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The passively Q-switched, self-pulsing all-solid-state laser is a device of widespread use in many applications. Depending on the 
condition of saturation of the absorber, which is easy to adjust, different dynamical regimes are observed: continuous wave emission, 
stable oscillations, period doubling bifurcations, chaos and, within some chaotic regimes, extreme events (EE) in the form of pulses 
of extraordinary intensity. These pulses are sometimes called “dissipative optical rogue waves”. The mechanism of their formation in 
this laser is unknown. Previous observations suggest they are caused by the interaction of few transverse modes. Here we report the 
first direct observation of the pulse-to-pulse evolution of the transverse pattern. In the periodical regimes, sequences of intensities are 
correlated with sequences of patterns. In the chaotic ones, few different patterns alternate, and the EE are related with even fewer 
ones. Besides, the series of patterns and the pulse intensities before and after an EE are markedly repetitive. These observations 
demonstrate that EE follow a deterministic evolution, and that they can appear even in a system with few interacting modes. This 
information plays a crucial role for the development of a mathematical description of EE in this laser. This would allow managing the 
formation of EE through control of chaos, what is of both academic and practical interest (laser rangefinder). 
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1. Introduction. 

 
Waves of very high amplitude randomly appearing 

in deep ocean waters are important phenomena, which 
received the name of “freak”, or “rogue”, waves [1]. In 
the last decade, scientific interest increased on 
analogous rare or extreme events (EE) of large 
amplitude observed in other areas. In Optics, “optical 
rogue waves” were first observed in the intensity 
fluctuations of light at the edge of the spectrum 
produced by ultrashort laser pulse pumped optical 
fibers in the threshold of super-continuum generation 
[2,3]. Conditions for their formation were later studied 
in experiments using optical fibers [4]. Optical EE 
were also observed in a VCSEL with an injected signal 
[5], in fiber lasers [6-9], in Kerr-lens mode locked 
Ti:Sapphire lasers [10] and, what is our scope here, in 
self-pulsing (or passive Q-switch) high Fresnel number 
all-solid state lasers with a “slow” saturable absorber 
(SA) [11]. EE have been also studied in VCSELS with 
a (one-dimensional) transversally extended cavity with 
SA, which is a system rather similar to ours, although 
with a faster dynamics [12,13]. It is worth mentioning 
that chaotic intermittency seems to be a feature 
common to both systems. The Reference 14 is a review 
on optical rogue waves.  

The all-solid-state passively Q-switched laser is a 
small, robust, efficient and non-expensive device. It is 
used in many applications, from sparks in experimental 
inner-combustion engines to rangefinders and target 
illuminators. EE spontaneously appear and are easily 
observed in the chaotic regime of this laser if the 
Fresnel number of the cavity is large. This condition is 

reached easier than not, because the pump beam is, in 
general, difficult to focus, what naturally produces an 
active region (and hence, a limiting aperture) much 
broader than the cavity mode. A laser of this type 
working in the regime with EE is therefore easy to 
build and robust to operate. Controlling the formation 
of EE in this system is hence of practical interest. It 
would allow the generation, at selected times, of pulses 
of intensity twice to thrice higher than normally 
obtained from the same device, with no need to scale 
up the power supply and heatsink. This is especially 
useful if the laser is to be used, f.ex., as the emitter in a 
rangefinder aboard a small, low cost unmanned flying 
vehicle, an application where weight is a crucial issue.  

The system also has a broad academic interest. The 
equations of the single mode laser + SA are 
homologous to those of the Bénard-Rayleigh problem 
with a solute. The high Fresnel number laser with SA 
in the limit of small nonlinearity is described by a non-
linear Schrödinger equation, hence relating it directly 
with other systems where rogue phenomena have been 
observed. Yet, the precise mathematical framework to 
describe EE in this laser is still to be determined. A key 
question is whether the number of modes playing a 
significant role in the dynamics is large or small. If it is 
large, the description involves a transversal Laplacian, 
as in the broad area VCSEL with SA [15]. This means 
a system of partial differential equations. If it is small 
instead, a simpler system of ordinary differential 
equations may suffice. Previous observations [11,16] 
suggest that the regimes with EE in this laser 
correspond to the second case. In order to confirm this 
hypothesis, it was proposed to observe the pulse-to-



pulse evolution of the (complex) transverse pattern of 
the laser spot. This is difficult, because of the high 
repetition rate (tens of KHz) of the self-pulsing, and the 
intrinsic time instability of chaotic regimes.  

