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We explore the spatiotemporal dynamics of the spectrum of covariant Lyapunov vectors for chaotic
Rayleigh-Bénard convection. We use the inverse participation ratio to quantify the amount of spatial
localization of the covariant Lyapunov vectors. The covariant Lyapunov vectors are found to be
spatially localized at times when the instantaneous covariant Lyapunov exponents are large. The
spatial localization of the Lyapunov vectors often occurs near defect structures in the fluid flow
field. There is an overall trend of decreasing spatial localization of the Lyapunov vectors with
increasing index of the vector. The spatial localization of the covariant Lyapunov vectors with
positive Lyapunov exponents decreases an order of magnitude faster with increasing vector index
than all of the remaining vectors that we have computed. We find that a weighted covariant
Lyapunov vector is useful for the visualization and interpretation of the significant connections
between the Lyapunov vectors and the flow field patterns.

I. INTRODUCTION

The spatiotemporal dynamics of large extended sys-
tems that are driven far-from-equilibrium are at the cen-
ter of many important problems of intense interest [1, 2].
Examples include the complex dynamics of the atmo-
sphere and oceans [3], the dynamics of sunspots in the
sun’s photoshpere [4], the patterns of chemical reactions
in cardiac tissue [5], the transition to turbulent fluid flow
in a pipe [6–8], and the complex spatiotemporal patterns
of social dynamics [9]. These problems are very difficult
to understand because the systems are usually strongly
nonlinear with very high-dimensional dynamics.
A powerful approach that can be used to build a phys-

ical understanding of these systems is based upon the use
of covariant Lyapunov vectors [10–13]. For many years,
the covariant Lyapunov vectors remained mostly a for-
mal idea due to the lack of a tractable approach for their
computation [10, 11]. However, efficient and scalable al-
gorithms are now available [14–16].
There are new fundamental insights that can be gained

by computing the covariant Lyapunov vectors for fluid
systems. An important example is the computation of
the principal angle between the stable and unstable man-
ifolds. In the following, we will assume the Lyapunov
exponents are ordered in the usual manner from largest
to smallest and that there is a corresponding Lyapunov
vector associated with each Lyapunov exponent.
The covariant Lyapunov vectors with positive Lya-

punov exponents span the unstable manifold and the co-
variant Lyapunov vectors with negative Lyapunov expo-
nents span the stable manifold. The principal angle is
the minimum angle between the linear combination of
the vectors spanning the unstable and stable manifolds.
The principal angle therefore describes the degree of hy-
perbolicity of the dynamics [14, 17].
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If the principal angle is bounded away from zero, the
dynamics are hyperbolic. In this case, the unstable and
stable manifolds never become nearly tangent with one
another. Otherwise, if the principal angle is not bounded
away from zero, the dynamics are non-hyperbolic and
the unstable and stable manifolds experience moments of
near tangency. Many important theorems of dynamical
systems theory, such as the shadowing theorem, rest upon
the assumption of hyperbolic dynamics [18–20]. For ex-
ample, this idea was used to study the transition between
hyperbolic and non-hyperbolic dynamics for chaotic Kol-
mogorov flow as the Reynolds number was increased [21].
The hyperbolic properties of the covariant Lyapunov

vectors have also been used to decompose the dynam-
ics of a number of model systems into two different
classes of modes called the physical modes and spuri-
ous modes (also called transient modes) [17, 22–24]. The
model systems have included coupled-map lattices, the
complex Ginzburg-Landau equation, and the Kuramoto-
Sivashinsky equation [17, 22–24].
The physical modes are characterized by covariant

Lyapunov vectors with frequent near tangencies with one
another in the tangent space. These are found to include
all of the Lyapunov vectors with positive Lyapunov expo-
nents and also some of the Lyapunov vectors with nega-
tive Lyapunov exponents. All of the remaining Lyapunov
vectors were found to be hyperbolically isolated from one
another and are the spurious modes.
It has been argued that the physical modes contain the

essential information, or the number of effective degrees
of freedom, needed to describe the dynamics and that
the spurious modes are numerical artifacts arising from
excess resolution in the computation [17]. This is an
exciting and powerful idea, especially if it can be found
to also apply to experimentally accessible fluid systems
governed by the Navier-Stokes equations.
The number of physical modes have been found to be

extensive and it has been suggested that the number of
physical modes are related to the dimension of the inertial
manifold [17, 23, 24]. It is interesting to note, that the
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estimate for the dimension of the inertial manifold is typ-
ically several times larger than the value of the Kaplan-
Yorke dimension (also called the fractal dimension) for
the same dynamics [17, 23, 24]. Ding et al. [24, 25] com-
puted the dimension of the inertial manifold six different
ways using unstable periodic orbit theory and found that
all of the computations agree with the estimate found us-
ing the number of physical modes.

The covariant Lyapunov vectors of chaotic Rayleigh-
Bénard convection have been computed [26]. The covari-
ant Lyapunov vectors with positive, zero, and small nega-
tive Lyapunov exponents were found to be spatially local-
ized near small-scale defect structures in the flow field. In
particular, the magnitude of the covariant Lyapunov vec-
tors were large near roll pinch-off and roll merger events
as well as near wall-foci. These findings extend the idea
of localized Lyapunov vectors beyond that of the lead-
ing order Lyapunov vector which was found in previous
studies of chaotic Rayleigh-Bénard convection [27–31].

