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The fractal dimension of domain walls produced by changing the boundary conditions from periodic to anti-
periodic in one spatial direction is studied using both the strong-disorder renormalization group and the greedy
algorithm for the Edwards-Anderson Ising spin-glass model for up to six space dimensions. We find that for
five or less space dimensions, the fractal dimension is less than the space dimension. This means that inter-
faces are not space filling, thus implying replica symmetry breaking is absent in space dimensions fewer than
six. However, the fractal dimension approaches the space dimension in six dimensions, indicating that replica
symmetry breaking occurs above six dimensions. In two space dimensions, the strong-disorder renormalization
group results for the fractal dimension are in good agreement with essentially exact numerical results, but the
small difference is significant. We discuss the origin of this close agreement. For the greedy algorithm there
is analytical expectation that the fractal dimension is equal to the space dimension in six dimensions and our
numerical results are consistent with this expectation.

I. INTRODUCTION

One of the outstanding problems of statistical physics is
the nature of the ordered phase of spin glasses. While this
problem is primarily of interest to researchers in statisti-
cal and condensed matter physics, spin-offs from its study
have found their way into different fields of research, such
as computer science and neural networks. Unfortunately,
standard methods used in condensed matter physics, such as
the renormalization group and mean-field theory, have re-
sulted in a confusing situation for the nature of the spin-
glass state. The picture that derives from mean-field theory—
valid for infinite-dimensional systems—is that of replica sym-
metry breaking (RSB) [1–5]. However, results using real-
space renormalization group (RG) methods—which are bet-
ter for low-dimensional systems—suggest a spin-glass state
with replica symmetry [6–10]. The purpose of this work is to
present additional numerical results beyond those presented in
Ref. [8] that suggest that in space dimension d ≤ 6 the low-
temperature phase of spin glasses is replica symmetric, and
that it is only for dimensions d > 6 that RSB prevails.

In the absence of RSB, the droplet picture (DP) [11–13] is
expected, i.e., when d ≤ 6. In the DP the low-temperature
phase is replica symmetric and there is no de Almeida-
Thouless line [14] in the presence of an applied field. Its prop-
erties are determined by the excitation of droplets whose free-
energy cost on a length scale ` goes as `θ and which have frac-
tal dimension ds < d. In the RSB picture there exist system-
size excitations which have a free-energy cost of O(1) and
which are space filling, i.e., have ds = d. Thus by investigat-
ing the value of ds of interfaces in the low-temperature phase,
it is possible to determine whether the low-temperature state
is best described by RSB or DP. Direct Monte Carlo simula-
tions to determine the value of ds in d = 3 have proved incon-
clusive (see, for example, Ref. [15] and references therein).
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This is because the numerically accessible system sizes in
equilibrated simulations are just too small to distinguish RSB
[16, 17] from DP behavior [18]. One advantage of using real-
space RG methods such as the strong-disorder renormaliza-
tion group (SDRG) method is that one can study much larger
system sizes than can be thermalized in Monte Carlo simula-
tions. Therefore, in this study we have extended our previous
SDRG calculations [8] of ds for spin glasses in different space
dimensions d. but in addition we have also used the greedy al-
gorithm to estimate ds.

The paper is structured as follows. In Sec. II we introduce
the model studied, and describe how by studying the link over-
lap one can determine the fractal dimension of interfaces. In
Sec. III we give some details of the SDRG procedure as devel-
oped by Monthus [7] and outline why it is expected to work
better in two dimensions than in six space dimensions. Our
results for ds in dimensions d = 2, 3, 4, 5, and 6 are reported
in Sec. IV. The greedy algorithm (GA) used here as well is
described in Sec. V. We conclude with a brief discussion in
Sec. VI.

II. MODEL AND OBSERVABLES

We study the Edwards-Anderson (EA) Ising spin-glass
model [19] on a d-dimensional hypercubic lattice of linear ex-
tent L described by the Hamiltonian

H = −
∑
〈ij〉

JijSiSj , (1)

where the summation is over nearest-neighbor bonds and the
random couplings Jij are chosen from a standard Gaussian
distribution of unit variance and zero mean. The Ising spins
take the values Si ∈ {±1} with i = 1, 2, . . . , Ld.

