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Here we study the fluid dynamics of a pair of rigid helices rotating at a constant velocity, tethered
at their bases, in a viscous fluid. Our computations use a regularized Stokeslet framework, both with
and without a bounding plane, so we are able to discern precisely what flow features are unaccounted
for in studies that ignore the surface from which the helices emanate. We examine how the spacing
and phase difference between identical rotating helices affects their pumping ability, axial thrust,
and power requirements. We also find that optimal mixing of the fluid around two helices is achieved
when they rotate in opposite phase, and that the mixing is enhanced as the distance between the

helices decreases.

I. INTRODUCTION

Rotating helical flagella attached to a cell body are the
propellers responsible for the locomotion of most bacte-
ria. Driven by molecular motors at their base, the he-
lices rotate, leading to hydrodynamic forces that propel
the cell [1]. If the cell body was tethered, the rotating
helices would act to stir and pump the nearby viscous
fluid. Harnessing the action of these naturally actuated
filaments within a microfluidic device was put forth as an
intriguing possibility for fluid transport and mixing by
bacterial carpets [2]. Flagellar rotation could be main-
tained for quite some time without the need for an ex-
ternal power source [3]. Alternatively, fabricated helical
micromachines that are actuated by an imposed mag-
netic field could also serve as microscale mixers [4]. In
either case, in order to control or quantify fluid transport
and mixing, the flow features around the rotating helices
should be understood.

In the past decades, there has been considerable anal-
ysis of propulsion by helical flagella. Because viscous
forces dominate inertial forces at the microscale, the hy-
drodynamics of bacterial locomotion in a Newtonian fluid
is well-described using the Stokes equations. The linear-
ity of these equations and the slenderness of the heli-
cal filament allow for the use of methods such as resis-
tive force theory [5], slender body theory [6], or regular-
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ized Stokeslets [7]. Rodenborn et al. [8] performed co-
ordinated physical experiments and computations that
measured the axial thrust and torque on rotating rigid
helices of different geometries. They showed that slen-
der body theory and regularized Stokeslets calculations
agreed with laboratory measurements within experimen-
tal uncertainty, while resistive force calculations showed
significant differences for helices with small pitch relative
to radius. In addition to models of free swimming due to
the prescribed kinematics of a rigid helix and a counter-
rotating cell body, other studies examine the elastohy-
drodynamic coupling between shape deformation of the
helix and the fluid [1, 9]. Moreover, both physical and
computational experiments have shown that bundling of
nearby helical flagella occurs due to hydrodynamic forces
[10-15].

The presence of nearby surfaces has an effect on mi-
croorganism motility. A free-swimmer driven by a helical
flagellum and a counter-rotating cell body will swim in
circular rather than straight trajectories near a planar
surface [16]. Naturally, it is to be expected that the flow
structures around rotating helices emanating from a pla-
nar wall will be affected by the wall’s no-slip boundary
condition. Recent advances in particle imaging velocime-
try have allowed the visualization of flow fields around a
single rotating helix at low Reynolds number [17]. Slen-
der body theory was used to compute flows around a pair
of helices rotating in free space [18]. Following our com-
putational model of bacterial carpets [19], here we use
a regularized Stokeslet framework to examine the fluid
flow around a pair of identical rotating helices emanat-
ing from a planar wall. The helices are rigid, their axes
are perpendicular to the wall, and their rotational veloci-
ties are specified. We ask the following simple questions:



How does the spacing between the helices and their rel-
ative phase difference influence their pumping ability?
How does the spacing between the helices and their rel-
ative phase difference influence the mixing of the nearby
fluid? How does the presence of the planar wall affect ax-
ial thrust and flow features? We expect that the answers
to these simple questions will provide insight into flows
driven by helices and the design of microfluidic mixing
devices.

II. METHODS
A. Fluid

The motion of an incompressible Newtonian fluid,
when inertial forces are negligible, is described by the
Stokes equations:

—Vp+ pAu=F (1)
V-u=0, (2)

where p is fluid pressure, u is fluid velocity, p is fluid
viscosity, and F(x) is a force density representing the
force of the helices on the fluid.