The chaotic dynamics were found to be non-hyperbolic
for all of the Rayleigh numbers explored in Ref. [26]. An
interesting result of this study was that all of the co-
variant Lyapunov vectors were tangled with their nearest
neighbors. In other words, the leading order Lyapunov
vector was highly tangled with the second Lyapunov vec-
tor and so on, all the way to the 141 Lyapunov vectors
that were computed. There was no particular physical
significance in choosing to compute 141 Lyapunov vec-
tors other than the availability of computing resources
and that this value is several times larger than the value
of the fractal dimension for all of the parameters explored
in Ref. [26]. The Lyapunov vectors were tangled in the
sense that neighboring vectors had frequent near tangen-
cies in the tangent space. In this case the Lyapunov vec-
tors are coupled with one another, a small perturbation
in the direction of one Lyapunov vector could affect the
dynamics of its neighbors and so on.

In light of this, it was not possible to decompose the
chaotic dynamics into physical and spurious modes using
the ideas of [17]. However, it is possible that this decom-
position is still present but that it was not uncovered in
these calculations. For example, it is possible that for the
Boussinesq equations the splitting of the tangent space
into physical and spurious modes requires more covari-
ant Lyapunov vectors than what was accessible compu-
tationally. Another possibility is that these dynamics are
affected by the boundary and geometry of the domain,
which could complicate this possible decomposition due
to finite-size effects.

These remain important and open questions of current
interest. In this paper, we are not able to answer the
questions about possibly decomposing the dynamics by
computing even more Lyapunov vectors. Rather, we fo-
cus our attention upon the first 141 Lyapunov vectors
and carefully quantify their spatiotemporal dynamics in
an effort to distill out the physical insights present in this
rich description of the dynamics. In particular, we will
conduct our investigation for the dynamics and parame-

ters used in Ref. [26].
The outline of our presentation is as follows. In §II

we discuss Rayleigh-Bénard convection and the approach
used in the computation of the covariant Lyapunov vec-
tors. In §III we discuss our numerical results and quantify
the spatiotemporal dynamics of the spectrum of covari-
ant Lyapunov vectors. Lastly, in §IV we present some
concluding remarks.

II. APPROACH

Rayleigh-Bénard convection occurs when a shallow
layer of fluid is heated from below in a gravitational
field [1, 32]. Our conventions are defined in Fig. 1. The
equations governing convection are the Boussinesq equa-
tions

σ−1(∂t + ~u · ∇)~u = −∇p+∇2~u+RT~z (1)

(∂t + ~u · ∇)T = ∇2T (2)

∇ · ~u = 0. (3)

where ~u is the fluid velocity vector, T is the temperature,
p is the pressure, ∂t is a time derivative and ~z is a unit
vector in the z-direction opposing gravity.

FIG. 1. (color online) A schematic of the square planform
convection domain used in our numerical simulations and our
convention for the Cartesian coordinates (x, y, z). The aspect
ratio of the domain is Γ = L/d where L is the side length
and d and is the layer depth. A shallow layer of fluid is con-
tained between a hot surface (bottom, red) and a cold surface
(top, blue) which are held at constant temperature. All mate-
rial surfaces are no-slip and the lateral sidewalls are perfectly
insulating. The direction of gravity g is vertically downward.

Equations (1)-(3) have been nondimensionalized in the
typical manner [33] using the depth d of the fluid layer as
the length scale, the vertical diffusion time of heat d2/α
for the time scale where α is the thermal diffusivity, and
the constant temperature difference between the bottom
and top surfaces as the temperature scale. We have used
no-slip ~u = 0 boundaries on all material walls that bound
the fluid layer which include the bottom, top, and all
sidewalls. The bottom surface is hot T (z = 0) = 1, the
top surface is cold T (z =1) = 0, and the lateral sidewalls
are perfectly insulating which can be expressed as ∇ ·
T n̂ = 0 where n̂ is an outward pointing unit normal.
The dynamics of Rayleigh-Bénard convection are de-

termined by the three nondimensional parameters R, σ,
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and Γ. The Rayleigh number R is the ratio of buoyancy
forces to viscous and thermal dissipation. The critical
value Rc = 1707.76 indicates the onset of convection
in an infinite fluid layer [34]. The Prandtl number σ
is the ratio of the diffusivities for momentum and heat
where σ ≈ 1 for typical convection experiments using
compressed gases [32, 35]. Lastly, the aspect ratio of the
convection domain Γ = L/d quantifies the spatial extent
of the domain where L is a characteristic length. For our
simulations in a square planform container, L is the side
length of the domain as shown in Fig. 1.
In order to compute the covariant Lyapunov vectors

we follow the approach described in Ref. [26] which uses
the algorithm introduced by Ginelli et al. [14]. In the fol-
lowing, we provide only the essential details of the com-
putational approach and we refer the reader to Ref. [26]
for a more detailed description.
We compute Nλ covariant Lyapunov vectors and Nλ

covariant Lyapunov exponents by numerically solving
Eqs. (1)-(3) simultaneously with Nλ copies of the Boussi-
nesq equations that have been linearized about the non-
linear trajectory in state space. These linearized equa-
tions, or tangent-space equations, can be expressed as

σ−1(∂tδ~u
(i) + ~u · ∇δ~u(i) + δ~u(i) · ∇~u) = −∇δp(i) (4)

+∇2δ~u(i) +RδT (i)~z

∂tδT
(i) + ~u · ∇δT (i) + δ~u(i) · ∇T = ∇2δT (i) (5)

