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Disordered stealthy hyperuniform materials are exotic amorphous states of matter that have
attracted recent attention because of their novel structural characteristics (hidden order at large
length scales) and physical properties, including desirable photonic and transport properties. It is
therefore desirable to devise algorithms that enable one to design a wide class of such amorphous
configurations at will. In this paper, we present several algorithms enabling the systematic identi-
fication and generation of discrete (digitized) stealthy hyperuniform patterns with a tunable degree
of order, paving the way towards the rational design of disordered materials endowed with novel
thermodynamic and physical properties. To quantify the degree of order/disorder of the stealthy
systems, we utilize the discrete version of the τ order metric, which accounts for the underlying
spatial correlations that exist across all relevant length scales in a given digitized two-phase (or,
equivalently, a two-spin state) system of interest. Our results impinge on a myriad of fields, rang-
ing from physics, materials science and engineering, visual perception, and information theory to
modern data science.

I. INTRODUCTION

A hyperuniform state of matter is characterized by an
anomalous suppression of density fluctuations at large
length scales [1, 2]. For example, a hyperuniform many-
particle system in d-dimensional space Rd possesses a lo-
cal number variance σ2(R) within a spherical observation
window of radius R that grows slower than Rd (i.e., win-
dow volume) for large R. Equivalently, it is one in which
the well-known structure factor S(k) (which is propor-
tional to the scattering intensity [3, 4]) tends to zero as
the wavenumber k ≡ |k| goes to zero, i.e.,

lim
|k|→0

S(k) = 0. (1)

Hyperuniform systems include all perfect crystals, per-
fect quasicrystals, and some exotic disordered systems.
Typical disordered systems, such as liquids and struc-
tural glasses, have variances with the standard volume
scaling σ2(R) ∼ Rd. Figure 1 depicts two disordered
non-hyperuniform configurations with different levels of
short-range order and two hyperuniform configurations,
one disordered and the other ordered.

Disordered hyperuniform patterns are exotic amor-
phous states of matter poised between perfect crystals
and liquids in that they exhibit suppressed large-scale
density fluctuations (like perfect crystals) while simulta-
neously presenting as statistically isotropic with no Bragg
peaks (like liquids) [1, 2, 6, 7]. In this sense, hyperuni-
form systems are characterized by hidden order that is
not apparent on large length scales [6] and are therefore
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endowed with several novel thermodynamic and physical
properties. To date, these extraordinary states of mat-
ter can be found in maximally random jammed particle
packings [8–11], jammed athermal granular media [12],
jammed thermal colloidal packings [13, 14], dynamical
states of cold atoms [15], transitions in non-equilibrium
systems [16, 17], quantum systems [18–20], surface-
enhanced Raman spectroscopy [21], terahertz quantum
cascade lasers [22], wave dynamics in disordered poten-
tials based on supersymmetry [23], avian photoreceptor
patterns [24], as well as certain Coulombic systems [20].

Disordered hyperuniform patterns of the so-called
stealthy variety have the additional (and unusual) prop-
erty of being transparent to radiation across a select
range of wavelengths, e.g., S(k) = 0 in a sphere of radius
K around the origin k = 0, meaning that they anoma-
lously suppress density fluctuations for these wave vec-
tors. It is noteworthy that there are equilibrium many-
particle systems with certain long-range pairwise poten-
tials whose ground states are highly degenerate disor-
dered configurations with these stealthy structure fac-
tors [5, 6, 25]. By mapping such stealthy hyperuniform
configurations of particles onto network solids, what was
previously thought to be impossible became possible: the
rational design of disordered cellular solids that have
complete isotropic photonic band gaps comparable in size
to photonic crystals [26], thereby providing novel and un-
explored ways to manipulate light [27–30]. Moreover, it
has recently been shown that disordered stealthy disper-
sions are endowed with nearly optimal transport proper-
ties while being statistically isotropic [31, 32]. The fact
that stealthy many-particle systems cannot tolerate ar-
bitrarily large holes between the particles [33] is a struc-
tural characteristic that is an important factor in bestow-
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FIG. 1. Graphical depiction of four different many-particle configurations (patterns) that contain varying degrees of structural
order, the latter two of which are hyperuniform. (a) Poisson configuration with no discernible short-, intermediate-, or long-
range order. (b) Configuration generated via random sequential addition (RSA) with short-range order [62]. (c) Inclusion
of very small collective displacements of the particles in (b) to form a hyperuniform configuration [5], a statistically isotropic
configuration that contains hidden long-range order yet displays no Bragg peaks. In comparing these two patterns by eye, it can
be very difficult to detect the presence of such long-range order in the hyperuniform configuration. (d) Crystalline configuration
displaying order across all length scales (and characterized by Bragg peaks).

ing novel properties to disordered stealthy materials [34].