In this paper we present, we believe for the first 
time, the results of the observation of the pulse-to-
pulse evolution of the transverse pattern of a self-
pulsing laser. This is possible thanks to the use of an 
ultrafast camera (up to 6×104 frames per second, fps) 
and two oscilloscope-to-camera matching software 
codes, which we develop for this specific purpose. 
These results demonstrate that EE can appear even in a 
system with few interacting modes. Our observations 
guide the development of a mathematical description 
by outlining the key points to be reproduced. The 
description should be not only correct, but also as 
simple as possible, for our final goal is to manage the 
formation of EE through control of chaos. As it is said, 
this is of both academic and practical interest.  

Note that in most experimental work on nonlinear 
dynamics in optical systems the mathematical 
description of the problem is known. Here instead, we 
start from a real-world existing system (the all-solid 
state laser + SA) where the phenomenon (the EE) 
appears spontaneously, and our goal is to find the 
appropriate (i.e., not only correct, but also as simple as 
possible) mathematical description in order to 
implement its practical application. 

During the process of revision of this paper, 
questions were made about the number and role of 
longitudinal modes involved. Because of the cavity 
length and design, longitudinal and transversal modes 
(of the empty cavity) with different labels are closely 
spaced and mixed. They couple nonlinearly and bunch 
into “supermodes”, which are characteristic of the 
homogeneous-inhomogeneous broadening of solid 
state lasers [17]. Dynamics are then ruled by the 
interaction among supermodes (and the unobservable 
populations in the active medium and the absorber, of 
course). The supermodes, which are what we observe, 
not the (empty cavity) modes, are the elements 
necessary to develop a description.  

At this stage of our research program, the questions 
are: (i) is the steady and complex transverse pattern 
observed with a standard (50 fps) camera the 
superposition of many different patterns, or is it a 
single pattern that repeats itself in every pulse in the 
chaotic series?; (ii) in the case the patterns change from 
one pulse to the next, how many different patterns 
exist?; (iii) are the EE associated with a single pattern?; 
(iv) an EE is due to the formation of a “hot spot” of 
higher intensity in the pattern or, instead, to a higher 
illumination of the whole pattern?; v) are the EE 
predictable? Specifically: do the patterns before and 
after an EE follow a particular sequence (as it was 
observed in the pulse intensities [16]) or not? 
 
2. Experimental setup. 
 
The setup is sketched in the Fig.1. The output of a 2W 
(@808 nm) continuous-wave laser diode is focused to 
a spot 0.8 mm diameter into a Nd:YVO4 crystal, 1% 

doped with standard dichroic coating. The V-shaped 
laser cavity has a folding HR concave mirror and a 
plane output coupler. The operating wavelength of the 
laser is 1064 nm, linearly polarized. The mode size 
varies strongly between mirrors, with a waist near the 
output coupler. The cavity’s Fresnel number is ≈10. A 
solid-state SA (Cr:YAG) is placed between the folding 
mirror and the output coupler at position X. Adjusting 
this position, the mode size at the SA changes and 
hence the condition of saturation. This is the main 
control parameter in this system. As it is varied 
different dynamical regimes appear, from stable Q-
switch to periodic bifurcations and chaotic regimes 
with and without EEs. The average output power is 
practically the same in all the regimes, about 300 mW 
for 1.8W pump power. The pulse duration is ≈100 ns. 
This means a typical average peak power of 125 kW. 
 

 
 
Figure 1:  Sketch of the setup. LD: pump laser diode, 2 W cw at 808 
nm; GL: GRIN lens; ND: Nd:YVO4 slab 3×3×1 mm3 1% doped; M1: 
folding mirror (HR, R = 10 cm); M2: output mirror (reflectivity 98%, 
plane); SA: Cr:YAG crystal, transmission (unbleached) 90%; α = 
20◦; distance ND-M1=13 cm; M1-M2 = 7 cm; the position X is 
adjusted to get different dynamical regimes; FPD: fast photodiode 
connected to a digital memory oscilloscope; UFC: ultrafast camera 
recording single pulse spot images; the screen is translucent. By 
unblocking the laser beam between M2 and the beam splitter, the 
camera and the oscilloscope, which are both set in the “auto trigger” 
mode, start recording at the same time. Yet, the intensities and 
images series rapidly get out of synchronism, so that a special 
software code had to be developed to determine what image 
corresponds to each pulse. 
 

