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Multi-scale turbulence naturally develops and plays an important role in many fluid, gas and
plasma phenomena. Statistical models of multi-scale turbulence usually employ Kolmogorov hy-
potheses of spectral locality of interactions (meaning that interactions primarily occur between
pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical tur-
bulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov
locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical
turbulence enables a derivation of simplified evolution equations that reduce the problem to a single
scale modeling. We present the derivation of these equations for Kerr media with random inhomo-
geneities. Then, we find the analytical solution that exhibits a transition between inverse and direct
energy cascades in optical turbulence.

PACS numbers: 42.65.Sf, 42.65.Jx, 52.35.Mw

1. INTRODUCTION

In focusing Kerr media, coherent laser pulses of powers
much exceeding the so-called “critical power” [1–4] can-
not propagate, without transverse filamentation, much
longer than the distance of self-focusing. The propaga-
tion distance can be greatly increased in a weak turbu-
lence regime where the nonlinear filamentation is pre-
vented by a stronger transverse dispersion of incoherent
laser pulses [5]. There is there a larger propagation length
limit imposed by stimulated 4-photon scattering. This
process tends to produce an “inverse cascade” of photons,
directed towards small transverse wave-numbers, in con-
trast to the classical Richardson-Kolmogorov-Obukhov
cascade [6–10] directed to large wave-numbers. At small
transverse wave-numbers, the transverse dispersion is too
small to sustain the phase randomness. The coherent
Bose-Einstein condensate thus formed exhibits the trans-
verse filamentation.

The propagation limit could be overcome by suppress-
ing the inverse cascade. What enables the inverse cascade
in weak optical turbulence is an additional integral of mo-
tion. It is the “transverse energy” of photons conserved
in homogeneous media, in addition to the total energy of
photons. The transverse energy flux is directed to large
transverse wave-numbers. It is carried by a small frac-
tion of photons, which results in the transverse cooling of
the most photons in the pulse. It was suggested recently
[11] that the transverse heating of the pulse through pho-
ton scattering on random inhomogeneities of the medium
can stop the nonlinear transverse cooling before the un-
stable condensate formation, and thus enable extended
propagation of powerful laser pulses.

Below, we analytically find the spectra of weak op-
tical turbulence in randomly inhomogeneous Kerr me-
dia. These results significantly refine heuristic estimates
of [11] and broaden the class of analytically tractable

regimes of optical turbulence previously found for homo-
geneous media [5]. Apart from importance for the op-
tical turbulence itself and its direct applications, these
results may be useful for other kinds of turbulence de-
scribed by nonlinear Schrodinger equations (see, for ex-
ample, [12, 13]). In broader contexts, these results may
be conceptually important for less tractable cases includ-
ing Navier-Stokes turbulence. This relates both to gen-
eral issues associated with possible deviations from Kol-
mogorov locality and scale-invariance in turbulence, and
to issues associated with transitions between different
kinds of cascades, like two-dimensional inverse cascades
[14, 15] and direct or bidirectional cascades in thicker
fluid layers [16, 17].

The outline of this paper is as follows. In Section 2, we
start from the Liouville kinetic equation for photons with
4-photon collisional integral. Statistical averaging of this
equation over random inhomogeneities of the medium
captures the effect of inhomogeneities into a term describ-
ing diffusion of photons in wave-vector space. In Section
3, we review basic properties of this kinetic equation. In
Section 4, we explain reduction of the 4-photon collisional
integral to a quasi-local in wave-vectors form suggested in
[5]. In Section 5, we find solutions of the kinetic equation
at transverse wave-numbers much smaller the largest one,
where the 4-photon scattering is fast enough to establish
a quasi-stationary spectrum. In Section 6, we derive an
evolution equation for photon spectrum around its up-
per boundary in transverse wave-numbers. In Section 7,
we solve this equation with proper boundary conditions
at smaller transverse wave-numbers. In Section 8, we
use the solution to determine in which parameter space
domain the diffusion stops the condensation before the
filamentation occurs. In Section 9, we discuss the results.