Two-phase heterogeneous media (e.g., composites,
porous materials, polymer blends, biological media, sus-
pensions, gels, etc.) represent a very general class of ma-
terials, and yet we know little about their existence as
stealthy hyperuniform states from a fundamental theo-
retical perspective. In this paper, we focus our atten-
tion on discrete or digitized realizations of two-phase
media, since digital images are necessarily pixelized (or
voxelized) and modern three-dimensional (3D) printing
technologies use digitized data as input, thus providing
several immediate and practical applications of the work
described herein. Moreover, such digitized systems can
be regarded as two-state spin systems. The capability to
systematically generate stealthy hyperuniform disordered
two-phase heterogeneous media with a tunable degree of
order is in its infancy. This work also directly addresses
this issue by bringing together aspects of pattern recogni-
tion, quantification of order in digitized two-phase media,
and the theory of heterogeneous media [37] in the design
of a series of algorithms that allow for the systematic
identification and generation of digitized stealthy hyper-
uniform patterns. Accordingly, we design two-phase dig-
itized stealthy hyperuniform patterns with a tunable or
prescribed degree of order. It should be noted that there
has been a very recent investigation concerning the de-
sign of hyperuniform two-phase materials [32] that com-
plements the approaches that we report in this paper,
which is discussed further in Sec. V.

While there is no perfect order metric [35], the exis-
tence of stealthy disordered patterns that contain hid-
den order (i.e., difficult to discern by visual inspection)
makes it desirable to utilize an order metric that is able
to quantify the degree of order in a given pattern across
all relevant length scales. In this work, we introduce
and employ a binary-system version of the τ scalar or-
der metric—an order metric that has been fruitfully ap-

plied to study translational order across length scales in
stealthy point patterns in continuous spaces [6, 31]—to
rank digitized two-phase patterns. In this regard, the
order metric herein can also be viewed as the discrete
reciprocal-space analog of the real-space descriptors suc-
cessfully employed in the inverse reconstruction of two-
phase media textures [36].

The remainder of this article is organized as follows.
In Sec. II, we provide some necessary mathematical def-
initions and preliminaries. We introduce in Sec. III the
discrete version of the τ order metric and discuss its util-
ity for rank ordering digitized two-phase systems, espe-
cially the stealthy variety. In Sec. IV, we present and
apply three different numerical procedures to systemati-
cally identify and construct digitized stealthy hyperuni-
form two-phase systems with tunable or prescribed de-
grees of order: enumeration, stochastic optimization and
superposition procedures. We demonstrate that τ is not
only unambiguously consistent with our intuitive notion
of order, but can also discriminate subtle textural differ-
ences (e.g., hidden order) that exist in discrete stealthy
hyperuniform patterns which are not easily discernible
by visual inspection. In Sec. V, we make concluding
remarks and discuss some implications of our results.

II. MATHEMATICAL DEFINITIONS AND
PRELIMINARIES

For concreteness, we focus in this paper on two-
dimensional (2D) patterns discretized by (square) binary
pixels that are arranged on a square (Z2) lattice (sub-
ject to periodic boundary conditions along the x- and y-
axes). Such patterns can be represented mathematically
by σ(m,n), a function which takes two integers as input
(m and n, the indices specifying the pixel location in the
lattice) and yields a binary output (either 0 or 1) [38–40].
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Accordingly, we can use this formalism to describe any
two-state system, such as up/down spins (i.e., the Ising
model [41, 42] for ferromagnetism in statistical mechan-
ics), occupancy/vacancy (i.e., the lattice gas model), or
phase A/B in the case of digitized two-phase media.

If L1 and L2 are the side lengths (in pixels) for a given
pattern, then the total number of pixels is simply given
by Ns = L1 ×L2. This restricts m and n to 1 ≤ m ≤ L1

and 1 ≤ n ≤ L2, respectively. Throughout this work, N
was chosen to represent the number of up spins or occu-
pied sites (or the phase assigned a value of 1 in σ(m,n)
for the case of two-phase media) and is therefore given

by N =
∑L1

m=1

∑L2

n=1 σ(m,n). As a result, f ≡ N/Ns
will be used to represent the relative fraction of up spins,
occupied sites, or a given phase in two-phase media, and
is defined in the interval [0, 1].

X-ray and neutron scattering techniques provide pow-
erful ways to probe the structure of matter [3, 4]. In this
regard, the static structure factor S(k) encodes such in-
formation and has a long standing tradition as a means
for quantifying order (and disorder) in both experiments
and simulations. In particular, features such as peaks,
rings, and streaks in S(k) are well established indica-
tors for analyzing the appearance and presence of order
in complex materials. Accordingly, S(k) plays a central
role in the order metric defined in this work (vide infra)
and is given by

S(k) =
1

N
|ρ̃(k)|2 . (2)

In this expression, we utilize the following discrete form
of the collective density variable [5]:

ρ̃(k) =
∑
sites

σ(r)eik·r =

L1∑
m=1

L2∑
n=1

σ(m,n)ei(kxm+kyn), (3)

with kx and ky representing the x- and y-components
of the wavevector k. A digitized pattern will be re-
ferred to as “stealthy up to some exclusion radius K”
if S(k) = 0 for all 0 < |k| ≤ K. When combined with
the definition of S(k) in Eq. (2), this has two impor-
tant implications that will be used throughout this work.
First, if a pattern σ1(m,n) is stealthy up to some K,
then the inverse of this pattern, σ2(m,n) ≡ 1−σ1(m,n),
is also stealthy up to the same K. This results from
the fact that ρ̃1(k) has to vanish for all 0 < |k| < K
when σ1(m,n) is stealthy up to K. In this case, ρ̃2(m,n)
also vanishes for all 0 < |k| ≤ K, from which it fol-

lows that S(k) = 1
N |ρ̃2(k)|2 = 0 in this range of k mak-

ing σ2(m,n) stealthy up to K as well. Second, if two
patterns σ1(m,n) and σ2(m,n) are both stealthy up to
some K and 0 ≤ σ1(m,n) + σ2(m,n) ≤ 1 holds for every
m and n, then the superposition of these two patterns,
σ3(m,n) = σ1(m,n) + σ2(m,n), is also stealthy up to
K. This results from the fact that the collective den-
sity variables for these two individual patterns are both
zero. Since ρ̃3(k) = ρ̃1(k) + ρ̃2(k) = 0, S(k) = 0 for

σ3(m,n), which makes this pattern also stealthy up to
K. We denote such a pattern as “multi-stealthy” since
this configuration is comprised of multiple stealthy con-
figurations and note in passing that such a configuration
(by definition) is also endowed with the property of being
“multi-hyperuniform”.

In computing S(k), one only needs to consider a finite
number of k-vectors due to the following three reasons.
First, the k-vectors need to be consistent with the size of
a given pattern, i.e., kx and ky must be integer multiples
of 2π/L1 and 2π/L2, respectively. Second, since S(k) is
periodic for the discretized systems considered herein,

S(kx + 2π, ky) =
1

N

∣∣∣∣∣
L1∑
m=1

L2∑
n=1

σ(m,n)ei[(kx+2π)m+kyn]

∣∣∣∣∣
2

=
1

N

∣∣∣∣∣
L1∑
m=1

L2∑
n=1

σ(m,n)ei(kxm+kyn)+i2πm

∣∣∣∣∣
2

=
1

N

∣∣∣∣∣
L1∑
m=1

L2∑
n=1

σ(m,n)ei(kxm+kyn)]

∣∣∣∣∣
2

= S(kx, ky), (4)

and similarly, S(kx, ky + 2π) = S(kx, ky), thereby re-
ducing the number of k-vectors via translational symme-
try. Furthermore, S(k) for approximately half of these
k-vectors are independent variables since (cf. Eqs. (2)-
(3)) S(0) = N and S(−k) = S(k).

III. QUANTIFYING THE DEGREE OF ORDER
IN DISCRETE PATTERNS: THE τ METRIC

Although no perfect order metric necessarily ex-
ists [35], many order metrics have been devised to quan-
tify the degree of order/disorder of complex systems at
various length scales, including those that account for
bond orientations [43, 44] and translational order [45, 46].
For some of these metrics, the degree of order is refer-
enced to a particular perfect crystalline structure and in
other instances a reference state is not assumed. Invari-
ably, all previously employed order metrics incorporate
only spatially local information in practice.

Here we introduce and apply the discrete-space version
of the continuous-space τ order metric that was originally
formulated to capture pair correlations of many-particle
systems across length scales in Euclidean spaces [6]. The
discrete τ metric for a two-phase system with phase vol-
ume (occupation) fraction f is defined as

τ [C ] ≡
∑
k6=0

[SC (k)− SP(k)]
2

=
∑
k6=0

[SC (k)− (1 + f)]
2
, (5)

in which both summations are over all k-vectors associ-
ated with the natural period of the simulation box (ex-
cluding the origin (k 6= 0)) and SC (k) and SP(k) = 1−f
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are the structure factors, i.e., the Fourier transforms of
the corresponding real-space two-point correlation func-
tions [47], for a configuration of interest (C ) and an en-
semble of uncorrelated (Poisson) patterns (P), respec-
tively. We note in passing that τ is also closely related to
the two-particle excess entropy [48], since both of these
order metrics are defined as integrals over the pair statis-
tics in a given system.

Similar to the continuous case, the order metric defined
in Eq. (5) will register large values due to the occurrence
of sharp peaks in ordered periodic patterns, which are
of finite height in any finite system but become infinite
(Dirac delta functions) in the infinite-system-size limit.
For finite periodic patterns, one can study how τ grows
with the system size. Furthermore, this definition also
implies that τ is invariant with respect to trivial sym-
metry operations, including translations, rotations, and
reflections. It is also important to stress here that τ
will also register very large values in the vicinity of crit-
ical points (e.g., Ising-like critical points [50, 51]), due
to the fact that S(k) diverges as k → 0 in the infinite-
system-size limit. Hence, while one should exercise cau-
tion in interpreting such an order metric in the vicinity
of a critical point, τ might also be fruitfully employed to
detect whether a disordered system is in fact approaching
a critical point. This is a potentially interesting research
avenue to explore in the future as all of the examples
considered herein are located far away from any critical
points.