A beam splitter divides the laser output in two: one 
part is focused into a fast photodiode (100 ps risetime) 
connected to a digital storage oscilloscope (PicoScope  
6403B: 350 MHz bandwidth, 5 GS/s, memory 1 GS); 
the other part is projected in a translucent screen and 
observed and recorded with an ultrafast camera 
(Photron Fastcam SA-3). The oscilloscope records the 
shape of the laser pulses, while the camera 
simultaneously records the transverse pattern of the 
laser spot. The synchronous start of both recordings is 
ensured by blocking (and then unblocking) the laser 
beam between the output mirror and the beam splitter 
(see Fig.1), and by setting both the oscilloscope and the 
camera in “auto trigger” mode (see Supplemental 
Materials). 



The spatial resolution of the camera decreases if the 
number of fps is increased. There is a discrete set of 
“fps × resolution” combinations available in the 
camera’s software menu. In the periodic regimes, the 
repetition rate of the laser does not fit exactly the 
values in this menu and besides, there is a “blind time” 
after each camera shot. For these reasons, during a long 
run the patterns corresponding to some pulses are lost 
(an illustration of this problem is shown in Fig.2). In 
the chaotic regimes the situation is even worse, for the 
pulse separation changes wildly. The camera may miss 
the patterns corresponding to some pulses. Or, it may 
record in the same frame the patterns corresponding to 
two successive pulses that are unusually close in time. 
Fortunately, if the fps of the camera and the average 
repetition rate of the laser roughly fit, and some special 
care is taken (see later) the number of pulses missed or 
jammed in a long series is found to be low. In all the 
runs discussed in this paper, the laser repetition rate is 
≈24 KHz, the camera is set to 25000 fps, the resolution 
128×80 pixels and the blind time 1.32 μs. The 
acquisition time of each frame is thus 38.68 μs, much 
longer than the pulse duration. Hence, each image is 
the time-integrated transverse pattern of one pulse 
(rarely, two pulses).  

A brief note on the definition of the EE threshold 
value: it usually is: a) amplitude higher than twice the 
“significant wave height” or “significant intensity” I1/3, 
which is the average calculated among the set of the 
1/3 highest events in the series. Alternatively: b) 
amplitude higher than 4 times the standard deviation. 
Here we use the definition b). The kurtosis K is an 
additional measure of non-Gaussian feature; K>3 
means a distribution with a tail longer and higher than 
that of a Gaussian one.  

 
3. Observations. 
3.1 An example: period three regime. 
 

 
 
Figure 2:  Pulse intensity and corresponding patterns for a period-3 
regime. Note the successive labels of the camera shots (from -516 to 
-510). As an illustration of a typical error, we show here a case where 
the camera fired between two successive pulses and is an empty 
image (frame -511, not shown).  

Depending on the position X of the SA, different 
dynamical regimes are observed. The intensity output 
and the sequence of spatial patterns for a period-3 
regime are displayed in the Fig.2. It is clearly seen that 
the periodic evolution of the pulse intensity 
corresponds to a periodic repetition of spatial patterns. 
The pulse with the highest intensity corresponds to a 4-
fold pattern (called “E”, see next section), while the 
two smaller ones to TEM00-like patterns (called “A”). 
The sequence repeats indefinitely. 

 
3.2 Chaotic regime with EEs. 

 
Now we adjust the SA position so that the laser is 

in a chaotic regime with EE. In what follows, for 
reasons of space, we discuss in detail the results for 
one particular run (internal identification: 2b9/29/16). 
It is representative of many other runs. If the average 
peak intensity is scaled to 100, the EE threshold in this 
run is 161 and 64 pulses are EE (see Fig.3). The 
kurtosis value is 5.1. The complete series has 27779 
pulses (a sample zoom is shown in Fig.4). It is 
analyzed with the TISEAN free software package 
[18,19]. The value of the dimension of embedding (dE) 
is found by the decay of the fraction of false neighbors 
and is computed between 8 and 10. This determines the 
dimensionality of the dynamics. The sum of the 
Lyapunov exponents is negative, showing the system is 
dissipative. Two of them are positive, showing the 
regime is chaotic.  

 

 
Figure 3: Histogram of peak pulse intensities (run 2b9/29/16, 27779 
pulses). The horizontal axis is normalized such that the average 
intensity =100. The threshold value for EE is 161 (vertical line), 
there are 64 EE, dE=8, two positive Lyapunov exponents, K = 5.1. 
 