The fractal dimension ds can be obtained from the link
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Here S(π)
i and S(π̃)

i denote the ground states found with pe-
riodic (π) and antiperiodic (π) boundary conditions, respec-
tively. One can change from periodic to antiperiodic boundary
conditions by flipping the sign of the bonds crossing a hy-
perplane of the lattice. Nb is the number of nearest-neighbor
bonds in the lattice which for a d-dimensional hypercube is
given by Nb = dLd. The L dependence of the quantity Γ
determines ds via

Γ ≡ 1− q` =
2ΣDW

dLd
∼ Lds−d, (3)

where ΣDW is the number of bonds crossed by the domain
wall bounding the flipped spins [20]. The domain wall could
be fractal, i.e., its “length” ΣDW ∼ ALds . If the interface
were straight across the system, its length would be ∼ Ld−1.
In the RSB phase ds = d, so that d− 1 ≤ ds ≤ d. The SDRG
(and also the GA) methods are just means by which one can
determine the (approximate) ground states needed in Eqs. (2)
and (3).

III. THE SDRG ALGORITHM

In this Section we outline the SDRG method as described
by Monthus in Ref. [7]. For each spin Si, the local field is

hloci =
∑
j

JijSj . (4)

The SDRG focuses on the largest term in absolute value in the
sum corresponding to some index jmax(i)

max
j

(|Jij |) ≡ |Ji,jmax(i)|. (5)

The question for the accuracy of the SDRG is whether the
local field hloci

hloci = Ji,jmax(i)Sjmax(i) +
∑

j 6=jmax(i)

JijSj (6)

is dominated by the first term.
The “worst case” is when the spins Sj of the second term

in Eq. (6) are such that (JijSj) all have the same sign; their
contribution to the local field is then maximal. Monthus intro-
duced the difference

∆i≡ |Ji,jmax(i)| −
∑

j 6=jmax(i)

|Jij |. (7)

For ∆i0 > 0, the sign of the local field hloci0 is determined
by the sign of the first term Ji0jmax(i0)Sjmax(i0) for all values
taken by the other spins Sj with j 6= jmax(i0);

sgn(hloci0 )= Sjmax(i0)sgn
[
Ji0,jmax(i0)

]
. (8)

Then the spin Si0 can be eliminated via

Si0 = Sjmax(i0)sgn
[
Ji0jmax(i0)

]
(9)

so that Eq. (1) becomes

H = −|Ji0jmax(i0)| −
∑

(i,j) 6=i0

JR
ijSiSj , (10)

where the renormalized couplings connected to the spin
Sjmax(i0) are

JR
jmax(i0),j

= Jjmax(i0),j + Ji0,jsgn
[
Ji0jmax(i0)

]
. (11)

Let z be the number of neighbors of a site, where z = 2d.
Then in d = 1, z = 2, and the difference ∆i0 defined in Eq.
(7) would be always positive, i.e., the SDRG would be exact.
Alas it fails to be exact in higher dimensions as ∆i0 is not
always positive.

Monthus argued that “the worst is not always true.” In-
deed, in a frustrated spin glass, the worst case discussed above
where all the spins Sj are such that (JijSj) have all the same
sign, is atypical. It is much more natural to compare with a
sum of random terms of absolute values Jij and of random
signs, i.e., to replace the difference ∆i of Eq. (7) by

Ωi≡ |Ji,jmax(i)| −
√ ∑
j 6=jmax(i)

|Jij |2. (12)

Note that for the case of z = 2 neighbors, Ωi actually co-
incides with ∆i, so that the exactness discussed above is the
same. But for z > 2, it is expected that Ωi is a better indicator
of the relative dominance of the maximal coupling for the dif-
ferent spins. Monthus’ version of the SDRG procedure was
based on the variable Ωi.

At each step, the spin-glass Hamiltonian is similar to that
of Eq. (1). The variable Ωi of Eq. (12) is computed from the
couplings Jij connected to Si. The iterative renormalization
procedure is defined by the following decimation steps.
(1) Find the spin i0 with the maximal Ωi, i.e.,

Ωi0 ≡ max
i

(Ωi). (13)

(2) The elimination of the spin Si0 proceeds via Eq. (9) and
all its couplings Ji0,j with j 6= jmax(i0) are transferred to the
spin Sjmax(i0) via the renormalization rule of Eq. (11).
(3) The procedure ends when only a single spin Slast is left.
The two values Slast = ±1 label the two ground states related
by a global flip of all the spins.
From the choice Slast = +1, one can reconstruct all the values
of the decimated spins via the rule of Eq. (9).