By defining τ with respect to an ensemble of spatially
uncorrelated Poisson point processes, i.e., a collection of
random and disordered arrangements of particles that is
characterized by SP(k) = 1 − f ∀ k 6= 0, τ can also
be seen as a reciprocal-space analog of the real-space
descriptors successfully employed in the inverse recon-
struction [36] of two-phase media textures. Such textures
are of importance across a wide variety of fields, rang-
ing from the microscopic length scales encountered in
materials science (e.g., the microstructure of sandstones,
metal–ceramic composites, and concrete) and systems bi-
ology (e.g., the structure of plant and animal tissues,
cell aggregates, and medical imaging) to the macroscopic
length scales found in ecology (e.g., distributions of trees
in forests) and cosmology (e.g., galaxy distributions and
stellar constellations).

As seen in Eq. (5), τ accumulates the deviation of
SC (k) from 1 + f for all k 6= 0 (in a single period
as defined by the k–point mesh required to accurately
sample a square lattice with a spatial extent of length
L1 × L2), thereby providing an unbiased estimate of the
order contained within a given discrete pattern by equally
accounting for contributions across short-, intermediate-
, and long-range distances. As such, τ is is therefore of
particular importance in the discrimination of stealthy
hyperuniform configurations—patterns which are charac-
terized by the presence of hidden long-range order arising
from the suppression of number density fluctuations on
large length scales. As seen in Fig. 2, such patterns are

often difficult, if not impossible, to detect by eye, as the
contrast sensitivity of human vision peaks at fairly short
distances [52], thereby placing a larger relative weight
on observed textural similarities (or lack thereof) in this
portion of the distance spectrum. This limitation is over-
come by the use of the τ order metric: by quantitatively
detecting the presence of order across all length scales,
τ can easily discern a disordered stealthy hyperuniform
configuration from a random Poisson point pattern.

The strength and utility of τ as a quantitative and
unbiased estimator of the degree of order in a given dis-
cretized pattern lies in the fact that τ not only agrees
with our intuitive definition of order in unambiguous
textural comparisons (i.e., by clearly differentiating sig-
nificantly ordered crystalline structures from disordered
Poisson configurations) but can also discriminate sub-
tle textural differences that are not so easily discernible
by visual inspection (i.e., by clearly differentiating disor-
dered patterns that contain some degree of hidden order,
such as the aforementioned class of stealthy hyperuniform
configurations, from truly random spatially uncorrelated
Poisson patterns). Moreover, the fact that this discrete
version of τ has also been used to uncover hidden multi-
scale order in the prime numbers [49] is a strong indica-
tion of its utility as an order metric.

IV. DESIGN OF STEALTHY HYPERUNIFORM
DIGITIZED TWO-PHASE MEDIA WITH

TUNABLE ORDER

A. Enumeration Procedure

Here, we explicitly investigate of the possible patterns
that can exist on the 2D square lattice with side lengths,
L1 = L2 = L ∈ {3, 4, 5, 6}, subject to standard periodic
boundary conditions along both axes. Unlike the case of
continuous point-particle systems, for which the number
of configurations that can exist comprises an uncountable
infinite set, the systems considered herein have a discrete
number of degrees of freedom due to the fact that each
lattice site is binary and can either be occupied by a
particle or vacant (unoccupied). As such, there exists a
finite number of possible patterns that can be discretized
on a square lattice of side length L, namely 2L×L, and
each configuration must be enumerated to obtain an ac-
curate count of the number of stealthy hyperuniform pat-
terns that exist on these underlying lattices. The largest
system considered was the 6 × 6 square lattice, which
required explicit enumeration of 236 = 6.9 × 1010 con-
figurations. For each configuration, the corresponding
structure factor, S(k), was computed for the smallest k-
vectors contained in the reciprocal-space (k-point) mesh,
namely k1 = [1, 0] and k2 = [0, 1], as S(k1) = S(k2) = 0
is the minimal requirement for classification as a stealthy
hyperuniform pattern (with a corresponding exclusion
radius of K = 1). Each time a configuration met this
criteria, it was added to a running list of stealthy hyper-
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FIG. 2. Graphical depiction of two patterns discretized on a periodic L× L square lattice (with L = 20) comprised of N = 80
“particles” (occupied sites) with f = 0.2, which are represented by blue squares. While the disordered pattern (C ) on the left is
hyperuniform and stealthy for an exclusion radius of K = 1 (in units of 2π/L), the disordered pattern (P) on the right is simply
an uncorrelated (Poisson) pattern that, of course, is neither stealthy nor hyperuniform. The stealthy hyperuniform pattern
was generated using the stochastic optimization method described in Sec. IV B. This figure demonstrates that while stealthy
hyperuniform patterns look very similar at short-range, they contain hidden long-range order (i.e., suppression of large-scale
number density fluctuations) that is not easily detectable by eye. Since τ [C ]/τ [P] = 3/2, the τ order metric quantitatively
illustrates the fact that this disordered stealthy hyperuniform configuration—purely through the presence of hidden long-range
order—is indeed significantly more ordered than the uncorrelated pattern.

uniform configurations (that was maintained throughout
the execution of the enumeration algorithm) and explic-
itly compared against all other structures on the list to
remove trivial configurational degeneracies due to sym-
metrical equivalence (via the set of translations, rota-
tions, and reflections defined by the periodicity of the
underlying lattice). The final list of non-redundant and
symmetry-unique configurations constituted the set of
existing stealthy hyperuniform configurations for a given
lattice [39].

