, showing excellent agreement. When the tunneling
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FIG. 5: Comparison between the tunneling relation (15) (solid curves) and direct numerical simula-

tions of the NLS equation (dots) with smoothed, step initial data defined by ρ+ > 0 and a soliton of

amplitude a+. (a) The overtaking cases in Fig. 1(c,d). (b) The collision cases in Fig. 1(a,b). Filled

dots correspond to the emergence of a black soliton. The grey regions correspond to soliton-DSW

tunneling and white regions correspond to soliton-RW tunneling.

relation (15) is not satisfied for a± > 0, the soliton will become trapped within the spatially

extended hydrodynamic state. Trapping then results in the soliton acting as a nonlinear

modulation of the hydrodynamic structure. Examples of a soliton trapped in a hydrody-

namic barrier are shown in Fig. 6 where the soliton was unable to pass through the RW or

DSW for long simulation times. Soliton-DSW trapping can be viewed as the formation of

a “defect” in the locally periodic DSW structure, analogous to the soliton defects of KdV

cnoidal waves considered in [40]. In contrast to classical optical soliton tunneling in which

the localized pulse can be reflected by a barrier with sufficient energy, this is not possible in

the context of hydrodynamic optical tunneling.
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FIG. 6: Numerical simulation of hydrodynamically trapped solitons. (a) Soliton of amplitude

a− = 0.25 sent into a 2-DSW with ρ+ = 0.5. (b) Soliton of amplitude a+ = 1 overtaken by RW

with ρ+ = 4.

The simplest tunneling configuration is that of a solitary wave though a RW because the

evolution of the macroscopic structure of the RW can be determined by standard methods

applied to the modulation Eqs. (4) and (11). The RW evolution, in terms of the Riemann

invariants is

sRW(x, t) =


s− x < V−t

1
3

(
2x
t
− r
)

V−t ≤ x ≤ V+t

s+ V+t < x

, (19)

where V (s, r) = 1
2
(3s + r) and V± = V (s±, r) are the edge speeds of the centered RW [34].

We note that small amplitude linear oscillations may be present at an edge of the RW in

the full NLS dynamics due to dispersive regularization but these oscillations decay and have

negligible influence on the asymptotic RW behavior. The trajectory of the soliton center

xs is a characteristic (2- or 3-characteristic) of the Whitham modulation equations (7) that

satisfies the initial value problem

dxs
dt

= c (r, s, r3) , xs(0) = x+. (20)

Here, x+ is the location of the solitary wave at t = 0 and the location of the step (6) is taken

to be x = 0; c is the soliton amplitude-speed relation (16) written in terms of Riemann

invariants. A direct integration of (20) results in the location of the solitary wave tunneling

14



through a rarefaction wave

xs(t) =


x+ + c+t x ≤ t1

(r + r3)t+ 3 (s+ − r3) t2/31 t1/3

2
t1 < x < t2

x− + c−t t ≥ t2

, (21)

where

t1 = x+/(s+ − r3),

t2 = (s+ − r3)3/2(s− − r3)−3/2t1,

x− = (s+ − r3)1/2(s− − r3)−1/2x+,

c± =
1

2
(r + 2r3 + s±) .

The effective phase shift of the soliton center through a RW is given by the difference in the

x-intercepts of the linear soliton trajectories post and pre-hydrodynamic interaction.

x+ − x− =

(
1−

√
s+ − r3
s− − r3

)
x+. (22)

An alternative, instructive way to determine the interaction phase shift is to analyze the

additional modulation equation (13) that describes the evolution of the wavenumber 0 <

k � 1 in a train of well separated, non-interacting solitons with the amplitude field a(x, t).

Given the mean flow sRW(x, t) in (19), the amplitude field a(x, t) is determined by the

constancy of r and r3 in Eq. (12). The soliton phase shift now follows from the requirement

of constancy of the Riemann invariant pk of Eq. (13) across the initial step (6), (14). Indeed,

equating the values of pk at both sides of the initial step we find the ratio k+/k− = x−/x+,

which determines the stretching (contraction) of the soliton wavetrain at leading order [31],

k+
k−

=
x−
x+

= exp

s+∫
s−

dc

ds
1
2

(r + 3s)− cds,

=

√
s+ − r3
s− − r3

,

(23)

where the first term in the denominator is the characteristic speed associated with s. This

simpler approach yields the same result as that obtained from Eq. (21).
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We can now invoke the notion of hydrodynamic reciprocity-the surprising fact that the

interaction of the soliton with a RW is the same as that with a DSW at the macroscopic

level. In addition to the tunneling relation (15), the phase shift (22) also applies to soliton-

DSW interaction. The macroscopic properties of the DSW itself–leading harmonic edge

speed and trailing soliton edge speed–are determined by an analysis of the single phase

Whitham equations in place of the direct integration that was possible in the RW case. The

distinguished edge speeds of the DSW are given by [43]

V−,DSW = 2
√
ρ+ − 1,

V+,DSW = u+
ρ+ − 8

√
ρ+ + 8

2−√ρ+
.