Monthus [7] studied how the value of Ωi evolves with each
iteration for the EA model for d = 2 and d = 3. For the SDRG
to be exact one needs ∆i to be always positive and hopefully
Ωi acts as a useful proxy for ∆i. She found that for the early
iterations the Ωi were indeed positive but turned negative for
the later stages of the iteration procedure, indicating that the
SDRG was failing. She suggested that the fractal dimension
ds was dominated by the early stages of the iteration, which
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correspond to long length scales. We have extended her stud-
ies of Ωi up to d = 6 and have found that as the dimension
d increases, the crossover where the SDRG would appear to
become steadily worse (i.e., where the Ωi turn negative) oc-
curs at successively earlier stages of the RG iterations. Figure
1 shows the form of the Ωi in d = 2 and d = 6 space dimen-
sions. Because the SDRG could be exact only if Ωi > 0 for
all i, the data for d = 6 are far from satisfying this criterion.

A defect of the SDRG is that when it terminates it can give
a spin state in which not all the spins are even parallel to their
local fields. We have investigated the problem carefully in two
dimensions and found a small fraction of spins fail to be par-
allel to their local fields, and these seem to be the spins which
sit in very small values of the local field. We have generated
from these states a one-spin flip stable state by flipping these
spins and their neighbours thereon until there are no spins left
that are not parallel to their local fields. With these new states
we find that the coefficient A in ΣDW ∼ ALds is slightly
modified: Its logarithm (Γ) is shifted by a small amount (of
order 0.005) for a wide range of L values. Because it does not
seem to significantly influence the value of ds, we choose not
to investigate this problem in greater detail here.
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FIG. 1. Representative evolution of Ωi of the decimated spin as a
function of the RG step, which corresponds to the number of spins
which have been decimated for the EA model for (a) d = 2 and (b)
d = 6. Over most of the iteration range for d = 2, Ωi is positive.
The SDRG estimate for the exponent ds is also quite accurate in this
case. As d increases, the values of Ωi turn negative after a decreasing
number of iterations, suggesting that the SDRG becomes less accu-
rate in higher dimensions, as can be seen for d = 6 [panel (b)]. Note
the different horizontal scales.

IV. SDRG RESULTS

In Fig. 2 we plot ln Γ versus lnL using the SDRG method
of Monthus [7] to compute the link overlap. One change from
our previous work in Ref. [8] is that we have added more data.
Especially for d = 6 we have increased the largest system
studied from L = 10 to L = 14. The new data show that
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FIG. 2. ln Γ for various space dimensions d as a function of lnL
computed using the SDRG algorithm. Note that Γ ∼ Lds−d. Our
estimate of ds is determined by the slope of the straight lines drawn
through the points at large-L values. Note how the data for d = 6
level off, i.e., ds → d. (See Fig. 3 for an enlarged figure in six
dimensions). Error bars are smaller than the symbols.
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FIG. 3. ln Γ for d = 6 as a function of lnL computed using the
SDRG and GA algorithms. Our estimate of ds is determined by the
slope of the straight lines drawn through the points at large-L values.
Using Γ ∼ Lds−d the levelling off of the lines at the larger values of
L implies that ds → d in six dimensions. Error bars are smaller than
the symbols.

for d = 6 the curve is levelling off, implying that ds → d.
We have also increased the values of L studied in d = 2 and
3, going far beyond the system sizes studied in Ref. [7]. Ta-
ble I lists simulation parameters, such as the number of bond
configurations M for each value of the linear system size L in
space dimension d.

The SDRG seems to give quite accurate results for the value
of ds at least in low space dimensions. Thus, in d = 2, Mon-
thus found from the SDRG a value of ds ≈ 1.27 fromL values
up to 340, a result which is similar to a recent study of systems
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TABLE I. Dimensionality d, system size L, and the number of dis-
order realizations M studied using the GA and SDRG methods. Part
of the SDRG data used here are taken from Ref. [8].