The results of this enumeration study are summarized
in Fig. 3. As L increases, the top panel shows that the
number of unique configurations that are stealthy up to
a certain K also increases, as expected. However, the
growth increments are not uniform. For instance, the
number of configurations that are stealthy up to K = 1
increases dramatically when L increases from 5 to 6, but
not as much when L is increased from 4 to 5. This non-
uniformity is caused by the underlying relationship be-
tween the prime factorization of L and the set of N values
that can admit stealthy hyperuniform configurations. As
the bottom panel of Fig. 3 shows, only the N values that
are integer multiples of 5 admit stealthy configurations
for L = 5 = 1 × 5. For L = 4 = 2 × 2, only the N val-
ues that are multiples of 2 admit stealthy configurations.
The L = 6 = 2×3 case, however, is much richer. The set
of allowed N values not only includes multiples of 2 and
3, but also includes sums of multiples of 2 and 3. As a
result, N can have any value between 0 and 6×6, except
1 and 35. Here, the exception for N = 1 is due to the fact
that 1 is not a sum of a multiple of 2 and 3. The excep-

tion for N = 35 follows from the fact that this case is the
inverse of N = 1. Compared to the L = 5 case, the L = 6
case allows many more N choices and therefore produces
a drastically increased number of stealthy patterns. We
note in passing that the bottom panel of Fig. 3 also shows
that the distribution of N in the stealthy hyperuniform
configurations is roughly a Gaussian (a parabola in our
semi-logarithm plot) centered at N = L2/2.

Figure 4 shows a series of discretized patterns ob-
tained via an exhaustive enumeration of the configura-
tional space corresponding to a periodic 6× 6 square lat-
tice, six representative stealthy hyperuniform patterns
(in which S(k) = 0 for some positive exclusion radius,
K ≥ 1, in units of 2π/L throughout the manuscript) are
arranged from most to least ordered according to their
respective τ values. From this figure, it is clear that the
crystalline striped-phase and simple checkerboard config-
urations represent the most ordered stealthy hyperuni-
form patterns that can be discretized on a 6 × 6 square
lattice, a fact that is appropriately reflected in their com-
puted order metric values of τ = 1.000 and relatively
large exclusion radii of K = 3 and K = 3

√
2, respec-

tively. With an order metric value of τ = 0.390, the
staircase configuration is visibly less ordered than the
configurations on the left, and is also accompanied by a
smaller exclusion radius of K =

√
5.

More importantly, the success of τ extends well beyond
visually detectable ranges of order. For the three remain-
ing stealthy hyperuniform configurations in Fig. 4, all of
which have an exclusion radius of K = 1, it becomes in-
creasingly more difficult to discern the level of order (or
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FIG. 3. The number of distinct stealthy hyperuniform pat-
terns identified by an exhaustive enumeration of the discrete
patterns existing on a periodic L × L square lattice (with
L ∈ {3, 4, 5, 6}), sorted by (top) L and K (in units of 2π/L)
and (bottom) L and N .

lack thereof) in these patterns by eye. In this regard,
a careful visual examination of the configuration char-
acterized by τ = 0.110 reveals that this pattern can be
constructed via the introduction of several defects (i.e.,
replacements of select occupied sites by vacancies) into
the simple checkerboard pattern, a fact which is quanti-
tatively captured by τ . However, the fact that the two
remaining stealthy hyperuniform configurations to the
right of Fig. 4 appear as patterns that contain no ap-
parent or discernible order is an inaccurate assessment of
these configurations. When compared to the aforemen-
tioned crystalline configurations, these two patterns are
visibly more disordered, a fact which is again quantita-
tively reflected by the relatively lower value of τ = 0.012
computed for each of these configurations. In the same
breath, these two patterns are indeed stealthy hyperuni-
form configurations (with S(k) = 0 for K = 1), and as
such, these patterns contain some degree of hidden long-
range order that is not present in a spatially uncorrelated
Poisson pattern, an example of which is given on the far
right of Fig. 4, wherein S(k) 6= 0 for K = 1.

B. Stochastic Optimization Algorithm

In this work, we also utilized the simulated annealing
(SA) global optimization scheme [53] in conjunction with
classical (Metropolis-Hastings) Monte Carlo (MC) simu-
lations to generate stealthy hyperuniform configurations
discretized on square lattices that were too large for an
exhaustive enumeration study. For a given trial config-
uration, C , the fictitious energy (or objective function)
employed in these SA-MC simulations was chosen to be:

θ[C ] =
∑

k,0<|k|≤K

[SC (k)− ST (k)]
2

=
∑

k,0<|k|≤K

[SC (k)]
2
,

(6)
in which SC (k) and ST (k) are the corresponding struc-
ture factors for C and a target (T ) configuration, respec-
tively, and the summations are carried out over all k for
which 0 < |k| ≤ K, based on a pre-defined exclusion ra-
dius K. Since our goal is to use SA-MC to stochastically
generate stealthy hyperuniform configurations, we take
T to represent a fictitious target stealthy hyperuniform
configuration that is characterized by ST (k) = 0 ∀ {k |
0 < |k| ≤ K}. Quite interestingly, this objective function
is a direct analog of τ , demonstrating the utility of this
order metric in the first systematic design of stealthy hy-
peruniform two-phase digitized patterns with prescribed
degrees of order.