∇ · δ~u(i) = 0 (6)

where i = 1, 2, . . . , Nλ.
In our notation, δ~u(i), δT (i), and δp(i) are the ith

perturbations of the velocity, temperature, and pres-
sure, respectively. The no-slip boundary condition yields
δ~u(i) = 0 at all material walls. The boundary condi-
tions for the bottom and top surfaces are δT (i)(z =0) =
T (i)(z = 1) = 0 and at the insulating lateral sidewalls
∇ · δT (i)n̂ = 0.
The essential idea is to integrate Eqs. (1)-(3) and

Nλ copies of Eqs. (4)-(6) forward in time while peri-
odically performing and storing the results of a QR-
decomposition of the linearized equations. This QR-
decomposition results in sets of orthonormal Gram-

Schmidt vectors {~g
(i)
n } for i = 1, 2, . . . , Nλ that have

been computed and stored at discrete times tn. Next,

in order to compute the covariant Lyapunov vector ~ξ(i),

an arbitrary vector ~ζ(i) is chosen that spans the sub-
space spanned by the Gram-Schmidt vectors which is
then evolved backwards in time using the algorithm of
Ref. [14]. As this backward time integration proceeds

the vector ~ζ(i) will converge to the covariant Lyapunov

vector ~ξ(i).
Our computational approach is based upon the finite-

difference Boussinesq solver developed by Chiam et

al. [36]. We have used this approach as the basis for
our parallel solver for the covariant Lyapunov vectors of
convection. More details about the numerical approach
can be found in Ref. [26].

In our calculations, the covariant Lyapunov vector
~ξ(i) is a very large vector with 4N elements where
N is the number of spatial grid points used to rep-
resent the flow field. We can represent the covariant
Lyapunov vector as the large column vector given by
~ξ(i) = [δu(i) δv(i) δw(i) δT (i)]T where (δu(i), δv(i), δw(i))
are the ith components of the perturbation velocity in
the (x, y, z) directions, respectively. The superscript T
indicates a transpose such that this represents a column
vector. The perturbation pressure δp(i) is not included
because the pressure is not an independent dynamic vari-
able for incompressible fluid dynamics.
The spectrum of covariant Lyapunov exponents λi is

given by the infinite-time average

λi = lim
t→∞

1

t
ln

(

||~ξ(i)(t)||

||~ξ(i)(0)||

)

(7)

for i = 1, 2, . . . , Nλ. We will also find it useful to de-
fine the finite-time or instantaneous covariant Lyapunov
exponents λ̃i(t) by

λ̃i(t) =
1

t0
ln

(

||~ξ(i)(t+ t0)||

||~ξ(i)(t0)||

)

(8)

where t0 is a finite interval of time. The infinite-time
average (or long-time average in a numerical simulation)

of λ̃i is the Lyapunov exponent λi.
The instantaneous Lyapunov exponent is useful by in-

dicating the exponential growth or decay that occurred
during that time interval t0 which can be used to con-
nect with the flow field or other spatiotemporal features
of the dynamics. An important property of the the in-
stantaneous Lyapunov exponents λ̃i is that their values
fluctuate in time and, as a result, they are not guaran-
teed to always maintain the ordering of decreasing value
with increasing index i. In the results we present for λ̃i

we have used t0 = ∆t where ∆t is the time step used in
the numerical integration of the Boussinesq equations.
It is important to point out that the instantaneous co-

variant Lyapunov exponents are different than the in-
stantaneous Lyapunov exponents computed using the
typical Gram-Schmidt approach although the long-time
average of each converges to the correct value for λi [23].
The instantaneous covariant Lyapunov exponents are
physically relevant through their direct connection with
the covariant Lyapunov vectors. In all of our analysis
that follows we have used the instantaneous covariant
Lyapunov exponents.

The set of covariant Lyapunov vectors {~ξ(i)} are co-
variant in the sense that if they are integrated forward in
time using the linearized equations, the vectors will grow
or decay with an exponent λi and if they are integrated
backward in time they will grow or decay with the expo-
nent −λi (where growth or decay depends upon the sign
of the particular Lyapunov exponent).
In an effort to avoid any confusion with the defi-

nitions of forward, backward, and covariant Lyapunov
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based diagnostics that can be found in the literature (c.f.
[13, 15, 37] for discussions of the different definitions), all
of the results in this paper are based upon the covari-
ant Lyapunov vectors. Therefore, in our discussion that
follows, unless stated otherwise, we will use Lyapunov
vector and instantaneous Lyapunov exponent to refer to
the covariant Lyapunov vector and instantaneous covari-
ant Lyapunov exponent, respectively.

III. RESULTS AND DISCUSSION

We explore the spectrum of covariant Lyapunov vec-
tors and exponents for chaotic convection in a square
planform container with an aspect ratio of Γ = 16,
Prandtl number σ = 1, and for Rayleigh numbers 5000 ≤
R ≤ 9000.
Chaotic convection at these parameters was investi-

gated in Ref. [26] where it was found that the dynamics
were non-hyperbolic and all of the computed Lyapunov
vectors were tangled with their neighbors. In addition,
the Lyapunov vectors were found to be localized near
defect structures and a checkered pattern emerged for
the Lyapunov vectors with large negative Lyapunov ex-
ponents. Overall, a decomposition of the dynamics into
physical modes and transient modes was not found. In
this paper, we explore these dynamics further by quan-
tifying the spatiotemporal features of the Lyapunov vec-
tors for these conditions.
Figure 2 shows an image of a typical chaotic flow field

from our numerical simulations for R = 5000. The image
shows the temperature field at the horizontal mid-plane
(z = 1/2) where red is hot rising fluid and blue is cool
falling fluid. The fractal dimension of the chaotic dy-
namics at these parameters is Dλ ≈ 25 [26].
In all of our computations we use an evenly spaced