The time separation between pulses changes in an 
irregular way, so that the images corresponding to 
some pulses can be missed, or two get superimposed. 
Besides, there is a slight drift between the internal 
clocks of the oscilloscope and the camera. For these 
reasons, even if the number of missed or jammed 
images is small, the identification of the (camera) 
image that corresponds to a (oscilloscope) pulse is not 
immediate. We then develop a computer code that 
matches images and pulses. It is based on the 
correlation between two series: the integral below the 



pulse in the oscilloscope trace obtained for a test 
partition, and the integrated intensity in the camera 
image. Both series are proportional to the total energy 
of each pulse, so that they are naturally correlated. The 
code adjusts the partition to maximize the correlation. 
 

 
Figure 4:  Sample zoom of the oscilloscope trace for run 2b9/29/16. 
Note the EE just before time = 517 ms.  
 

We then find that the correlation between pulses’ 
and images’ series decays with time. This is caused by 
a relative drift ≈10 μs/s between the clocks in the 
oscilloscope and the camera. This drift is corrected 
whenever the calculated correlation decays below a 
threshold. This code is useful to correlate any type of 
one-column series with a non-synchronous series of 
images, provided that both have some magnitude in 
common (in our case, the pulse total energy) (see 
Supplemental Materials for the details).  
 

 
 
Figure 5: Types of patterns observed in run 2b9/29/16. Their relative 

frequency is indicated. Probably, F=C+D and H=C+E. The spot 
observed with a standard camera is shown as a reference. 

 
In the chaotic series we identify 8 different types of 

patterns, that we name “A” to “H” (Fig.5). The relative 
frequency of each pattern in the series is indicated, also 
the image observed with a standard camera (which is 
steady). Now we can answer question (i): the steady 

complex pattern observed at low time resolution is the 
superposition of hundreds of different patterns that 
alternate chaotically. Also question (ii): there are few 
types of simple patterns. Besides, some of the less 
frequent patterns are probably the superposition of two 
successive ones, because of the lack of synchronism 
between camera and laser: this is the case of type “F” 
(probable superposition of “C” and “D”) and “H” (“C” 
and “E”). This reduces the number of types to 6. 
Finally, note that the 5 types “A” to “E” suffice to take 
into account 99% of the pulses. The minimum number 
of types among all the series with EE we observed is 3 
(series 5a/29/16, it has 239 EE in a total of 29753 
pulses, dE=6 and two positive Lyapunov exponents). 

In the set of 64 pulses above the EE threshold, 36 
correspond to the type “E”, 23 to “C”, 2 to “F”, 1 to 
“H”, and 1 is missed by the camera (blind time). Now 
we can answer question (iii): the EE are not associated 
with a single type of pattern. Yet, almost all of them 
are associated with only two types (“E” and “C”), and 
one is dominant (type “E” amounts to 58% of the EE). 
Besides, the “E” ones have a higher scaled average 
intensity (191) than the “C” (170,7) and the others 
(171,2). In fact, type “E” fills the rightmost end of the 
distribution in Fig.4. There are no EE of the “A” and 
“B” types although these types are, by far, the most 
frequent of all in the complete series. 

 We can also answer question iv): the EE are not 
caused by a “hot spot”, but instead by a brighter 
illumination of the whole pattern. This pattern is not 
exclusive of the EE. 
 
3.3 Sequences of patterns near an EE. 

 
Now we consider the question v), which regards the 

predictability of EE. We then study their neighbor-
hood. Since the “C” and “E” sum up more than 90% of 
the total of EE, we focus on these types.  
 

 
 
Figure 6:  An example of the sequence eabaEabae, which is the most 
frequent one in the set of EE. It is, in addition, curiously symmetrical 
in time. The EE is underlined (frame 12322).  See movies of this run 
and the one in Fig.2 in http://www.lls-ceilap.com/extreme-events-in-
all-solid-state-lasers.html 
 

A few words on notation: we indicate with a small 
letter the pattern corresponding to a pulse of normal 
intensity, and with a capital letter an EE (f.ex., the 



sequence of patterns in Fig.6 is eabaEabae). An 
asterisk means “any pattern”, a dash means a pulse 
missed by the camera. 