(24)

Incorporating the soliton phase shift Eq. (23) results in the soliton trajectory before and

after interaction

xs,DSW =

x+ + 1
2

(r + 2r3 + s+) t x ≤ t1

x− + 1
2

(r + 2r3 + s−) t x ≥ t2.
, (25)

where now, t1, t2 are determined by equating the pre and post-interaction soliton trajectories

with the appropriate DSW edge velocities from Eq. (24). Comparisons with numerical simu-

lations of soliton-DSW interactions are shown in Figs. 7(b,d) with excellent agreement. The

trajectory prediction Eq. (25) also correctly captures the phenomenon of soliton direction

reversal shown in Fig. 7(d).

The transition to a different mean flow across the hydrodynamic barrier not only re-

sults in a controllable soliton trajectory but also the generation of transmitted solitons of

pre-specified amplitudes (cf., Eq. (15)). For specific initial configurations of the tunneling

problem, we predict and numerically observe the spontaneous development of a black soli-

ton that exhibits cavitation or a null in the density at the soliton minimum. Black soliton

solutions are characterized in the normalization considered here by an amplitude a− = 1

with an associated π phase jump across the soliton minimum. In the reference frame cho-

sen, the soliton velocity on the left flow is given by c− = 0. The phenomenon of so-called

self cavitation of dispersive shock waves was theoretically predicted in [35] and both a zero

density point and the associated π phase jump was observed experimentally for the dam

break problem of spin waves in a defocusing magnetic material [41]. Zero density points

were also observed in an optical “photon fluid” [22]. The interaction of a dark soliton with
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FIG. 7: Tracking a soliton through a RW and DSW via equations (21) and (25). (a) ρ+ = 2, a+ = 1

and the sign of r3 in Eq. (12) is “−”. (b) ρ+ = 0.5, a+ = 0.5, the r3 sign is “−”. (c) ρ+ = 2,

a+ = 2, the sign of r3 is “+”. (d) ρ+ = 0.5, a+ = 0.4, the sign of r3 is “+”. Predictions from

Eqs. (21) and (25) are the red dashed curves, the contours are from direct numerical simulation of

Eq. (1).

a mean flow then gives a fundamentally new mechanism for generating a cavitation point in

the flow.
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FIG. 8: Examples of the emergence of a black soliton after tunneling in the characteristic plane.

The initial configurations are (a) RW collision case with ρ+ = 2, (b) DSW overtaking case with

ρ+ = 0.6. Initial soliton amplitudes are chosen so that a− = 1 in (15). Numerically computed

soliton trajectories (contours) are compared against theoretical predictions of Eqs. (21) and (25).

The snapshots of the intensity ρ at t = 225 are shown above the contour plots.
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IV. CONCLUSION

In this work, we have introduced a new notion of hydrodynamic optical soliton tunneling

where a localized, depression wave or dark soliton is incident on a spatio-temporal hydro-

dynamic barrier. Under the assumptions of nonlinear wave, Whitham modulation theory,

the evolution of the inhomogeneous mean flow decouples from the soliton so that, at the

leading order macroscopic level, the flow is wholly unaltered by the presence of the local

pulse. The solution is found to be a self-similar simple wave of a system of quasilinear partial

differential equations whose characteristics determine both the mean flow and the soliton

trajectory. The self-similar simple wave obtained evolves from an initial step in the flow to

either a single DSW or a RW but the approach generalizes to any initial state that limits to

different constants as x→ ±∞, which define soliton tunneling conditions.

The main result of this work is encompassed in the tunneling and phase relations given by

Eqs. (15) and (23). They determine the transmitted soliton amplitude, speed, and position

in terms of only the incident soliton amplitude, its position, and the hydrodynamic flow in

the far-field. The known soliton trajectory and amplitude following interaction provide a

mechanism for soliton control via interaction with a spatially extended mean flow.

The notion of hydrodynamic reciprocity identified earlier in [31] for scalar, KdV type

systems and generalized here to the NLS case allows one to investigate a complex soliton-

DSW interaction by studying the simpler case of soliton-RW interaction. Reciprocity implies

that, although the tunneling of a soliton through a DSW involves a complex interaction with

rapid nonlinear oscillations, they are unimportant for determining the resulting amplitude,

velocity and shift of the solitary wave post interaction. The methodology presented here

to track the trajectory of the soliton only requires knowledge of the far field boundary

conditions and hence this approach can be extended to more general initial configurations.We

also note that the developed theory is not restricted to integrable NLS dynamics and can

be generalized to more general cases of hydrodynamic optical soliton tunneling described

by non-integrable versions of the defocusing NLS equation, e.g. with saturable nonlinearity,

using the methods of [23, 32, 44]
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