2

2. KINETIC EQUATION FOR PHOTONS IN

KERR MEDIA WITH RANDOM

INHOMOGENEITIES

Consider an incoherent laser pulse paraxially propa-
gating in z-direction with a fixed group velocity vg. The
transverse motion of photons will be described by Hamil-
ton equations for rays,

dk⊥

dt
= −∂ω(k, r, t)

∂r⊥
,

dr⊥
dt

=
∂ω(k, r, t)

∂k⊥

,

with frequency taken in the form

ω(k, r, t) = ω0 + ωr(r) + ωl(k⊥) + ωnl(I) ,

where ωr(r), ωl = βk2
⊥
and ωnl = αI are small additions

to the pulse carrying frequency ω0, associated with the
medium inhomogeneities, transverse dispersion and Kerr
effect proportional to the local field intensity I, respec-
tively.
Statistical averaging over random phases of the rays

leads to an evolution equation for the photon spectral
density Ik⊥

(r, t),

[

∂

∂t
+ vg

∂

∂z
+ 2βk⊥ · ∂

∂r⊥

−

∂(ωr + αI)

∂r⊥
· ∂

∂k⊥

]

Ik⊥
= Sk⊥

, (1)

which can be viewed as the Liouville kinetic equation
for photons with the “collisional integral” Sk⊥

. For the
4-photon scattering of interest here,

Sk⊥
= U

∫

dk1⊥dk2⊥dk3⊥

δ(k⊥ + k1⊥ − k2⊥ − k3⊥)δ(k
2
⊥ + k21⊥ − k22⊥ − k23⊥)

Ik⊥
Ik1⊥

Ik2⊥
Ik3⊥

(

I−1

k⊥
+ I−1

k1⊥
− I−1

k2⊥
− I−1

k3⊥

)

, (2)

see, for example, [18–21]. For the spectral density nor-
malization

∫

dk⊥Ik⊥
= 2πI, the coefficient is

U = α2/β.

Consider now statistical averaging over random
medium inhomogeneities. The photon spectral density
fluctuations, Ĩk⊥

= Ik⊥
− Īk⊥

, can be approximately ex-
pressed through the averaged value, Īk⊥

, by keeping just
leading terms in the linear part of Eq. (1). This gives
the formula

Ĩk⊥
≈ v−1

g

∫ ∞

0

dζ
∂ωr(z − ζ)

∂r⊥

· ∂

∂k⊥

Īk⊥
(r⊥, z − ζ, t) .

Substituting Ik⊥
= Ĩk⊥

+ Īk⊥
into Eq. (1) and averaging

gives
(

∂

∂t
+ vg

∂

∂z
+ 2βk⊥ · ∂

∂r⊥

)

Īk⊥
≈

∂ωr

∂r⊥
· ∂Ĩk⊥

∂k⊥

+ α
∂Ī

∂r⊥
· ∂Īk⊥

∂k⊥

+ Sk⊥
. (3)

For media statistically isotropic in r⊥ plane,

∂ωr(z)

∂r⊥

∂ωr(z − ζ)

∂r⊥

=
1

2

(

1 0
0 1

)

∂ωr(z)

∂r⊥
· ∂ωr(z − ζ)

∂r⊥
,

Eq. (3) takes the form

(

∂

∂t
+ vg

∂

∂z
+ 2βk⊥ · ∂

∂r⊥

)

Īk⊥
≈

D
∂2Īk⊥

(∂k⊥)2
+ α

∂Ī

∂r⊥
· ∂Īk⊥

∂k⊥

+ Sk⊥
, (4)

D =
1

2

∫ ∞

0

dζ
∂ωr(z)

∂r⊥
· ∂ωr(z − ζ)

∂r⊥
.

For the kinetic equation applicability, the rate of phase
mixing should exceed the rate of nonlinear interaction. In
statistically uniform media, this condition also ensures
stability of spectra uniform in the transverse directions
to small transverse modulations.
For a single scale initial spectrum with the typical

spread of transverse dispersion corrections to wave fre-
quencies ωl ∼ βk2⊥0, the kinetic equation applicability
condition is

βk2⊥0 ≫ UI2/k2⊥0 ⇐⇒ βk2⊥0 ≫ αI .