Following our previous model of a fluid-helix system
[19], we choose a regularized Stokeslet formulation [7]
where forces are distributed along the centerline of the
helices [20]. Rather than assuming that these are point-
forces, the force density concentrated at a point xj is
assumed to be

Fr(x) = e (|x — xx]) 3)

where f}, is a vector coefficient and ¢, is a smooth approx-
imation of a Dirac delta function (also known as a blob
function). Here, we use the following functional form:

15¢4
Pe(r) = Sr(r? 4 )T
We interpret the regularization parameter € as a physical
parameter that represents the radius of the filament that
is wound into a helix [21].
For a single point force density of strength fy located at
Xo, the induced velocity u at any point x can be written
in terms of the regularized Stokeslet, S.(x,xg), such that

u(x) = %Sﬁ(x7 x0)fo(x0)-

Using the definitions for the regularized solutions to the
biharmonic and Laplace equation in three dimensions [7]

A’B(r) = AG(r) = ¢c(r),
where 7 = ||x — x¢]|, it follows that

Se(x,%0) = (AL + VV)B(r),
= Hi(r) I+ Hy(r)(x — X0)(x — Xq),

where H;(r) and Hy(r) are
_Bé(r) _ Bél(T’), HQ(T) _ TBQ/(T) — Bé(?") )

r r3

Hl(T) =

Thus, by linearity of the Stokes equations and using our
regularized delta function, the velocity u at any point x
due to a set of forces fj located at positions x; is

LLTH,(r2 +2€2) + (£ - (x — x5))(x — x5)
R o W

where ry, = |x — x| and M is the number of forces along
each of the two helical centerlines.

Note that this velocity resulting from 2M concentrated
forces is defined everywhere, is an exact solution of the
Stokes equations in three dimensions, and is exactly in-
compressible. In particular, if we evaluate Equation (4)
at the 2M points xj, we have a 6M x 6 linear system
that relates the forces f;, applied at the points of each
helix to the velocities uy at those points. Because in this
work we specify the kinematics of the helices, the veloc-
ities are known, and we solve this linear system for the
forces that must be exerted along the helices to achieve
these kinematics. Once these forces are known, Equa-
tion (4) may be used to evaluate the fluid velocity at any
point in space.

For flows bounded by a plane, the boundary condition
u = 0 at the plane must be enforced. Within the context
of regularized forces, this is done by placing a regular-
ized Stokeslet, doublet, dipole and rotlet at the image
point. The details of the regularized image system are
described in [22]. The regularized Stokeslet method has
been used to simulate flows at the microscale in applica-
tions including hyperactivated sperm motility [21], nodal
cilia flow in embryology [23], optimal cilia design [24] and
synchronization of waving elastic filaments [25]. The val-
idation of this method using theory as well as comparison
of results with those of other numerical methods or exper-
iments has also been addressed, for example [7, 20, 26].

B. Helical Flagella

Figure 1 shows the configuration of two upright helices
whose axes (of length L) are parallel, placed a distance
d apart. The helices are identical, rotate in the same
direction, but could have a fixed phase difference. Figure
1 also depicts zoomed-in circular projections of each of
the helices onto the z = 0 plane that indicate the helical
radius « and the phase difference ¢.

The centerline of a helical flagellum x. = (x., yc, 2.) is
parameterized by s, where 0 < s < L:

z.(8) = atanh (7s) cos (27;3 + ¢>

ye(s) = avtanh (rs) sin (27;8 + ¢> (5)

ze(8) = s.
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FIG. 1. Sketch of two upright helices. The axis of each helix
has length L, the radius of the helix is «, and the fraction L/,
where A\ is the pitch. Both helices rotate counter-clockwise
from the top view, but with a phase difference ¢. d is the
distance between the helices.

Here ) is the helical pitch, 7 is a tapering parameter that
allows the radius of the helix to approach zero at its base,
¢ is the phase angle, « is the radius of the helix. The
pitch angle, 3, is related to the helical pitch by

tan 8 = 2%04. (6)

The time-dependent position of the centerline of an
upright helix rotating with specified angular velocity
(0,0,w) is:

x(t) = RyXe, (7)
where
cos(wt) —sin(wt) 0
R, = | sin(wt) cos(wt) 0O
0 0 1

Following the physical experiments of Zhong et al. [17],
we fix the geometry of the helices to be left-handed and
to have a radius to axial length ratio close to the typical
values for Fscherichia coli bacteria. In particular, in non-
dimensional units, we choose p = 1, the radius of the
filament to be ¢ = 0.01, the axial length of the helix to
be L = 2.2, and the radius of the helix to be @ = 0.085. In
most of the studies presented below, we choose a pitch
angle of 8 = m/4 radians and a tapering parameter of
7 = 1000. In addition, we vary the distance between the
centerline of the helices d (see Figure 1) from 0.25 to 2.5,
which represents a range of approximately 3 helix radii
(3cr) to 30 helix radii (30«).