grid with ∆x=∆y=∆z=1/8 and a uniform time step
∆t = 1×10−3. This results in a grid with N = nx×ny×
nz = 129× 129× 9 where (nx, ny, nz) are the number of
grid points in each direction. The total number of grid
points is N = 149, 769 and each Lyapunov vector can be
represented as a large column vector with 4N = 599, 076
elements.
In our calculations we have computedNλ = 141 covari-

ant Lyapunov vectors at each value of the Rayleigh num-
ber. This represents a significant increase in the amount
of data we have to describe the dynamics when compared
with the flow field data alone. A significant challenge,
that we explore here, is to explore how to visualize this
large amount of data and to determine what new insights
this can provide.

A. Visualizing covariant Lyapunov vectors

An important question is: How do we visualize and
quantify the spatiotemporal dynamics of 141 of these
∼ 6 × 105 dimensional Lyapunov vectors to gain further

−0.1

0.1
0.6

0.4

FIG. 2. (color online) An image of a typical flow field from a
numerical simulation of chaotic convection. The temperature
is shown at the mid-plane T (x, y, z = 1/2, t) where red is hot
rising fluid and blue is cool falling fluid. The color bar defines
the scale used in the plot. (R = 5000, σ = 1,Γ = 16)

insight into the chaotic dynamics? In nearly all of the
previous work on chaotic convection, the leading order
Lyapunov vector has been visualized by viewing a spatial
slice of only part of the vector [26–31]. In the following,
we investigate this further and with the additional con-
cern of how to visualize the entire spectrum of Lyapunov
vectors.

It is attractive to represent the Lyapunov vectors using
the spatial geometry of the physical domain in order to
arrange the elements of the Lyapunov vector. This allows
one to connect spatial features of the Lyapunov vectors
with the spatial features of the flow field.

Figure 3 shows four different projections of this type
for the leading order Lyapunov vector, at the horizontal
mid-plane slice at z = 1/2, for the flow field shown in
Fig. 2. Figure 3(a) shows the perturbation temperature
field δT (1) and panels (b)-(d) illustrate the three compo-
nents of the perturbation velocity δu(1), δv(1), and δw(1),
respectively. Red indicates a large positive magnitude
and blue indicates large negative magnitude. Therefore
both red and blue represent regions of rapid growth and
green represents regions of little growth. The black solid
lines indicate the boundaries of the convection rolls for
reference.

Figure 3(a)-(d) shows that the spatial variation of
δT (1) and δw(1) are very similar which is expected for
buoyancy driven flow. However, it is interesting that
the perturbation velocities δu(1) and δv(1) also exhibit
the same general trends. In addition, the magnitudes of
the different perturbation fields in these images are all
of the same order of magnitude. These results suggest
that the temperature perturbation field at the horizon-
tal mid-plane is a good representation of the Lyapunov
vector.

Before proceeding, we briefly discuss how this repre-
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(a) (b)

(c) (d)

-0.12 0.12

FIG. 3. (color online) Different projections of the leading
order Lyapunov vector for the conditions of Fig. 2. Color
contours indicate the value of the different perturbation fields
at the horizontal mid-plane (z = 1/2) where red is a large
positive value and blue is a large negative value. The black
solid lines indicate the location of the convection rolls for ref-
erence. (a) Perturbation temperature δT (1), (b) perturbation

velocity in the x-direction δu(1), (c) perturbation velocity in

the y-direction δv(1), and (d) perturbation velocity in the z-

direction δw(1).

sentation varied using horizontal slices at different values
of the vertical position z. The spatial variation of the
Lyapunov vector in the z-direction was found not to be
significant and that a mid-plane slice is indeed a good
representation of the Lyapunov vector. For example, the
images of Fig. 3 are very similar at all values of z with
some attenuation as one approaches the solid walls at
either z = 0 or z = 1 (results not shown). We have
confirmed that this is the case for the entire spectrum of
Lyapunov vectors.
Lastly, we compare the perturbation temperature field

with the complete Lyapunov vector at the horizontal
mid-plane. Figure 4 shows the absolute value of the tem-
perature perturbation in the first column and the magni-
tude of the entire Lyapunov vector in the second column
for 3 different Lyapunov vectors of interest for R = 5000.
Panels (a)-(b) are for the leading order Lyapunov vector
and represents the most rapidly growing vector. Pan-
els (c)-(d) are for the 12th Lyapunov vector which cor-
responds to the Lyapunov exponent closest to zero in
our calculations. Finally, panels (e)-(f) are for the 141st

Lyapunov vector which represents the most rapidly con-

tracting Lyapunov vector we have calculated.
We have calculated the magnitude of Lyapunov vector

i using

||~ξ(i)|| =
(

δu(i)2 + δv(i)
2

+ δw(i)2 + δT (i)2
)1/2

(9)

which is evaluated at the horizontal mid-plane

||~ξ(i)(x, y, z = 1/2, t)|| to generate contour plots for com-
parison. Red represents a large magnitude and blue rep-
resents a small magnitude. Therefore, in Fig. 4 red re-
gions represent locations of large growth and blue regions
represent locations where there is very little growth.
The agreement between the two different representa-

tions of the Lyapunov vector in Fig. 4 is very good. This
is true for all of the Lyapunov vectors in the spectrum
that we computed although we only show three represen-
tative examples here. This suggests that the temperature
perturbation field at the mid-plane captures the signifi-
cant spatial features of the Lyapunov vector.
By using only the temperature perturbation compo-

nent at the mid-plane this reduces the dimension of the
plotted vector to 129 × 129 = 16, 641. Although this is
still quite large, it is smaller than the dimension of the
full Lyapunov vector by a factor of 4nz and is a signifi-
cant reduction. In the following we will use the mid-plane
slice of the perturbation temperature field to explore the
spatial variation of the spectrum of Lyapunov vectors.