The simple quadratic functional form for θ in Eq. (6)
is therefore minimized once a configuration C is lo-
cated with SC (k) = 0 for all k-vectors contained within
the aforementioned exclusion radius, thereby yielding a
stealthy hyperuniform configuration with a prescribed
degree of order. Due to the presence of “multiple min-
ima” on these high-dimensional potential energy surfaces
(PES), which hinders the success rate of global optimiza-
tion techniques such as SA-MC, we applied a logarithmic
transformation on the objective function, i.e., θ = log(θ),
to clearly differentiate the energy scales associated with
global and local minima. As Fig. 5 shows, this logarith-
mic transformation drastically improves the depth of the
ground state energy basins, making them much more fa-
vorable at lower temperatures. A true ground state (in
this case a stealthy hyperuniform pattern) should have
θ = 0 or θ = −∞. Due to machine precision (double pre-
cision arithmetic was employed throughout this work),
the evaluated θ is often around -60. Based on this ob-
servation, we considered a SA-MC run to be successful
in generating a stealthy hyperuniform configuration once
θ[C ] < −50 (which corresponds to θ[C ] < 10−50 ≈ 0).

During the SA-MC optimizations, the temperature T
was slowly decreased using an exponential cooling sched-
ule, i.e., T = exp(−3 × 10−7Nt/N), in which Nt is the
number of trial MC moves attempted (at a given T ) and
N is the number of particles (or occupied sites), until
T = Tmin < 0.1. To allow for finer refinements of the
trial configuration and further minimization of the ficti-
tious energy, an additional 2000×N trial MC moves were
attempted at T = 0. Initially, the trial MC moves consist
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1.000 1.000 0.390 0.110 0.012 0.012 0.003

FIG. 4. (Top row) Graphical depiction of a representative series of six stealthy hyperuniform configurations and a single
uncorrelated (Poisson) configuration discretized on a periodic L× L square lattice (with L = 6). Each of these configurations,
C , is comprised of N = 18 particles (which corresponds to an occupancy of f = 18/36 = 0.5) that are represented by blue
squares. (Middle row) Corresponding structure factors, SC (k), for each configuration. For the six stealthy hyperuniform
configurations, SC (k) = 0 for some positive exclusion radius, K ≥ 1 (in units of 2π/L), a property which is not shared by
the spatially uncorrelated Poisson pattern on the far right. (Bottom row) Corresponding order metric values, τ [C ], for each
configuration as defined by Eq. (5). Note that these patterns have been arranged from most ordered to least ordered, based on
the computed values of τ [C ].

of swapping a randomly chosen occupied site with a ran-
domly chosen unoccupied site. However, the acceptance
ratio for this specific type of trial MC move becomes
too low as T decreases (i.e., the system is not exploring
configurational space and is essentially stuck). To rem-
edy this issue, we switched to “local” trial MC moves
once the acceptance ratio dips below a preset threshold
of Amin = 0.1 (i.e., less than 1,000 accepted moves per
10,000 trial moves). These local trial MC moves involved
swapping a randomly chosen occupied site with a ran-
domly chosen unoccupied site that is located within a
specified cutoff distance (usually set to approximately
3-4 units in the lattice spacing). Furthermore, we also
gradually decrease this cutoff distance thereafter (until

FIG. 5. Graphical depiction of a one-dimensional slice
through a high-dimensional potential energy surface (PES)
before (left) and after (right) the application of a logarith-
mic transformation on the energy, E, i.e., E = log(E), as a
function of the configurational coordinate, ξ. The existence
of multiple minima in such high-dimensional PES (depicted
here by the presence of two degenerate global minima in the
vicinity of three low-lying and nearly degenerate local min-
ima) plagues global optimization techniques such as simulated
annealing (SA) and can be significantly alleviated via the ap-
plication of this logarithmic transformation on the objective
function.

TABLE I. Success rates for generating stealthy hyperuniform
configurations via Simulated Annealing-Monte Carlo (SA-
MC) simulations as a function of N and K on a 10 × 10
square lattice. For each N and K, 1000 independent SA-MC
runs were attempted to determine the final success rate.

f
Success Rate for K =

1
√

2 2
√

5
√

8 3

0.1 1.000 1.000 0.980 1.000 0.999 0.989
0.2 0.995 0.987 0.158 0.001 0.000 0.000
0.3 0.993 0.771 0.047 0.000 0.000 0.000
0.4 0.993 0.726 0.039 0.000 0.000 0.000
0.5 0.989 0.600 0.007 0.000 0.000 0.000

it reaches 1 unit in the lattice spacing) to maintain an
acceptance ratio above Amin. These algorithmic details
and associated parameters were primarily determined
through a trial-and-error approach that maximized the
success rate and computational efficiency of this stochas-
tic optimization procedure. Here we stress again that
the logarithmic transformation described above plays a
critical role in locating stealthy hyperuniform patters via
SA-MC simulations, where one is faced with a PES that
is plagued with multiple nearly degenerate minima (see
Fig. 5).