Regarding the “E”-type of EE, 14 (probably 15, for 
there is one eab-Eabae) out of 36 sequences are the 
curiously symmetrical in time eabaEabae shown in 
Fig.6. A less restrictive search, 7-letters sequences, 
abaEaba increases the number only a bit, to 18. The 
number of sequences eabaE**** (which are of interest 
to herald the EE) is 20 so that, within the set of the EE, 
eaba heralds the appearance of a “E”-type EE with a 
probability of 0.31. A striking example of the 
regularity of pulse intensities and time between pulses 
in the neighborhood of an EE is displayed in the Fig.7, 
where the 14 oscilloscope traces corresponding to the 
sequence eabaEabae are plotted superimposed. 

Regarding the “C”-type of EEs, and contrarily to 
the “E”-type, there is no dominant sequence of 9 
letters. Instead, some “rare” patterns like d, f and g 
appear. The sequence adaC*** occurs 14 times, so that 
within the set of the EE, ada heralds a “C”-type EE 
with a probability of 0.22.  

The regularities observed reveal that the formation 
of EE in this system follows a deterministic 
mechanism. F.ex., the p-value corresponding to the 
null hypothesis that the eabaEabae sequence appears 
randomly is 3×10-32. This is the result of an experiment 
where the probability of appearance of this sequence in 
each trial is 1,1×10-5 (see the frequencies in Fig.5) and 
there are 14 sequences in 64 trials. This extremely 
small p-value demonstrates that this sequence is not the 
result of a statistical fluctuation. 

 

 
Figure 7:  Superposition of the 14 oscilloscope traces of the sequence 
eabaEabae. The horizontal line indicates the EE threshold. 

 
3.4 Statistics on the complete series. 

 
It is interesting to know whether to predict an EE in 

the set of all the pulses in the series by using the 
sequence of patterns is possible, or not. In order to do 
this task, a computer code able to identify each type of 
pattern (that is: to translate each of the 27779 images 
into one of the 8 letters in Fig.4) is developed.  The 
error of this code is checked by visual inspection of 
selected, “difficult” subsets of the series. We find that 
the error in recognizing a pattern strongly depends on 
its type. An average over all the types, weighed by 
their frequency, gives an error ≈4%. This number is 

mainly determined by the relatively high probability of 
erroneously identifying, as type “A”, some images that 
do not fit smoothly into one of the defined types. This 
code is useful whenever a pattern recognition task is 
required (see Supplemental Materials for the details).  

Using this code, we find that the number of 
sequences eabaeabae (that is: regardless whether the e 
in the middle is an EE or not) is 321. This means that 
the sequence appears with a probability ≈1% in the set 
of all the pulses in the series. It is far smaller than the 
probability within the set of EE (15/64 ≈23%). On the 
other hand, the probability this sequence to happen by 
chance (calculated from the fractions in Fig.5) is only 
≈10-5. The same calculus for the adac sequence (which 
is the other most common sequence leading to EE) 
shows that it has a probability to happen by chance of 
≈10-3, but there are 328 of these sequences in the 
complete series (>1%), and 14/69≈ 20% within the set 
of the EE. In other words: the sequences eabaeabae 
and adac appear, in the complete series, far more often 
(a factor 10 to 1000) than random. They do it even 
more often (an additional factor 20) within the set of 
EE. These results indicate that the system follows some 
preferred “roads” of patterns in its evolution, and that 
at least two of these roads are likely to produce an EE. 
These are encouraging results. The identification of 
these roads (actually, sets of orbits within the attractor) 
is the first step to achieve EE management through 
control of chaos.  

However, despite the regularities found, the 
probability of predicting an EE from a sequence of 
patterns is poor. The number of sequences eaba is 
2173, but only 15 EE (all of type “E”) follow. The 
number of sequences ada is 1369, but only 14 EE (all 
of type “C”) follow. Therefore, the sequence of 
patterns does not provide a reliable way to herald an 
EE. There is a too high number of “false alarms”. 

Finally, note that practically all EE belong to the 
types “C”, “E” or “F”. These types also reach higher 
average energies than the other ones by a factor 1.5 to 
2 (see Supplemental Materials). This result can be 
understood by noting that the images in Fig.5 show 
these types to overlap the transverse pumped area best. 
It is then possible to hypothesize the basic mechanism 
of formation of EE in this way: the patterns with EE 
have the spatial distributions most efficient to extract 
energy from the pumped area and, in addition, for 
some reason still to be fully explained, sometimes do it 
extraordinarily well. The reason of this success surely 
lies in the spatial distribution of the bleaching of the 
SA. In Reference 16 it was shown that EE are not 
preceded by a long time elapsed since the last pulse, 
that is: they are not caused by the simple accumulation 
of energy because of a longer pump time. Recall also 
that Cr:YAG is a “slow” SA, so that it keeps some 
memory of the bleaching level reached in the previous 
pulse.  