IIT. RESULTS
A. A single helix

An untethered helix, externally-actuated to rotate
about its axis, would translate in a viscous fluid. The
direction of translation would depend upon the handed-
ness of the helix and the direction of rotation. If the
forward motion of such a helix was disallowed by teth-
ering it at its base, it would produce thrust in the axial
direction. Moreover, in addition to causing the nearby
fluid to rotate as it rotates around its axis, the helix acts
as a pump, generating a net flow away from its base [19].
In recent physical experiments, Zhong et al. [17] exam-
ined the flow field around a single rotating helix at low
Reynolds number using particle imaging velocity. The
PIV measurements were taken on a plane that contained
the axis of the helix, and phase-averaged velocity data
was projected in this plane. Choosing the same helical
geometry as in [17] and stated above, Figure 2 shows the
velocity field, contours of the transverse velocities (posi-
tive indicates pointing to the right), contours of the axial
velocities and contours of vorticity in a bisecting plane
of the helix using regularized Stokeslets with images due
to a wall. In particular, each helical centerline was dis-
cretized using M = 158 equally spaced points, and we
evaluated the velocity field on a uniform 50 x 50 grid in
the plane using Equation (4). In Figure 2, we choose
the same conventions as the corresponding PIV figures
in [17], noting that the left-handed helix is rotated coun-
terclockwise when viewed from above. As in [17], we
see that transverse velocity alternates sign as the three-
dimensional segments of the helix move in or out of the
plane as it rotates (panel B), the axial velocity is always
downward (panel C) and vorticity concentrates at the
peaks of the projection of the helix onto the plane. The
transverse and axial velocities were normalized by aw.

Zhong et al. [17] investigated the thrust production
of the rotating helices as a function of the pitch angle.
The total axial length of the helix L and the radius «
were kept fixed, but the pitch angle in Equation (6) was
varied. As the pitch angle gets larger, the helix becomes
more tightly wound and more turns about the axis com-
prise the helix. In a series of experiments of helices with
pitch angles varying from fifteen to nearly seventy degrees
rotated at eight different frequencies, Zhong et al. [17]
reported the normalized thrust T'/(uwaL). The helix was
mounted vertically, and was immersed in the rectangular
tank attached to the shaft of a micro-gear motor, and
the thrust was recorded using a force sensor. The physi-
cal experiments indicated that the maximum thrust was
achieved near pitch angle 8 = 45 degrees. Resistive force
calculations to measure thrust were performed using the
coefficients proposed by Gray and Hancock [5], Cox [27]
and Lighthill [6]. Resistive force theory is a local the-
ory that considers the slender filament to be made up of
individual cylindrical elements, and relates the velocity
and force on the elements by resistance coefficients. The
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FIG. 2. (A) Velocity field around a portion of a helix pro-
jected onto a bisecting plane (B) transverse velocity contours
(C) axial velocity contours (D) vorticity contours. These com-
putational results should be compared with the experimental
results shown in Figure 2 of [17].

interaction between local elements through the fluid is
ignored. Figure 3 shows the experimental data and re-
sistive force calculations adapted from Figure 8 of [17]
along with the regularized Stokeslet calculations, both
in free-space (dotted black curve) and with a wall (solid
black curve). We see that for small pitch angles, the re-
sistive force theories and experiments show agreement.
However, these approximations do not capture the ex-
perimental results as pitch angle increases. In contrast,
the regularized Stokeslet calculations demonstrate that
maximum axial thrust is achieved near § = 45. We also
see that the the thrust for all pitch angles is greater when
the helix is emanating from a wall, and that the inclusion
of the wall more closely matches the experimental data,
where the helix is emanating from a motor apparatus
[17].