Generalizations for multi-scale spectra will be considered
below.
Kinetic equation (4) is further simplified in the coor-

dinate frame moving with the group velocity vg in z-
direction. For wave spectra uniform in the transverse
directions, the simplified equation takes the form

∂Ik⊥

∂t
= D

∂2Ik⊥

(∂k⊥)2
+ Sk⊥

. (5)

The averaging bar over I is omitted here and further (also
“=” is used in stead of “≈” where it is not confusing).

3. BASIC PROPERTIES

Kinetic equation (5) conserves the number of photons

I = (2π)−1

∫

dk⊥Ik⊥
, (6)

The conservation can be formally verified by noticing
that the expression under integral in Eq. (2) is anti-
symmetric to the switching variables k⊥, k⊥1 ⇄ k⊥2, k⊥3.
The “transverse energy” of photons linearly grows with

time,

E(t) ≡ (2π)−1

∫

dk⊥k
2
⊥Ik⊥

= 4IDt+ E0 . (7)

This can be verified by integrating the equation (5) mul-
tiplied by k2

⊥
and noticing that

∫

dk⊥k
2
⊥
Sk⊥

= 0 (due to
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the symmetries which allow to produce the combination
k2⊥ + k2⊥1 − k2⊥2 − k2⊥3 = 0 under the integral).
Since

∫

dk⊥k
2
⊥
Sk⊥

= 0, the quantity k2
⊥
Sk⊥

can be
presented in the form of divergence of a vector field. The
physical meaning of this field is the density of transverse
energy spectral flux associated with the stimulated 4-
photon scattering. For axisymmetric spectra, this vector
field is radial, so that Eq. (5) can be rewritten in the
form

∂

∂t
k2⊥Ik⊥

= Dk⊥
∂

∂k⊥
k⊥

∂

∂k⊥
Ik⊥

− 1

k⊥

∂

∂k⊥
Jk⊥

, (8)

Jk⊥
= − U

2π

∫

Θ(k⊥ − k4⊥)k
2
4⊥dk4⊥dk1⊥dk2⊥dk3⊥

δ(k4⊥ + k1⊥ − k2⊥ − k3⊥)δ(k
2
4⊥ + k21⊥ − k22⊥ − k23⊥)

Ik4⊥
Ik1⊥

Ik2⊥
Ik3⊥

(I−1

k4⊥
+ I−1

k1⊥
− I−1

k2⊥
− I−1

k3⊥
), (9)

Θ(x) =

{

1, x ≥ 0
0, x < 0

.

We are interested here in regimes for which the linear
diffusive scattering is initially negligible compared to the
stimulated 4-photon scattering. For single scale initial
spectra (k⊥ ∼ k⊥0), this means

D ≪ UI2.

As long as the linear diffusive scattering remains neg-
ligible, the stimulated 4-photon scattering accumulates
waves at small transverse wave-numbers k⊥ ≪ k⊥0. For
D = 0, it would ultimately make the kinetic equation
inapplicable at the small k⊥. However, a small finite
D could stop the wave accumulation at small transverse
wave-numbers still within the kinetic equation applicabil-
ity range. This may keep the turbulence weak through
the entire evolution at each k⊥.
The spectra dominated by stimulated 4-photon scat-

tering have the wave-populated domain k⊥ . k⊥M ex-
panding with the rate of 4-photon scattering at k⊥ ∼
k⊥M . Due to a much higher rate of 4-photon scattering
at k⊥ ≪ k⊥M , a nearly equilibrium spectrum is estab-
lished there,

Ik⊥
=

Tk⊥

k2
⊥
+ k2

⊥m

. (10)

A slow variation of the “transverse temperature” Tk⊥

across the spectrum is kept here to enable a nonzero spec-
tral flux Jk⊥

of the transverse energy.