B. Localization

A feature that consistently emerges in images such as
those shown in Figs. (3)-(4) is the spatial localization of
the Lyapunov vectors. Using our nondimensionalization,
the width of a convection roll (for example, as measured
by the distance between the black lines in Figs. 3-4) is
approximately unity. This indicates that the length scale
of the local regions of large growth have a length scale of
approximately unity as well.
We are interested in quantifying this localization and

its variation for the spectrum of Lyapunov vectors. Fig-
ure 5 illustrates how the spatial variation of the leading
order Lyapunov vector can vary in time. Figure 5(a)
shows an instance of time where the Lyapunov vector
is highly localized near the center of the domain. Fig-
ure 5(b) illustrates the same Lyapunov vector twenty
time-units later. At this later time, the spatial variation
of the Lyapunov vector has changed significantly and it
is now much more spatially distributed.
In order to quantify the spatial features of the Lya-

punov vector we will use the inverse participation ra-
tio [14, 38]. For our purposes we will define the inverse
participation ratio, or localization, of Lyapunov vector i
at time t as

Ci(t) =
∑

x,y

δT̃ (i)(x, y, z=1/2, t)4 (10)
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（a） (b)

（c） （d）

（e） (f)

0                                        0.05

FIG. 4. (color online) Comparison of the temperature per-

turbation field |δT (i)| and the magnitude of the Lyapunov

vector ||~ξ(i)|| using Eq. (9) for the leading order Lyapunov
vector (i = 1), the Lyapunov vector with a vanishing Lya-
punov exponent (i = 12), and a rapidly decaying Lyapunov
vector (i = 141). Color contours indicate the value of the
different fields at the horizontal mid-plane (z = 1/2) where
red is a large value and blue is small value. The black solid
lines indicate the location of the convection rolls for reference.
(a) |δT (1)|, (b) ||~ξ(1)||, (c) |δT (12)|, (d) ||~ξ(12)||, (e) |δT (141)|,

and (f) ||~ξ(141)||.

where the sum is again over all x and y at z = 1/2. The

temperature perturbation field δT̃ (i) has been normalized
such that

∑

x,y

δT̃ (i)(x, y, z = 1/2, t)2 = 1. (11)

The inverse participation ratio is a global indicator
that we will use to quantify the spatial localization of
the Lyapunov vectors. For the image shown in Fig. 5(a)

(a)(a) (b)(b)

-0.08 0.08

FIG. 5. (color online) The spatial variation of the leading
order Lyapunov vector for R = 5000, σ = 1 and Γ = 16 at
two different times. Color contours indicate the value of the
perturbation temperature field δT (1) at the horizontal mid-
plane (z = 1/2) where red is a large positive value and blue
is a large negative value. The black solid lines indicate the
location of the convection rolls for reference. (a) At this time
the localization is large and C1 = 0.11. This is reflected by
the spatial distribution of the vector where its magnitude is
mostly concentrated in one region near the center. (b) Twenty
time units later the same Lyapunov vector is quite delocalized.
At this time, C1 is two orders of magnitude smaller at C1 =
0.001.

the localization is C1 = 0.11 whereas in panel (b) the lo-
calization is two orders of magnitude smaller at C1(t) =
0.001.

By definition, the localization does not guarantee that
this trend always be the case. For example, one could
take the Lyapunov vector image shown in Fig. 5(a) and
randomly shuffle the data points representing the red and
blue regions in space and the resulting image would, of
course, yield the precise same value for Ci(t). However,
in all of our explorations we have always found that Ci(t)
is large when the Lyapunov vector is spatially localized
and that Ci(t) is small when it is not as shown in Fig. 5.
As a result, we will use Ci(t) as a single scalar quantity to
quantify the spatial localization of the Lyapunov vector
as a function of time.

We now use Ci to explore the spatial features of the
spectrum of Lyapunov vectors. In Fig. 6 we present re-
sults for the leading order Lyapunov vector. Figure 6(a)
shows the time variation of the instantaneous Lyapunov
exponent λ̃1 given by Eq. (8), panel (b) shows the time
variation of the localization C1(t), and panels (c)-(d) il-
lustrate two representative images of the Lyapunov vec-
tor at times of interest.

Figure 6 illustrates that the leading order Lyapunov
vector is spatially localized when the leading order Lya-
punov exponent is large. This is illustrated by Fig. 6(c)
which corresponds with the local peaks in the values of
λ̃1 and C1 at t ≈ 89 which is also indicated by the dashed
line on the left in panels (a)-(b). Similarly, the leading
order Lyapunov vector is spatially delocalized when the
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instantaneous Lyapunov exponent is near a local mini-
mum. An example of this is shown in Fig. 6(d) which
corresponds to the dashed line on the right in panels (a)-
(b) at t ≈ 97.

Figure 7 illustrates the spatiotemporal dynamics of the
12th Lyapunov vector. This Lyapunov vector is of par-
ticular interest because it is the Lyapunov vector with a
vanishing value of the Lyapunov exponent in our com-
putations with λ12 ≈ 0. A similar trend is found where
the Lyapunov vector is more localized spatially when the
instantaneous Lyapunov exponent is large and more de-
localized when the instantaneous Lyapunov exponent is
small. In addition, the time averaged value of C12 is
smaller than for the leading order vector which indicates
a smaller degree of spatial localization in comparison.