B. Two helices
1. Flow induced by two rotating helices

We begin with simulations of flow around two rotating
helices that are in free-space (Figure 4) or tethered to a
wall (Figure 5). In both cases, the helices are upright and
self-rotating with frequency 1 Hz. Figures 4 and 5 show
snapshots of passive tracer particles in the flow, initial-
ized on the horizontal plane z = 0.5. The tracer colors
indicate height; from dark blue to red is low to high. Fig-
ure 4 shows that in the absence of a wall tracer particles
are pushed up and outward, away from the helices. In
contrast, the presence of the wall (Figure 5) leads to dra-
matically different flows where the tracers are first drawn
in horizontally toward the helices, then swirl around the
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FIG. 3. Normalized thrust as a function of pitch angle. Exper-
imental data adapted from Figure 8 of [17] (squares), theoret-
ical calculations using approximations by Gray and Hancock
[5] (grey solid line), Cox [27] (grey dashed line), and Lighthill
[6] (grey dotted line), our regularized Stokeslet calculations
in the presence (black solid line) and absence (black dash-dot
line) of a no-slip wall. The RFT calculations do not account
for a bounding plane. Our simulations in the presence of a
wall show very good agreement with the experimental data.

helices while moving upward and staying close to the he-
lices; it is not until the tracers are above the helices that
they begin to expand in the outward direction. Compar-
ing the colors (heights) of the tracers in Figures 4 and 5
we see that the tracers have reached greater heights in
the absence of the wall after the same amount of time.

To see how the phase difference between the helices af-
fects the flow field, we computed the vertical and trans-
verse velocity profiles as well as the vorticity for two he-
lices in free-space (not shown) and tethered to a wall,
(see Figure 6), for three phase differences. In all of these
simulations, the distance between the helices is fixed at
3a and the rotational frequency is fixed at 1 Hz. For
the computations in free-space, the transverse and ver-
tical velocities for two helices rotating in phase compare
well qualitatively to the experimental and computational
results reported by Kim and Powers [29].

For simulations of two helices tethered to a wall, the
columns of Figure 6 show instances where the helices
are in phase (left), out of phase by 7/2 (middle), and
7 (right). In all panels, we show the velocity components
in a vertical plane through the middle of the helices. Pan-
els G-I show that as helices vary from being in phase to
being out of phase by 7, the vertical component of the
velocities between the helices increases. In contrast, the
transverse velocities in panels D-F decrease with larger
phase difference. In addition, the sign of the vorticity in
a horizontal slice through the helices switches from being
the same sign when the helices are in phase (panel J) to
opposite sign when the helices are out of phase (panel L).



FIG. 4. Snapshots of fluid particles in the flow generated by
two rotating helices in free space. Side views (A-D) and top
views (E-H) at t = 0, 20, 40 and 70. Geometries are the
same as in the single helix case from Zhong et al.[17], with
pitch angle 8 = 45°. The bases of the helices are located
at (—2a,0,0) and (2¢,0,0), the phase difference is , col-
ors indicated height. (See Supplementary Materials [28] for
movies.)

2. Thrust, power and fluzx

Two characteristic quantities of interest are the thrust
generated by the helices and the power required to at-
tain their prescribed motion. Each of these quantities is
computed for a single helix in the presence of the other
helix, averaged over one single rotation, and normalized
by the same quantity computed for a single helix in iso-
lation. We examine how both thrust and power depend
upon phase and separation distance when the tethered
helices rotate in free-space or in the presence of a planar
wall.

The total thrust is the integral of the z—component
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FIG. 5. Snapshots of fluid particles in the flow generated by
two rotating helices tethered to a wall. Side views (A-D) and
top views (E-H) at ¢ = 0, 20, 40 and 70. Geometries are the
same as in the single helix case from Zhong et al.[17], with
pitch angle 8 = 45°. The bases of the helices are located
at (—2¢,0,0) and (2, 0,0), the phase difference is 7, colors
indicated height. The blue plane is the location of the no-slip
wall at z = 0. (See Supplementary Materials [28] for movies.)

of the force along the centerline of the helix of interest.
For an isolated helix with geometric parameters as above,
the average thrust it generates over one period tethered
to a wall is enhanced by 46% compared to the thrust
generated in free-space (data not shown). This enhance-
ment is in accord with the results shown Figure 3 for the
case when 8 = 45°, comparing the thrust computed in
free-space (dash-dot black line) to that with a wall (solid
black line). When a second helix (call it hs) is placed in
the same fluid domain as the first helix (call it hy) we
compute the thrust generated by h; in the presence of
ho, averaged over one rotation, and normalize it by the
thrust generated by h; in the absence of hs.