4. REDUCTION OF THE TRANSVERSE

ENERGY SPECTRAL FLUX INTEGRAL

As seen from the symmetries of Eq. (9), a nonzero
contribution to this integral comes only from such photon
quartets in which max{k2

4⊥
, k2

1⊥
, k2

2⊥
, k2

3⊥
} > k2

⊥
. By a

proper renaming of the indexes, Jk⊥
can be presented in

the form

Jk⊥
=

U

2π

∫

dk4⊥dk1⊥dk2⊥dk3⊥

Θ(k1⊥ − k⊥)Θ(k1⊥ − k2⊥)Θ(k1⊥ − k3⊥)

[Θ(k⊥ − k2⊥)k
2
2⊥ +Θ(k⊥ − k3⊥)k

2
3⊥ −Θ(k⊥ − k4⊥)k

2
4⊥]

δ(k4⊥ + k1⊥ − k2⊥ − k3⊥)δ(k
2
4⊥ + k21⊥ − k22⊥ − k23⊥)

Ik4⊥
Ik1⊥

Ik2⊥
Ik3⊥

(I−1

k4⊥
+ I−1

k1⊥
− I−1

k2⊥
− I−1

k3⊥
) . (11)

For k⊥ ≫ k⊥m, the major contribution to this integral
comes from the domain k4⊥ ≪ k⊥, and is large in the
parameter ln(k2⊥/k

2
⊥m) ≫ 1. This allows to simplify Eq.

(11) as follows:

Jk⊥
≈ UIk⊥

∫

dk1⊥dk2⊥dk3⊥Θ(k1⊥ − k⊥)

[Θ(k⊥ − k2⊥)k
2
2⊥ +Θ(k⊥ − k3⊥)k

2
3⊥]

δ(k1⊥ − k2⊥ − k3⊥)δ(k
2
1⊥ − k22⊥ − k23⊥)

Ik1⊥
Ik2⊥

Ik3⊥
(I−1

k1⊥
− I−1

k2⊥
− I−1

k3⊥
) , (12)

Ik⊥
=

∫ k⊥

0

dk4⊥k4⊥Ik4⊥
. (13)

This shows explicitly that the spectral flux of transverse
energy Jk⊥

does not satisfy the Kolmogorov locality hy-
pothesis. Rather, each of scales k4⊥ < k⊥ equally con-
tributes to Jk⊥

. The non-locality is encapsulated within
the quantity Ik⊥

. This can be viewed as a weaker form
of locality, where the flux Jk⊥

is produced by a spectrally
local 3-wave scattering with the probability proportional
to Ik⊥

slowly varying across the spectrum.
Eq. (12) can be rewritten in the form

Jk⊥
≈ 2πUIk⊥

∫ ∞

0

∫ ∞

0

dk2⊥dk3⊥Θ(k22⊥ + k23⊥ − k2⊥)

[Θ(k⊥ − k2⊥)k
2
2⊥ +Θ(k⊥ − k3⊥)k

2
3⊥] (14)

I√
k2

2⊥
+k2

3⊥

Ik2⊥
Ik3⊥

(I−1√
k2

2⊥
+k2

3⊥

− I−1

k2⊥
− I−1

k3⊥
) .

The major contribution to this integral comes from the
domain k3⊥ ∼ k2⊥ ∼ k⊥.
This formula can be further simplified in the domain

where the transverse temperature Tk⊥
≈ k2⊥Ik⊥

just
slowly varies with k⊥,

∣

∣

∣

∣

∂ lnTk⊥

∂ ln k⊥

∣

∣

∣

∣

≪ 1 . (15)

There

I−1√
k2

2⊥
+k2

3⊥

− I−1

k2⊥
− I−1

k3⊥
≈

k22⊥

(

T−1√
k2

2⊥
+k2

3⊥

− T−1

k2⊥

)

+ k23⊥

(

T−1√
k2

2⊥
+k2

3⊥

− T−1

k3⊥

)

≈

∂T−1

k⊥

∂ ln k⊥

(

k22⊥ ln
√

1 + k2
3⊥

/k2
2⊥

+ k23⊥ ln
√

1 + k2
2⊥

/k2
3⊥

)

,
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so that the Eq. (14) reduces to

Jk⊥
≈ −AU Ik⊥

Tk⊥

∂Tk⊥

∂ ln k⊥
, (16)

A =
π

2

∫ ∞

0

du

[

u2 ln(1 + u−2) + ln(1 + u2)
]2

(1 + u2)u2
≈ 3.0 .