Figure 8 shows results for the 141st Lyapunov vector
which represents a rapidly decaying vector. In this case,
the results are quite different than what we found for the
leading order and 12th Lyapunov vector. The instanta-
neous Lyapunov exponent has fluctuations at a higher
frequency than before. In addition, the time averaged
value of the localization is now quite small for all time
where C141(t) . 1×10−3. The spatial distribution of the
Lyapunov vector now exhibits a checkered pattern for all
time. Figure 8(c)-(d) shows that there is now little differ-
ence between the spatial patterns of the Lyapunov vector
at the peaks and valleys of the localization.

In order to quantify the correlation between the lo-
calization and the instantaneous Lyapunov exponent
we have also computed the equal-time cross-correlation
〈C̄i(0)λ̄i(0)〉 for all i. The quantities C̄i(t) and λ̄i(t) are
simply the localization and the instantaneous Lyapunov
exponent with their mean values subtracted off, respec-
tively. Furthermore, the values plotted in Fig. 9 have
been normalized by the equal-time cross-correlation for
the leading order Lyapunov vector which had a value of
0.0024.

Figure 9 illustrates the variation of the cross-
correlation for all of the covariant Lyapunov vectors. It is
clear that there is a positive correlation which decreases
as the index of the vector is increased. This is in agree-
ment with the trends shown in Figs. 6-8. It is interest-
ing to point out that the correlations are significantly
larger for the covariant Lyapunov vectors with positive
Lyapunov exponents (i ≤ 11) which are shown as circles
(blue). The decay in the positive correlations for these
Lyapunov vectors decays more rapidly with increasing in-
dex i of the vector than those for i ≥ 12 which are shown
as squares (red).

Figure 10 shows a scatter-plot of the localization and
instantaneous Lyapunov exponent for the data shown in
Figs. 6-8. The circles (blue) are for i = 1, the squares
(red) are for i = 12, and the triangles (green) are for
i = 141. This clearly indicates that the leading order
Lyapunov vector has values where the instantaneous Lya-
punov exponent and localization are largest. The results
for the 12th Lyapunov vector are similar but with small
overall values. However, the results for the 141st Lya-

punov vector represent dynamics with uniformly much
smaller values of the localization. Although we have
focussed our attention on the results for R = 5000 in
Figs. 6-9, we find similar trends over the entire range of
Rayleigh numbers we have computed 5000 ≤ R ≤ 9000.
Figures 6-8 suggest a decreasing trend in the localiza-

tion of the Lyapunov vector as the index of the vector
is increased. This is illustrated for all of the Lyapunov
vectors we have computed in Fig. 11 where 〈Ci〉t is the
time-average of Ci and i is the index of the Lyapunov
vector. The time averaging was conducted using data
over 100 time units.
Figure 11 clearly shows the decreasing trend in the av-

erage localization. Figure 11(a) shows results for R =
5000. The localization can be described by two linear re-
gions. The circles (blue) represent the Lyapunov vectors
where λi > 0 and the squares (red) represent the rest
where λi ≤ 0. The amount of localization is largest for
the Lyapunov vectors with large positive values of the
Lyapunov exponents and falls-off rapidly with the value
of the index. The dashed-line is a linear curve fit through
the circles (blue) with a slope of α1 = −1.4× 10−4. The
linear decay of the remaining vectors is shown by the
dash-dotted line which has a slope of α2 = −1.3× 10−5.
Therefore α1/α2 ≈ 10 indicating an order of magnitude
faster fall-off in the localization of the Lyapunov vectors
with positive exponents.
We have found the same trends for all of our simula-

tions over the range of Rayleigh numbers 5000 ≤ R ≤
9000 as shown in Figure 11(b). For all of the Rayleigh
numbers explored, the results yielded α1 ≈ −1 × 10−4,
α2 ≈ −1 × 10−5, and so α1/α2 ≈ 10. Although the
distinction between the two regimes is not sharp, these
results indicate that the spatial properties of the growing
and decaying Lyapunov vectors are different.

C. Weighted Lyapunov vector

It would be very useful and insightful to be able to
connect the spatial regions where the Lyapunov vector is
large with the flow field dynamics. In most all previous
studies on chaotic convection [27–31], only access to the
leading order Lyapunov vector was possible. From infor-
mation of the leading order Lyapunov vector the results
suggested that small scale defects such as roll pinch-off
events often resulted in regions of large Lyapunov vector.
However, it was also shown that not all small defects and
roll pinch-off events were significant in the sense of being
located near a region of large magnitude of the leading
order Lyapunov vector. In fact, Scheel and Cross [28]
found that non-repeated defect events result in a more
significant contribution to the leading order Lyapunov
exponent than defect events that repeat in time.
In the following, we explore the possibility that the

leading order Lyapunov vector only gives a partial picture
of the dynamics. Using the covariant Lyapunov vectors
it is possible to explore the possible connection between



8

the flow field and the Lyapunov vectors for the entire
spectrum of vectors.
After experimenting with many different choices, we

found that using a weighted Lyapunov vector for visu-
alizing the Lyapunov vectors was the most effective ap-
proach. Using the results discussed in §III B we base the
weighting scheme on the fact that the instantaneous Lya-
punov exponents are largest when the Lyapunov vectors
are highly localized. We define the weighted Lyapunov
vector as