Panels A and B in Figure 7 show the thrust generated
by helices tethered to a wall, as a function of phase dif-
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FIG. 6. Instantaneous velocity field (A-C), transverse (D-F) and vertical velocities (G-I), and vorticity (J-L) for two helices
tethered to a wall. The separation distance is 3a, they are rotating at 1 Hz, and they are either in phase (left column), out of
phase by 7/2 (middle column) or out of phase by 7 (right column).

ference and separation distance, respectively. In panel A
we see that it is only when the helices are very close that
the phase difference has an effect on thrust. In particular,
when d = 0.25, the maximum thrust results when ¢ =
and they are completely out of phase. For any fixed phase
difference, however, the thrust increases to the value in
isolation, as the helices become farther apart, as seen in
panel B.

Panels C and D in Figure 7 show the thrust gener-

ated by helices in free-space, as a function of phase dif-
ference and separation distance, respectively. Again we
see that the thrust generated by a helix in isolation is
greater than the thrust generated by either of two he-
lices together. This behavior compares well with axial
force measurements on two rotating helices in free space
using slender body theory [18]. Whether rotating in free
space or tethered to a wall, the thrust generated by a
single helix of a pair will approach the thrust it would
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FIG. 7. Normalized thrust generated by two helices in the presence of a wall (A,B) and in free space (C,D). Thrust is shown
as a function of phase difference (A,C) and separation distance (B,D) between the two helices.

generate in isolation as the distance between the helices
increases. Note that in free-space the interaction between
helices is O(R™!) where R is the distance between them.
However, the addition of Stokeslet images in the case of
a planar wall results in a O(R™?) interaction [30]. Com-
paring panels B and D demonstrates this - as the separa-
tion distance increases between two helices in free-space
(panel D), the normalized thrust approaches one much
more slowly than when they are tethered to a wall (panel
B).

The power required for a single helix to achieve its pre-
scribed motion is the integral of f - u along its centerline.
For our model (isolated) helix, the required power for
it to rotate in free-space is about 3% less than that re-
quired if it was tethered to a wall (data not shown). This
slight deviation is mainly due to a difference in the x—
and y—components of the force near the location of the
base of the helix (closest to the wall). The z—component
of force, used to compute thrust above, does differ con-
siderably when the wall is present, but does not factor
into the power calculations because material points of
the helix rotate parallel to the wall (the z—component of
velocity is zero).

Similar to the calculation for thrust, we compute the
power expended by hi in the presence of ho, averaged
over one rotation, and normalized by the the power ex-
pended by hp in the absence of hy. Figure 8 shows the
normalized power expended by one single helix in the

presence of another as a function of phase difference and
separation distance, in free-space and with a wall. The
first observation is that as the separation distance in-
creases, the power expended by one helix in the pair
quickly approaches that of an identical helix in isolation,
both in free-space (panel D) and with a wall (panel B).
However, when the helices are close (d = 0.25) we can
see that more power is required when they are completely
out of phase (= 6%, ¢ = m) and less power required when
completely in phase (= 4%, ¢ = 0) when compared to
the single helix in isolation.

This reduction in the power requirement for helices
rotating in phase is related to the dynamic synchroniza-
tion of bacterial flagella and the subsequent formation of
bacterial flagellar bundles. In the simulations presented
here, the phase of rotation of each helix is prescribed as
is its rigid geometry. However, in previous models that
examine flagellar synchronization, the torque applied at
the base of each helix is prescribed, rather than its phase
[13-15]. Even if there was a non-zero initial phase differ-
ence between these helices, the hydrodynamic coupling
results in synchronization, minimizing power required.
The speed of synchronization depends upon the distance
between helices, the torque strength, and the bending
rigidity of the helices [14]. The synchronization of neigh-
boring helices occurs on a faster timescale than the for-
mation of the flagellar bundle [15].