The expression (16) was first suggested in [5].

5. QUASI-STATIONARY SPECTRUM AT

k⊥ ≪ k⊥M

As the upper boundary k⊥M of the photon-populated
domain grows, the spectrum evolves, but slowly com-
pared to the 4-photon scattering rate at k⊥ ≪ k⊥M

which is much larger than at k⊥ ∼ k⊥M . Therefore,
the time-derivative term in Eq. (8) can be neglected
at k⊥ ≪ k⊥M , and the quasi-stationary spectrum (10)
establishes there. The diffusion term in Eq. (8) is ap-
proximately equal to 4DTk⊥

/k2⊥, for k⊥m ≪ k⊥ ≪ k⊥M .
Thus, Eq. (8) takes there the form

∂Jk⊥

∂ ln k⊥
≈ 4DTk⊥

. (17)

The integration and using Eq. (13) gives

Jk⊥
≈ 4D Ik⊥

. (18)

The solution of Eqs. (16) and (18) is

Tk⊥
≈

√

T 2
∗ +

8D

AU
ln

k⊥M

k⊥
, (19)

where T 2
∗ is the integration constant. The applicability

condition (15) reduces then to

4D

AUT 2
k⊥

≪ 1 . (20)

Eq. (13) takes the form

Ik⊥
≈

∫ k⊥

k⊥m

Tk⊥

dk⊥
k⊥

≈ AU

12D

(

T 3
k⊥m

− T 3
k⊥

)

. (21)

According to the Eq. (19), there are three domains in
the parameter space where the spectrum looks different:

1. For AUT 2
∗ ≫ 8D ln(k⊥M/k⊥m), the transverse

temperature is approximately the same for all pop-
ulated states, Tk⊥

≈ T∗. The conservation law
I ≈ T∗ ln(k⊥M/k⊥m) allows to reduce the above
inequality to AUT 2

∗ ≫ 8DI/T∗.

2. For 8DI/T∗ & AUT 2
∗ ≫ 8D, the diffusion reshapes

the spectrum at 8D ln(k⊥M/k⊥) & T 2
∗AU , while at

8D ln(k⊥M/k⊥) ≪ T 2
∗AU the temperature profile

stays flat, Tk⊥
≈ T∗.

3. For AUT 2
∗ . 8D, the diffusion reshapes the entire

spectrum.

6. REDUCED EVOLUTION EQUATION

The analytical expression of the spectrum at k⊥ ≪
k⊥M through parameters at its upper boundary allows
to reduce the problem of multi-scale spectrum evolu-
tion to a much simpler problem of solving Eqs. (8)-(9)
just for photons with k⊥ ∼ k⊥M . The problem can be
further simplified by using, instead of Eq. (9), the re-
duced Eq. (14) for the transverse energy flux Jk⊥

. Also,
the approximation Ik⊥

≈ I can be used in Eq. (14)
at k⊥ ∼ k⊥M , since nearly all photons are located at
k⊥ ≪ k⊥M . In the Eq. (8) at k⊥ ∼ k⊥M , the diffu-
sion term (which is about ∼ DTk⊥M

/k2⊥M ) can be ne-
glected compared to the 4-photon scattering term (which
is about Jk⊥M

/k2
⊥M & 4DI/k2

⊥M ≫ DTk⊥M
/k2

⊥M ).
Thus simplified, Eqs. (8)-(9) can be presented in the form

∂

∂t
k⊥Tk⊥

≈ − ∂

∂k⊥
Jk⊥

, (22)

Jk⊥
≈ UIT 2

∗J (x) , x =
k⊥
k⊥M

, y(x) =
Tk⊥

T∗

, (23)

J (x) = 4π

∫ x

0

dx2x
2
2

∫ ∞

√
x2−x2

2

dx3 (24)

[

y(x2)y(x3)

x2
2x

2
3

− y(
√

x2
2 + x2

3)y(x3)

(x2
2 + x2

3)x
2
3

− y(
√

x2
2 + x2

3)y(x2)

(x2
2 + x2

3)x
2
2

]

.