Method d L M

SDRG 2 {10, 20, 30, 40, 50, 100, 200, 400, 800} 10000

SDRG 2 1200 3000

SDRG 2 1600 1000

SDRG 3 {4, 6, 8, 10, 12, 16, 20, 24, 32} 3000

SDRG 3 {64, 128} 1000

SDRG 4 {4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 24} 3000

SDRG 4 28 717

SDRG 4 32 121

SDRG 5 {4, 5, 6, 7, 8, 9, 10, 12, 14} 3000

SDRG 5 16 1000

SDRG 6 {4, 5, 6, 7, 8} 3000

SDRG 6 9 1843

SDRG 6 10, 11, 12 1000

SDRG 6 {13, 14} 200

GA 2 {4, 8, 12, 16, 32, 64, 128, 256, 512} 3000

GA 3 {4, 6, 8, 10, 12, 16, 20, 24, 32, 64} 3000

GA 4 {4, 6, 8, 10, 12, 16, 20, 24, 32} 3000

GA 5 {4, 5, 6, 7, 8, 9, 10} 6000

GA 5 {12, 14, 16} 3000

GA 6 {4, 5, 6, 7, 8, 9, 10} 3000

GA 6 {12, 14} 1000

up to L = 104 [21] based on fast polynomial time algorithms
for finding ground states (which, however, only work in two
space dimensions) which gives ds = 1.27319(9). In d = 3,
Monthus finds ds = 2.55 for systems of size up to L = 45.
In Ref. [18] a value of 2.57 is quoted from studies on systems
up to L = 12. The SDRG is just an algorithm which attempts
to find the ground-state spin configuration. It is exact in one
space dimension. While it seems to give excellent values for
ds, it gives poor values for the actual ground-state energy it-
self and the energy cost of the interface. If the domain-wall
energy scales ∼ Lθ, then Monthus reports θ ≈ 0 whereas the
recent high-precision calculations show that θ = −0.2793(3)
[21].

Because Monthus’ value for ds in d = 2 seemed to be com-
patible with the high-precision calculations [21], we specu-
lated in Ref. [8] that the SDRG might be accurate because the
interface is a self-similar fractal [22]. The SDRG seems to be
accurate in the early stages of the RG process where the Ωi
are positive (see Fig. 1) where a coarse approximation of the
domain lengths is performed (see Fig. 4). In the later stages
of determining the domain length, the SDRG’s accuracy will
decrease. In particular, in the relation ΣDW ∼ ALds we sus-
pect that the SDRG might determine ds quite accurately, but
that the coefficientAmight be obtained with less accuracy. To
estimate A to high accuracy would require an RG process ac-
curate on all length scales, both short and long. In this paper
we have extended the system sizes studied far beyond those

studied by Monthus in d = 2, and find that ds = 1.2529(14)
which indicates that the SDRG is not exact for ds in d = 2, but
just a good approximation. Our estimate of A is 1.4040(106)
whereas the recent high-precision estimate is 1.222(3) [21].

(a) (b)

(c) (d)

FIG. 4. The bifurcation of a tree is a self-similar fractal. The
four figures are measurements of its length using square domains
whose linear size is reduced at each step of the renormalization. For
a self-similar fractal, like the ponderosa pine depicted here, the scal-
ing dimension ds is the same no matter what length scale is used
to determine it. Panel (a) shows the coarsest measurements which
are successively refined by reducing the size of the squares in panels
(b) – (d). Note that the domains are smaller than the image reso-
lution in panel (d). The fractal dimension of the ponderosa pine is
approximately 1.88. One could in principle obtain the correct frac-
tal dimension by studies at the coarsest length scales which is why
we suspect that the SDRG, which works better on the coarsest length
scales, is capable of getting accurate answers for ds.

We have also extended Monthus’ work in d = 3 from
L = 45 to L = 128 and find ds = 2.5256(30). If we had only
system sizes up to 12 in d = 3, as in the Monte Carlo stud-
ies of Ref. [18], then because of finite-size effects (visible in
Fig. 2), we would have reported a value of ds ≈ 2.6093(50).
A value of 2.57 was reported in Ref. [18] based on the same
range of L values up to L = 12.

The SDRG is not an analytical treatment, but a numerical
technique and in high dimensions (e.g., d = 5 and 6) this lim-
its us to studying rather small linear system sizes. As a conse-
quence, estimates of exponents can be affected by finite-size
corrections as aforementioned for d = 3. Thus, it is hard to be
certain that ds = d in six dimensions. We therefore decided to
also use a greedy algorithm (GA) to complement the SDRG
results. It is already known from analytical studies that 6 is the
”upper critical dimension” for the GA, at least for the fractal
dimension associated with minimum spanning trees. [23, 24].



5

Here, we want to know whether numerical studies of the value
of ds would also show that six is a similarly special dimension
for the fractal dimension of domain walls with the GA algo-
rithm.