Finally, recognizing that a tethered, rotating helix
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FIG. 8. Normalized power from two helices in the presence of a wall (A,B) and in free space (C,D). Power is shown as a function
of phase difference (A,C) and separation distance (B,D) between the two helices.

serves to pump fluid upward away from its base, we ex-
amine the flux of fluid that is pushed through a flow
meter placed just above it. The flow meter is the square
patch, [-5,5] x [-5,5] at a height z = 2.5, which is par-
allel to the xy—plane and perpendicular to the axis of
the helix whose base is at the origin. The patch is dis-
cretized into a regular lattice with spacing Az = 0.05,
Ay = 0.05, and Equation (4) is used to evaluate the
z—velocity at these lattice points. With this surface dis-
cretization, we are able to compute the total mass of
fluid that passes up through this flow meter in a single
rotation of the helix. We now ask the question, do two
helices pump twice as much fluid as one? Whether or
not these helices are emanating from a wall, the fluid do-
main is unbounded, and we are calculating the flux past
a finite-sized flow meter. For this reason, we examine the
mass flux through this flow meter for two helices that are
placed sufficiently close together so they still remain well
under the rectangular patch. In particular, we choose
two pairs of helices with distances d = 0.25 and d = 0.5
so that their bases are at (—0.125,0,0), (0.125,0,0) and
(—0.25,0,0), (0.25,0,0), respectively.

We define the normalized flux shown in Figure 9 as one
half of the mass of fluid pumped across the flow meter by
the two helices during one rotation divided by the mass
of fluid pumped across the flow meter by an identical
isolated helix. If this normalized flux was equal to one,
we would assert that two helices pump twice as much

fluid as one. Figure 9 shows that, indeed, this is not
the case. Whether or not the helices are tethered to a
wall, this normalized flux is less than one independent
of the phase difference between them. The neighboring
helices are, in effect, competing for the same available
fluid to transport up across the flow meter. In fact, the
normalized flux for a helix in the closer pair (d = .25) is
considerably less than that for a helix in the pair placed
further apart (d = .5), where there is less competition
for their nearby fluid. We also note, like the thrust, that
the normalized flux is maximized when the helices rotate
completely out of phase (¢ = ) and is greater in the
presence of the wall.

3. Mizing

A pair of rotating helices causes the nearby fluid par-
ticles to swirl and translate. Here we examine how fluid
particles get mixed by the action of these helices, and how
this mixing depends upon distance and phase differences
between the helices. For instance, Panels A and B of Fig-
ure 10 show snapshots at time ¢ = 0 of a pair of helices in
the same phase tethered to a wall surrounded by a collec-
tion of particles of two different colors. Panels C and D
of Figure 10 show these particles after 20 rotations of the
helix. In order to quantify the mixing of these magenta
and green particles, we use a mixing measure 0 < M <1
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ter [-5,5]x[-5,5] at height z = 2.5 for two pairs of helices at
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The normalized flux is one half of the mass of fluid pumped
across the flow meter by the two helices during one rotation
divided by the mass of fluid pumped across the flow meter by
an identical isolated helix.

proposed by Robinson et al. to evaluate the effectiveness
of industrial mixers [31]. While their mixing measure
generalizes to more than two particle types (colors), here
we describe it in the context of two. Briefly, imagine two
different ‘types’ of tracer particles are placed in a fluid
within the region of interest in equal amounts (one half
are magenta and one half are green). At any given time,
for any spatial point in the domain, one can query how
many particles of each color fall within a ball of a given
radius centered at that point. If half of the particles in
that ball are green and half are magenta, the original
global ratios of each color, then locally at that point, the
fluid can be considered totally mixed (M = 1). If, on
the other hand, all the particles in that ball are green (or

magenta), there is no mixing (M = 0). This measure,
then, depends upon two choices: (1) the spatial centers
of these balls, and (2) the radius of these balls. Robinson
et al. choose a Lagrangian approach whereby the centers
of these balls at time ¢ are the positions of the fluid trac-
ers themselves [31]. The choice of the radius should be
linked to the spatial scale of the flow, and here we choose
each ball radius to be the radius of the helix a.

Consider the vector with two components, where the
first component indicates the original (or global) fraction
of magenta particles and the second indicates the fraction
of green particles. If the space was seeded with an equal
amount of each color particles, this vector is (1/2,1/2).
The normalized global fraction vector is then:

We define a normalized vector of local ratios in a ball of
radius « centered at particle p at time ¢ as:

1 ny no
N1’ N

si(p,t) =
) ()

where n; and nsy are the number of magenta and green
particles, respectively, within the ball and N7 and N5 are
the total number of green and magenta particles in the
whole domain, respectively, at time ¢ = 0. Again, here
we assume N; = Ns. .

A measure of mixing M (p,t) at each particle p (the
center of the ball) at time ¢ that has the desired features
is then:

R t)-s — M,
M(pat):Sl(p,l)_sjgw— : mzn.

where M, = 1/1/2.