For a moderately small x = k⊥/k⊥M , the solution of
these equations should merge with the quasi-stationary
spectrum found above. This provides the boundary con-
dition for Eqs. (22)-(24) at x ≪ 1. According to the Eqs.
(18)-(19), it can be presented in the form

J (x)|x≪1 ≈ 4D

UT 2
∗

, y(x)|x≪1 ≈
√

1 +
8D

AUT 2
∗

ln
1

x
. (25)

Since nearly all transverse energy is located at k⊥ ∼
k⊥M , its variation should be correctly described by the
simplified equations. This can be verified by integrating
Eq. (22) over k⊥ ∼ k⊥M , which gives

d

dt

∫

dk⊥k⊥Tk⊥
≈ 4ID , (26)

in agreement with Eq. (7). Eq. (7) takes now the form

k2⊥MT∗F1 ≈ E0 + 4IDt , F1 =

∫ ∞

0

dxxy(x) . (27)

Integration of the multiplied by k⊥ Eq. (22) over k⊥ ∼
k⊥M gives

d

dt
k3⊥MT∗F2 ≈ UIk⊥MT 2

∗F3 , (28)

F2 =

∫ ∞

0

dxx2y(x) , F3 =

∫ ∞

0

dxJ (x) . (29)

So far, k⊥M was defined just up to a factor of the order
of 1. This factor can be selected now such that

F3 = F2 . (30)
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7. SPECTRUM AT THE UPPER BOUNDARY

7.1. The stage AUT 2

∗ ≫ 8D ⇐⇒ E0 ≫ 16IDt

During the stageAUT 2
∗ ≫ 8D, the boundary condition

(25) can be approximately presented in the form

J (+0) ≈ 0 , y(+0) ≈ 1 . (31)

The condition AUT 2
∗ ≫ 8D is equivalent to E0 ≫ 16IDt

(see below), so that the transverse energy variation can
be neglected and

k2⊥MT∗F1 ≈ E0 . (32)

The functions y(x) and J (x) appear to be time-
independent at this stage. The variable separation in
the Eq. (22) and integration of the split equations gives

J (x) ≈ x2y(x), (33)

k4⊥M ≈ k4⊥M0 + 4UIE0t/F1 . (34)

Solution of Eqs. (24), (33) with the boundary condition
(31) is shown in the Fig. 1. For this solution,

F1 ≡ F1− ≈ 1.5 , F2 ≡ F2− ≈ 2.0 . (35)

Using Eqs. (32), (34) (at k4
⊥M ≫ k4

⊥M0
), (35) and A ≈

3.0, the condition AUT 2
∗ ≫ 8D can be presented in the

form

1 ≫ 8D

AUT 2
∗

≈ 8DF 2
1 k

4
⊥M

AUE2
0

≈ 16IDt

E0
, (36)

i.e. E0 ≫ 16IDt, as mentioned above.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIG. 1. The normalized transverse temperature of pho-
tons y(x) - dashed line, and spectral flux of transverse en-
ergy J (x) - solid line around the spectrum upper boundary
x = k⊥/k⊥M ∼ 1 at early evolution stage.