~ξw(x, y, t) =

Nw
∑

i=1

eλ̃i(t)∆t|δT (i)(x, y, z=1/2, t)| (12)

where Nw is the number of Lyapunov vectors to include
in the weighting.
Essentially, this takes into account the spatial varia-

tions of all of the included Lyapunov vectors and weights
their individual contribution using their value of the in-
stantaneous Lyapunov exponent. It is important to recall
that the instantaneous Lyapunov exponents fluctuate in
time and that they are not guaranteed to maintain the
strict ordering λ̃1(t) > λ̃2(t) > . . . for all time. There-
fore, by using the weighting of Eq. (12) the significance
of the different Lyapunov vectors is now a function of
time. When a particular instantaneous Lyapunov expo-
nent is at a local maximum, our previous results sug-
gest that this Lyapunov vector will be localized, and by
our weighting this Lyapunov vector will be given more
weight.
Several examples of the weighted Lyapunov vector are

shown in Fig. 12 for three different instances of time.
Figure 12 presents a comparison between the leading or-
der Lyapunov vector (left column containing panels (a),
(c), (e)) and the weighted Lyapunov vector (right col-
umn containing panels (b), (d), (f)). The leading order
Lyapunov vector is plotted as the absolute value of the
temperature perturbation field at the mid-plane |δT (1)|.
The weighted Lyapunov vector is plotted using Eq. (12)
with Nw = 12 which includes all of the Lyapunov vectors
with non-negative Lyapunov exponents. The color con-
tours represent the magnitude where red is large and blue
is small values and the black lines indicate the convection
rolls.
Figure 12(a)-(b) illustrates the typical situation where

the leading order Lyapunov vector and the weighted Lya-
punov vector are very similar in terms of their spatial
variation. At this point in time there is a roll pinch-off
event near the left side of the middle of the domain that
is clearly picked up in panels (a) and (b). Similarly, in
the upper left corner of the domain there is a wall-focus
whose tip is about to merge with an adjacent convection
roll which is also highlighted by both representations.
This is often the case, and we have found that the lead-
ing order Lyapunov vector is usually a good indicator of
the spatial locations where there are large divergences.
However, panels (c)-(d) and (e)-(f) of Fig. 12 provide

good examples where the leading order Lyapunov vec-
tor is not a good indicator of what is represented by the

weighted Lyapunov vectors. Panels (c)-(d) are for the
same dynamics but at a later time where the leading or-
der Lyapunov vector and the weighted Lyapunov vector
are large in different regions of space. The leading order
Lyapunov vector is large near the lower boundary which
is only slightly noticeable in the weighted Lyapunov vec-
tor image.

More striking in these images is that the weighted Lya-
punov vector is large near two defect structures that are
not captured by the leading order Lyapunov vector. In
particular, in Fig. 12(d) there is a roll pinch-off about to
occur near the middle of the domain and a roll merger
that is about to occur near the top of the domain. Both
of these events do not yield regions of large magnitude in
the leading order Lyapunov vector. A similar situation
is illustrated in Fig. 12(e)-(f) where a roll pinch-off event
has just recently occurred in the region justly slightly left
of the center of the domain.

Before moving on we would like to say a few words on
the choice of Nw. Figure 11 suggests that the Lyapunov
vectors corresponding to the non-negative Lyapunov ex-
ponents are more localized and have a distinct fall-off in
localization with increasing vector index. This is, in addi-
tion to the fact that they also have the largest expansion
rates in the tangent space. For these reasons choosing
Nw as the number of non-negative Lyapunov exponents
was a natural choice.

However, we also explored the weighted Lyapunov vec-
tor for largerNw. For largerNw we found that the check-
ered pattern and the delocalization of the rapidly decay-
ing Lyapunov vectors became more important. These
effects eventually become strong enough to make it dif-
ficult to identify any particular region of space that is
more important or distinct based upon its flow field pat-
tern. Overall, we found that choosing Nw as the number
of non-negative Lyapunov exponents to be the most in-
sightful.

Overall, our results suggest that all of the Lyapunov
vectors with positive Lyapunov exponents tend to be spa-
tially localized with large magnitude near small scale de-
fect structures such as convection roll pinch-offs and roll
mergers. These small scale dynamics are often part of
more complex defect interactions in the chaotic patterns
we have explored that include targets, spirals, and dislo-
cations.

However, not all of the small scale defects are repre-
sented as regions of large magnitude in any particular
Lyapunov vector. In our results, we have found that
the weighted Lyapunov vectors do show regions of large
magnitude near all of the small scale defect structures.
This suggests that these small scale structures are signif-
icant contributors to the overall disorder in the patterns.
These results also open up the possibility of quantifying
the relative importance of the different defects using the
magnitude of the weighted Lyapunov vector. This is a
subject of ongoing interest and future work.