The success rate for our SA-MC program on a 10× 10
lattice (L = 10) is summarized in Table I for f = N/L2 ≤
0.5. Since our numerical method treats occupied sites
and unoccupied sites symmetrically, the success rate for
f = x > 0.5 should be equal to the success rate for
f = 1 − x. As f approaches 0.5, the observed decrease
in the success rate is most likely due to the fact that the
search space, i.e., the number of configurations with a
particular N , given by (L2)!/[N !(L2−N)!], is largest for
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K

FIG. 6. (Top row) Graphical depiction of a representative series of stealthy hyperuniform patterns generated using our Simulated
Annealing-Monte Carlo (SA-MC) approach. Each of these stealthy patterns is discretized on a periodic 10× 10 square lattice
and comprised of N = 20 particles (f = 0.2). (Middle row) Corresponding structure factors, S(k), for each stealthy pattern in
which S(k) = 0 for some positive exclusion radius, K ≥ 1. (Bottom row) Corresponding exclusion radii, K, for each stealthy
pattern. Note that these stealthy patterns have been arranged in increasing order based on the values of K. The corresponding
order metric values, τ , for each of these stealthy patterns were computed as 0.18, 0.19, 0.33, and 2.59, respectively, indicating
that τ and K are again positively correlated in these instances.

f = 0.5. In this regard, it would be interesting to find ro-
bust alternative methods for overcoming this numerical
difficulty and one such approach will be presented be-
low. Four configurations (with f = 0.2) identified using
this SA-MC method are shown in Fig. 6. The annealed
configurations are disordered for the smaller three K val-
ues, but crystalline for K =

√
5. We note here that

this disorder-to-order transition with increasing K was
also observed in continuous stealthy hyperuniform sys-
tems [5].

C. Stealthy Designs via Superposition

To find stealthy hyperuniform patterns for a partic-
ular system size and N , one can simply enumerate all
possible configurations if the system size is small and use
SA-MC for larger systems if N is small. That leaves us
with the following question: what method should one
use if the system size and N are both large? Here we
present one such method, which involves a superposition
of stealthy hyperuniform patterns with smaller N val-
ues. As discussed above, if two patterns σ1(m,n) and
σ2(m,n) are both stealthy up to some K and σ3(m,n) =
σ1(m,n)+σ2(m,n) is always between 0 and 1 (i.e., there
is no overlap in a given phase between thee two config-
urations), then σ3(m,n) is also stealthy up to K. As
such, we simply identify “building block” patterns with
relatively smallN values and then translate them to elim-
inate overlaps before superposition.

Figure 7 contains several examples of stealthy hyper-

uniform patterns (up to K = 1) that have been generated
using this superposition technique. We chose L = 6 for
visual clarity, but the method is equally (and particu-
larly) suitable for larger systems. For this system size
and K, our enumeration study found 1 stealthy config-
uration with N = 2 and 9 stealthy configurations with
N = 4. The configuration with N = 2 will be denoted as
a doublet (D) and represents the smallest building block
in this superposition scheme. Of the 9 N = 4 configura-
tions, 5 of them can be decomposed as superpositions of
pairs of doublets, denoted by D2 = D ⊕ D as a doublet
of doublets. The remaining 4 configurations with N = 4
are therefore quartets (Q). As Fig. 7 illustrates, we can
superpose these doublet and quartet building blocks to
create complex stealthy hyperuniform patterns. For ex-
ample, by superposing nine doublets one can create the
configuration labeled D9 in Fig. 7 and by superposing
three quartets and three doublets, one can create the
configuration labeled Q3D3. For a configuration gener-
ated by this superposition technique to be stealthy up
to a given K value, S(k) at two different k-vectors are
constrained to be zero. Fig. 7 also demonstrates how D
and Q building blocks satisfy these constraints.

V. DISCUSSION

In summary, we have devised several algorithms and
methods that enable the systematic identification and
generation of digitized stealthy hyperuniform patterns
with machine-level precision with a tunable or prescribed
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FIG. 7. (Upper left) Vectorial representation of a stealthy pattern comprised of N = 2 particles. The corresponding structure

factor, S(k) = 1
N
|
∑N

j=1 exp[ik · rj ]|2, will vanish at a given pair of k-vectors, k1 and k2, when r1 and r2 satisfy the following