7.2. The stage 4IDt ≫ E0

During this stage T∗ is constant. The functions y(x)
and J (x) are also time-independent, but not the same
as found above for the earlier stage, and the integrals F1

and F2 are not the same as in (35). It follows from Eqs.
(27)-(30) that

T 2
∗ ≈ 6D

UF1

, k2⊥M ≈ It

√

8UD

3F1

. (37)

The boundary condition (25) takes now the form

J (+0) ≈ 2F1/3 , y(x)|x≪1 ≈
√

1 +
4F1

3A
ln

1

x
. (38)

Eq. (22) reduces to

x2 d

dx
y(x) ≈ 3

d

dx
J (x) . (39)

By integration from x to ∞, it can be presented in the
form

x2y(x) + 2

∫ ∞

x

dx1x1y(x1) ≈ 3J (x) , (40)

which automatically gives correct J (+0). Solution of
Eqs. (24) and (40) with y(x)|x≪1 given by Eq. (38) is
shown in the Fig. 2. For this solution,

F1 ≡ F1+ ≈ 2.6 , F2 ≡ F2+ ≈ 4.4 . (41)

0.4 0.6 0.8 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FIG. 2. The normalized transverse temperature of pho-
tons y(x) - dashed line, and spectral flux of transverse en-
ergy J (x) - solid line around the spectrum upper boundary
x = k⊥/k⊥M ∼ 1 at advanced evolution stage.
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8. WEAK TURBULENCE APPLICABILITY

DOMAIN

To keep the multi-scale turbulence weak at all k⊥, the
rate of phase mixing should be much larger than the rate
of 4-photon scattering at each k⊥. This requirement is
the most restrictive at k⊥ ∼ k⊥m where the rate of phase
mixing is the smallest, while the rate of 4-photon scatter-
ing is the largest. The condition for turbulence be weak
at k⊥ ∼ k⊥m is

βk4⊥m ≫ UT 2
k⊥m

⇐⇒ βk2⊥m ≫ αTk⊥m
. (42)

According to Eqs. (19) and (21),

ln
k⊥M

k⊥m
≈ AU

8D

(

T 2
k⊥m

− T 2
∗

)

, (43)

Tk⊥m
≈

(

12ID

AU
+ T 3

∗

)1/3

. (44)

According to Eqs. (32) and (34), the quantity T 2
∗ ∝

k−4

⊥M decreases inversely with time during the stage
AUT 2

∗ ≫ 8D. As long as T 3
∗ ≫ 4ID/U , it follows

from Eqs. (43) and (44) that ln(k⊥M/k⊥m) ≈ I/T∗ ,
the diffusion is negligible, and k⊥m decreases exponen-
tially in time like at D = 0. The decrease of k⊥m

continues, but already slowed down by the diffusion, at
T 3
∗ ≪ 4ID/U ≈ T 3

k⊥m
, when Eq. (43) takes the form

ln
k⊥M

k⊥m
≈ 3

4

(

2UI2

D

)1/3

− 3UT 2
∗

8D
. (45)

The weak turbulence applicability condition (42) takes
then the form

βk2
⊥M

αI
≫

(

4D

UI2

)1/3

exp

[

3

(

UI2

4D

)1/3

− 3UT 2
∗

4D

]

. (46)

The decrease of k⊥m stops at AUT 2
∗ ∼ 8D, i.e. at

16IDt ∼ E0. Later, at 4IDt ≫ E0, both k2⊥M and k2⊥m

grow linearly in the time, while T∗ and Tk⊥m
no longer

change. For 4IDt & E0 (when E ∼ 4IDt), the weak tur-
bulence applicability condition (46) reduces, taking into
account Eqs. (27), (37) and (41), to

βE
αI2

≫
(

UI2

D

)−5/6

exp

[

3

(

UI2

4D

)1/3
]

. (47)

It is the strictest at E ∼ E0, and gets softer, as E grows.
For a single scale initial spectrum E0 ∼ Ik2

⊥0
, so that the

quantity

P ≡ βE0
αI2

=
βk2⊥0

αI
≫ 1

has the physical meaning of the ratio of the initial phase
mixing rate to the initial nonlinear frequency shift. The
physical meaning of the quantity

Q ≡ UI2

D
≫ 1

is the ratio of the 4-photon scattering initial rate to
the initial rate of ray diffusion on random inhomo-
geneities. Divisions of the parameter plane (Q,P ) are
shown schematically in Fig. 3. The diffusion basically
prevents the filamentation at

P > Q−5/6 exp[3(Q/4)1/3] .