  
4. Conclusions. 
 

One of the goals of our research program is to 
manage the formation of EE for a practical application. 



This requires the development of an appropriate (not 
only correct, but also as simple as possible) 
mathematical description of the phenomenon. It is 
useful summarizing here the observations that 
description must fit. In previous contributions [11,16] 
we have reported that: 
1) Chaotic regimes have been observed with all values 
of dE≥ 4, but no regime with EE has been observed 
with dE< 6. EE are easier to observe with increasing 
Fresnel number. EE are observed in regimes with one 
or more positive Lyapunov exponents as well. 
2) The regimes with EE show a decay of the 
correlation between the time series recorded at 
different points in the transverse section. The chaotic 
regimes without EE do not always show this decay. 
The same happens with the transverse phase coherence 
observed in a Mach-Zehnder interferometer. These 
results indicate that a description in terms of intensities 
(instead of fields) may suffice [20]. 
3) The time before the appearance of an EE (measured 
since the previous pulse) is well defined and near the 
average time between successive pulses. On the 
contrary, the time after an EE until the next pulse is 
longer than the average (what is most reasonable). 

In this paper, we add that: 
4) It suffices to take into account the interaction within 
a set of relatively few modes that are previously 
determined by the observation. The time series 
analyzed in this paper need 5 patterns to take into 
account 99% of the pulses. Similar numbers are 
obtained in other recorded series, not analyzed here. 
This means that the mathematical description does not 
need to include the transversal Laplacian, but a set of 
relatively few ordinary differential equations, what 
significantly simplifies the problem. 
5) The patterns associated with EE seem to be the most 
efficient to extract energy from the active medium, 
because of their overlap with the pumped area. 
6) The pulse separation and intensity, as well as the 
sequence of patterns, just before and after an EE, are 
more regular than for a non-EE pulse.  

The observed regularities indicate that the EE occur 
inside a well defined set of orbits. The formation of EE 
can be then managed by stabilizing these orbits through 
algorithms of control of chaos. Besides, that region of 
phase space is visited much more often than in a 
random evolution, what is a fortunate feature regarding 
the foreseen practical application. For, the user does 
not have to wait a long time (at the human timescale) 
until an opportunity to generate an EE spontaneously 
arises. 

The next step in our program is the development of 
a mathematical description. As it is said, simplicity is 
crucial to devise a control algorithm to be feasible in 
practice. From the observations summarized above, we 
know the description can be based on few intensity 
modes, coupled through the populations in the gain and 
the SA. The theoretical results should be then checked 
against those observations. If a poor fitting is obtained, 
we foresee several steps of increasing complexity of 
the description. In the simplest approach, no spatial 
modulations of the population in the SA are taken into 

account, as in [20]. The next step is to include these 
spatial modulations, but with fixed phase relationship. 
A third possible step is to consider the phases as free 
variables.  

The observations reported in this paper reveal that 
the complex steady transverse pattern observed with a 
standard camera is the superposition of a few simpler 
patterns that alternate chaotically, that the patterns 
corresponding to EE belong to an even smaller set, and 
that the sequences of patterns before (and sometimes 
after) an EE are repetitive. Besides, all the simple 
patterns are free of “hot spots” and are similar to low 
order modes of the optical cavity. This information is 
obtained thanks to the original use of an ultrafast 
camera and two programs specifically developed to 
analyze the data. 

There is no reason to believe these results to be 
specific of solid-state lasers. On the contrary, they 
should be prima facie valid in other types of lasers + 
SA with transversally extended cavities, where the 
dynamics is too fast to allow direct observation of the 
spatial pattern associated to each pulse (as in [12,13]). 
These results can be hence taken as the starting 
hypothesis in any high Fresnel number laser + SA 
system. Even more general, these results demonstrate 
that EE can arise even in a system with a limited 
number of modes. Hence, an equation in partial 
derivatives (as the often used nonlinear Schrödinger 
equation) is not necessarily involved in the formation 
of EE. 
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