equations: (1) exp[ik1 · r1] + exp[ik1 · r2] = 0 and (2) exp[ik2 · r1] + exp[ik2 · r2] = 0. Any set of N = 2 particles whose
coordinates satisfy these constraints constitutes a doublet (D). (Lower left) Graphical depiction of a series of stealthy patterns
discretized on a periodic 6 × 6 square lattice that were constructed via superposition of multiple doublets (i.e., D2 = D ⊕D
and D9 = D⊕D⊕ · · ·⊕D). Since each doublet constitutes a stealthy pattern, the superposition of multiple doublets (without
overlap) constitutes a stealthy (or multi-stealthy) hyperuniform pattern as well. (Upper right) Vectorial representation of a
stealthy pattern comprised of N = 4 particles. The corresponding structure factor will vanish at a given pair of k-vectors, k1 and
k2, when r1, r2, r3, and r4 satisfy the following equations: (1) exp[ik1 ·r1]+exp[ik1 ·r2] = 0, (2) exp[ik1 ·r3]+exp[ik1 ·r4] = 0, (3)
exp[ik2 ·r1]+exp[ik2 ·r3] = 0, and (4) exp[ik2 ·r2]+exp[ik2 ·r4] = 0. Any set of N = 4 particles whose coordinates satisfy these
constraints constitutes a quartet (Q). Note here that a quartet is not simply a pair of doublets, i.e., Q 6= D2 = D⊕D. (Lower
right) Graphical depiction of a series of stealthy patterns discretized on a periodic 6×6 square lattice that were constructed via
superposition of multiple doublets and quartets (i.e., QD = Q⊕D, Q2 = Q⊕Q, and Q3D3 = Q⊕Q⊕Q⊕D⊕D⊕D). Since
each doublet and each quartet constitutes a stealthy pattern, the superposition of multiple doublets and quartets (without
overlap) constitutes a stealthy (or multi-stealthy) hyperuniform pattern as well. Hence, this superposition technique can be
utilized to directly generate stealthy patterns with both large L and N .

degree of order. Thus, our work provides a platform to
explore their potentially novel thermodynamic and phys-
ical properties that are only beginning to emerge in con-
densed matter physics, materials science and engineer-
ing [25, 26, 28–32]. Our work brings together the quan-
tification of order in digitized two-phase media and the
theory of heterogeneous media [37]. It is noteworthy that
our stealthy designs can easily be fabricated using 3D
printing technologies [54].

It is instructive to remark on the related work by Chen
and Torquato [32] that was mentioned in the Introduc-
tion. These authors demonstrated that one can construct
hyperuniform two-phase systems with a prescribed (tar-
geted) “spectral density” (directly related to the struc-
ture factor of a digitized system) with relatively high pre-
cision by performing simulated annealing with an energy
defined as the sum of the squared error from the target.
This procedure can produce nearly stealthy two-phase
media if the target is set to zero in a certain range near
the origin. In this paper, we generate stealthy two-phase
media with a more precise requirement for the stochastic
optimization algorithm: S(k) is exactly zero when calcu-

lated analytically, or S(k) is on the order of machine pre-
cision when calculated numerically. As we have seen in
this paper, this increase in required precision greatly re-
duces the system sizes this method can handle. This mo-
tivated us to explore other methods (enumeration and su-
perposition procedures) to generate such exactly stealthy
hyperuniform systems.

Our works highlights the strength and utility of the
τ order metric to detect order in a given digitized two-
phase configuration at short-, intermediate-, and long-
range distances, especially its ability to detect hidden or-
der in stealthy hyperuniform systems. These results sug-
gest that this order metric could be fruitfully employed
across a myriad of fields, including visual perception [55],
digital image processing and complex pattern recognition
(e.g., facial/voice recognition, linguistics, lexical similar-
ity), information theory (e.g., Shannon entropy, cryptog-
raphy, and encoding) [56–59], as well as data-intensive
statistical efforts such as supervised/unsupervised ma-
chine learning. In this regard, τ (or appropriate mod-
ifications thereof) could be employed in pattern recog-
nition algorithms to identify and quantitatively discern
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textural similarities and differences that exist across all
length scales relevant to the problem at hand. While
the Fourier transform is the basic mathematical oper-
ation underlying the definition of τ , alternative order
metric definitions which utilize different integral trans-
formations should also be considered. One such direction
could involve “wavelets” [61]. The central comparison is-
sue here would be whether or not such an alternative
strategy manages to produce equal sensitivity to short-,
intermediate-, and long-range patterns or textures.

We expect that the generalization of the methods and
algorithms presented herein to the rational design of 3D
stealthy hyperuniform patterns with tunable order will
be extremely useful and warrants further research. In
this regard, the extension of the underlying mathemati-
cal formalism in Sec. II is very straightforward and simply
requires an additional dimension in σ(m,n) (and there-
fore an additional sum in Eq. (3) for the collective den-
sity variable). However, the three algorithms introduced
in this work will have significantly different levels of com-
putational complexity as the spacial dimension increases.
For one, the explicit enumeration technique in Sec. IV A
will have the worst computational scaling (i.e., the num-
ber of configurations that will need to be considered goes
from 2L1×L2 in 2D to 2L1×L2×L3 in 3D), thereby limit-
ing its domain of applicability to even smaller systems
in 3D. On the other hand, both the stochastic optimiza-
tion algorithm (Sec. IV B) and the superposition proce-
dure (Sec. IV C) will work better in 3D as their asso-

ciated computational complexities are constant with an
increase in the spatial dimension. Accordingly, we expect
that these algorithms will be quite useful in extending our
ability to design textures with tunable multi-scale order
in 3D.
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