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7

ln
(Γ

)

ln(L)

d = 2

d = 3

d = 4

d = 5

d = 6

FIG. 5. ln Γ for various space dimensions d for the EA model as a
function of lnL computed using the GA. Note that Γ ∼ Lds−d. Our
estimate of ds is determined by the slope of the straight lines drawn
through the points at large L-values. Error bars are smaller than the
symbols.

V. THE GREEDY ALGORITHM

The GA (also studied by Monthus [7]) works as follows.
The bonds in the order of decreasing absolute magnitude are
satisfied in turn, unless a closed loop appears then the bond is
skipped, until the relative orientation of all the spins is deter-
mined. In Table I, we have given details of the system sizes
and numbers of different bond realizations which we have
studied in dimensions d = 2, · · · , 6. In Fig. 5 we plot ln Γ
versus lnL determining the link overlap using the GA. Notice
that the corrections to scaling in d = 6 seem smaller for the
GA than for the SDRG method, because the data seem inde-
pendent of L even for the smallest system sizes.

Like the SDRG procedure, the GA is just a way of find-
ing the spin configuration for a putative ground state of the
system. There is no bond renormalization as in the SDRG
[see Eq. (11)]. It is just as poor for the ground-state energy
and the exponent θ as the SDRG [7]. In d = 2 we obtain
dGA
s ' 1.2196(11), which is comparable with Ref. [25] who

quote dGA
s = 1.216(1). Note that the SDRG value for ds

is in much better agreement with the high-precision value of
Ref. [21]. In d = 3 the GA result is dGA

s ' 2.4962(19), which
is closer to that of the SDRG. An earlier estimate in three di-
mensions is that of Ref. [26] who quote dGA

s ' 2.5± 0.05. In
Fig. 6 we have plotted ds − d + 1 versus d using the ds from
both the GA and SDRG algorithms. As the dimension d ap-
proaches 6 the two estimates appear to merge and give ds = d
in d = 6. The analytical expectation of Refs. [23, 24] was that
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FIG. 6. Greedy algorithm (GA) results (blue pentagons) com-
pared with strong-disorder renormalization group (SDRG) results
(red squares) for d = 2, 3, 4, 5, and 6. The upper bound ds − d + 1
at unity is marked by a horizontal blue line, while the lower bound
at zero is marked with a horizontal red line. The value ds = 0 for
d = 1 is exact and given by both methods. Only statistical errors
are included and error bars are smaller than the symbols. Numerical
values are summarized in Table. II.

TABLE II. Numerical estimates of the fractal dimension ds of the
SDRG and GA methods. ds=0 for d = 1, as both methods are exact
for the one-dimensional model. Error bars are statistical errors.

Method d = 2 d = 3 d = 4 d = 5 d = 6

SDRG 1.2529(14) 2.5256(30) 3.7358(36) 4.884(60) 5.9899(60)
GA 1.2196(11) 2.4962(19) 3.7190(47) 4.9068(32) 6.0023(22)

6 is the upper critical dimension for the fractal dimension of
minimum spanning trees within the GA. Our numerical work
suggests that within the GA, domain walls also have 6 as their
upper critical dimension.

VI. DISCUSSION

We have obtained numerical results (Fig. 6) using a strong-
disorder renormalization group method and a greedy algo-
rithm that are consistent with 6 being a special space dimen-
sion above which the conventional EA model with a Gaussian
bond distribution has RSB behavior and summarized them in
Table II. For d ≤ 6, we have found that within our numer-
ical procedures that the EA model is behaving according to
droplet model expectations because ds < d. That 6 is a special
dimension for the behavior of spin glasses is in accord with
some older expectations based on analytical results [27, 28],
but these have been controversial [29, 30]. Because both the
GA and the SDRG are approximations, we regard the results
presented here as not decisive.

We note, however, that real-space RG methods such as the
SDRG are capable of endless refinements. Monthus [7] her-
self discussed a variant, the “box” method, which improved
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the value of the zero-temperature exponent θ in d = 2 from
the very poor value θ ≈ 0 obtained by the SDRG method de-
scribed in this paper to at least a negative value of θ ≈ −0.09
[the high-precision estimate of Ref. [21] is θ = −0.2793(3)];
note that the value of ds was hardly altered. It might be possi-
ble to find a real-space RG procedure that gives accurate num-
bers on all quantities of interest for three-dimensional spin
glasses. The SDRG and the GA have a common feature in
that they both recognize that the largest bonds are likely to
be satisfied in the ground state. We suspect that will be an
ingredient of any future successful RG scheme for spin-glass
systems.
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