If this is not satisfied, but

Q−5/6 exp[3(Q/4)1/3] > P > 6(2Q)−2/3 exp[(2Q)1/3] ,

then the diffusion starts modifying the spectrum within
the weak turbulence regime, and thus somewhat delays
the condensate formation and filamentation. For an even
smaller P , the diffusion basically does not affect the fila-
mentation onset.

0 20 40 60 80 100
 Q

0

20

40

60

80

100

120

140

P

Diffusion
delays
filamentation

Diffusion prevents filamentation

Diffusion does not affect 
filamentation onset 

FIG. 3. Divisions of the parameter plane (Q,P ).

9. DISCUSSION

We described analytically the evolution of transverse
spectrum of photons paraxially propagating in a Kerr
medium with small random inhomogeneities of refrac-
tive index. This evolution can be outlined as follows.
As long as the photon diffusive scattering on random in-
homogeneities remains negligible compared to the non-
linear 4-photon scattering, the lower spectrum bound-
ary k⊥m decreases exponentially in the propagation time
(or distance). The diffusive scattering first manifests at
the lower spectrum boundary and starts reshaping the
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spectrum from there. The reshaping then spreads across
the spectrum towards its upper boundary k⊥M . Dur-
ing this stage, k4

⊥M keeps growing linearly in time, while
k⊥m keeps decreasing though slower than earlier. The
Bose-Einstein condensation associated with the decreas-
ing k⊥m stops when the reshaping front reaches the upper
spectrum boundary k⊥M . The further spectrum evolu-
tion occurs in a self-similar regime with both k2

⊥M and
k2
⊥m growing linearly in time.

The analytical theory developed here may be useful
in suggesting improvements in possible applications, in
particular, in backward Raman amplification of powerful
laser pulses in plasmas [22]. The transverse filamenta-
tion instability of powerful coherent lasers in plasmas
is a major factor that may limit the extended back-
ward Raman amplification regimes proposed in [23, 24].
This limitation can be overcome by transverse random-
ization of amplified pulses. From the theoretical view-
point, the most straightforward would be the scheme
that splits amplification and randomization processes. In
such a scheme, the amplification would occur in uniform
plasma layers, while the randomization would occur in
relatively thin transverse sheets of denser randomly in-
homogeneous plasma inserted periodically in the uniform
plasma. These sheets would act similarly to standard
random phase plates [25–27] (which obviously cannot
withstand nearly relativistically intense laser pulses in
plasmas). More practical might be, however, to have the
amplification and randomization going together in the
same plasma with statistically more or less uniform ran-
dom density inhomogeneities. Such inhomogeneities may
significantly modify the amplification process. An accu-
rate theory for this modification still has to be developed.
Since inhomogeneities reduce Raman coupling between
amplified and pump laser pulses, the amplification to a
given intensity would likely take a longer distance. As-
suming complete pump depletion, a longer output pulse
carrying a larger fluence could be expected.

In a broader context, the substantially extended propa-
gation of powerful laser pulses in plasma without filamen-
tation could make feasible quite new laser amplification
regimes, including plasma-based powerful random lasers
[28–30].

Beyond plasma-based applications, our theory may be
used, for example, to describe how small random inho-
mogeneities affect the experimentally observed conden-
sation of classical waves in photonic crystals [31]. These
experiments were carried out in defocussing crystals, but
there is no difference between focusing and defocussing
regimes within the applicability range of weak turbulence
theory. Even when the condensate forms, it does not
make much difference, as long as the number of photons
in weakly turbulent component of spectrum is larger than
in condensate. The level of inhomogeneities in this kind
of experiments can be controlled [32], which allows to
verify how it affects the condensation. For very small in-

homogeneity levels, most of photons could condensate
before the effect of transverse heating of the photon
beam through the scattering on random inhomogeneities
is manifest. Yet, even that small transverse heating can
ultimately lead to the condensate evaporation; and the
theory can be extended to describe this regime as well.
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