9

IV. CONCLUSION

We have explored and quantified the spatiotemporal
dynamics of the spectrum of covariant Lyapunov vec-
tors of chaotic Rayleigh-Bénard convection. Although
the chaotic dynamics we have investigated has a very
high dimension in our finite computational representa-
tion (the dimension of our state-space is ∼ 6 × 105) we
are now able to compute over 100 covariant Lyapunov
vectors. We have shown that a much lower dimensional
object, the thermal perturbation δT (i) at the horizontal
mid-plane, is an accurate and useful representation of the
spectrum covariant Lyapunov vectors.
We have used this to quantify the spatiotemporal dy-

namics of the Lyapunov vectors. In particular, we have
quantified the spatial localization of the spectrum of Lya-
punov vectors. We have found that the Lyapunov vectors
are spatially localized when the instantaneous Lyapunov
exponents are large. Furthermore, the Lyapunov vectors
tend to be localized in regions containing topological de-
fects in the flow field such as roll pinch-offs, dislocations,
spiral structures, etc. This further suggests that defect
features in the flow field play a significant role in the
long-term predictability of the dynamics.
Our results suggest an interesting transition in the spa-

tial localization of the Lyapunov vectors as the index of
the vector increases. We find that the vectors which have

positive Lyapunov exponents are more localized than the
rest. In fact, there is an overall trend in the reduction of
the spatial localization with increasing index where the
fall-off is an order of magnitude faster for the Lyapunov
vectors with positive exponents. The fact that the covari-
ant Lyapunov vectors with positive Lyapunov exponents
tend to be spatially localized near defect structures in the
flow field further suggests the importance of the defects
to the long-time dynamics. We have explored this fur-
ther by investigating the spatial features of the weighted
Lyapunov vector.

Overall, the ability to compute the covariant Lyapunov
vectors for experimentally accessible fluid systems, such
as Rayleigh-Bénard convection, provides an important
window upon which to examine high-dimensional chaotic
dynamics. We anticipate that the new physical insights
gained using covariant Lyapunov vectors will continue to
play an important role in building our understanding of
the complex dynamics or large systems that are driven
far-from-equilibrium.
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FIG. 6. (color online) (a) The time variation of the leading

order instantaneous Lyapunov exponent λ̃1(t). (b) The time
variation of the localization of the leading order Lyapunov
vector C1(t). The vertical dashed line at t = 89.3 corresponds

to the time when both λ̃1(t) and C1(t) exhibit a local peak
in value. The spatial distribution of the Lyapunov vector for
this case is shown in panel (c). The vertical dashed line at

t = 98.5 corresponds to an instance when λ̃1(t) and C1(t)
are at local a minimum. The Lyapunov vector at this time
is shown in panel (d). Color contours indicate the value of

the perturbation temperature δT (i) at the horizontal mid-
plane (z = 1/2) where red is a large positive value and blue
is a large negative value. The black solid lines indicate the
location of the convection rolls. (Rayleigh number R = 5000,
Prandtl number σ = 1, and aspect ratio Γ = 16).
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FIG. 7. (color online) The spatiotemporal features of the 12th

Lyapunov vector where (a) shows the time variation of the in-

stantaneous Lyapunov exponent λ̃12, (b) shows the localiza-
tion C12(t) and (c)-(d) show images of the Lyapunov vectors
at times t = 89 and t = 93, respectively, which are also in-
dicated by the vertical dashed lines. Simulation parameters
and conventions are the same as Fig. 6.
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FIG. 8. (color online) The spatiotemporal features of the
141st Lyapunov vector where (a) shows the time variation of

the instantaneous Lyapunov exponent λ̃141, (b) shows the lo-
calization C141(t) and (c)-(d) show the Lyapunov vector at
times t = 89 and t = 98.5, respectively, which are also in-
dicated by the vertical dashed lines. Simulation parameters
and conventions are the same as Fig. 6.
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FIG. 9. (color online) The equal-time cross-correlation of the
localization Ci(t) and the instantaneous Lyapunov exponent

λ̃i(t). The circles (blue) are for i ≤ 11 which represent Lya-
punov vectors with positive Lyapunov exponents λi > 0 and
the squares (red) are for i ≥ 12 which represent the Lya-
punov vectors with λi ≤ 0. The localization and the instan-
taneous Lyapunov exponent are positively correlated. The
overall trend is a decreasing amount of correlation as i is in-
creased. These results have been normalized by the value
of the equal-time correlation computed for the leading order
Lyapunov vector (i = 1) which had a value of 0.0024.
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FIG. 10. (color online) The variation of the localization Ci

with the instantaneous Lyapunov exponent λ̃i. Circles (blue)
are for the leading order Lyapunov vector, squares (red) are
for the 12th covariant Lyapunov vector, and triangles (green)
are for the 141st covariant Lyapunov vector.
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FIG. 11. (color online) The time average of the localization
of the covariant Lyapunov vectors 〈Ci〉t where i is the index
of the Lyapunov vector. The time average is taken over 100
time units. (a) Results for R = 5000 where the circles (blue)
represent the first 11 Lyapunov exponents which are all pos-
itive. The squares (red) represent the remaining Lyapunov
vectors which have Lyapunov exponents that are near zero
or negative. The dashed line is a linear curve fit through the
circles with slope α1 = −1.6×10−4. The dash-dotted line is a
curve fit through the squares with slope α2 = −1.3×10−5. (b)
Results for 5000 ≤ R ≤ 9000. The overall trend is decreas-
ing localization with increasing order of the Lyapunov vector.
For all Rayleigh numbers, the localization of the Lyapunov
vectors associated with positive exponents falls off approxi-
mately 10 times faster than the localization of the remaining
vectors with increasing order i.
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FIG. 12. (color online) Comparison of the spatial variation of
the leading order Lyapunov vector and the weighted covari-
ant Lyapunov vector. Color represents the magnitude of the
Lyapunov vector where red is large and blue is small. The
black contour lines indicate the boundaries of the convection
rolls. Each row shows results at at different instant of time
where the left side, panels (a), (c), (e), illustrate the leading
order Lyapunov vector and the right side, panels (b), (d), (f),
represent the weighted Lyapunov vectors.