Because M (p,t) is now a Lagrangian function defined
at a tracer particle, we can also visualize the evolution
of this mixing measure at the particles. Panels E and F
of Figure 10 show a snapshot of particles at time ¢ = 0
colored by their mixing measure M (p,0), where M = 0

corresponds to dark blue and complete mixing, M = 1,
corresponds to yellow. Initially, only the particles near
the boundary between the magenta and green particles
are the centers of balls with non-zero M, but the particles
away from this boundary are centers of balls containing
particles of only one color. Whereas a particle always
retains its green or magenta color, M (p,t) changes over
time thus a single particle in the plots that track mixing
will change color accordingly. Panels G and H of Figure
10 show the final mixing values of each particle after 20
rotations. Here we see that significant mixing of the two
particle types occurred within the central region between
the helices.

We now compute this mixing measure for various
phase differences and separation distances between the
two helices. In each simulation, the domain is seeded
with an equal amount of green and magenta particles
(N1 = Ny = 5000), and the boundary between them is
equidistant from the base of both helices. We track the
mixing measure M (p,t) over the course of 20 rotations
of the helices.

Snapshots (all from the top view) from some of these
simulations are shown in Figure 11. Helices are separated
by a distance of d = 3a in the top row and d = 6« in the
bottom row. The first column shows the helices and the
particles at ¢ = 0. Within each column, the phase differ-
ence remains the same: ¢ = 0 (second column), ¢ = m/2
(third column), and out of phase ¢ = 7 (fourth column).
Subsequent columns show the final particle positions af-
ter 20 rotations. When d = 3a, we observe significant
mixing near the helices. As d increases, the mixing ap-
pears to decrease; for d = 6, the particles inside each
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FIG. 10. Panels A and B show snapshots of particles seeded in a cylindrical region enclosing two identical helices at time
t = 0 when viewed from (A) the top and (B) the side. Panels C and D show these same particles and the helices after twenty
rotations. These helices are rotated in phase (¢ = 0) and are separated by a base distance of d = 3a = 0.255. Panels E and F
show the particles colored by their initial mixing measure M (p,0). Panels G and H show these particles colored by their mixing
measure M (p,20) after twenty rotations. The mixing measure ranges from dark blue (no mixing) to yellow (optimal mixing).

¢ =0

FIG. 11. Viewed from above, the first column shows the initial seeding of 5000 green and 5000 magenta particles, where each
row depicts simulations with the same distance between helices (d = 3a (top) and 6« (bottom)). The phase difference between
the helices is varied across columns (¢ = 0 (second column), ¢ = 7/2 (third column), and ¢ = « (fourth column)). The last
three columns show the positions of the green and magenta particles after twenty rotations.

helix do not appear to mixing at all. This trend holds
for ¢ = 7/2 (third column) and ¢ = 7 (fourth column)
as well. We will quantify these observations using the
mixing measures.

Figure 12 depicts the same simulations and same par-
ticle positions as in Figure 11, but now the particles are
colored according to their mixing measures M (p,t). Vi-
sually, we observe the most mixing for the smallest sep-
aration distance, d = 3a, where the yellow indicates re-

gions of well-mixed particles in the center near the he-
lices. When the spacing between helices is increased, the
size of the regions with high mixing gets smaller. For
d = 6a, there are small, concentrated bands of well-
mixed regions, but these coincide with the advection of
the original border between the two particle types shown
in the first column of Figure 11.

To further quantify the mixing at a time ¢, we aver-
age M(p,t) over all of the particles to give M(t). We
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FIG. 12. Here the particles and helix configurations are the same as in Figure 11, but the particles are colored by their mixing

measures. Viewed from above, the first column shows the initial seeding of the 10000 particles colored by their mixing measure

M (p,0), where each row depicts simulations with the same distance between helices (d = 3a (top) and 6« (bottom)). The
phase difference between the helices is varied across columns (¢ = 0 (second column), ¢ = 7/2 (third column), and ¢ = =

(fourth column)). The last three columns show the positions of the particles colored by their mixing measures M (p, 20) after

twenty rotations.

performed twenty simulations, using five different phase
differences and four distances between the helices. M ()
is plotted as a function of helical rotations in Figure
13. Helical spacing is grouped by by line style, and the
same phase difference is grouped by line color. When
the separation distance is greatest (dotted lines), vary-
ing the phase difference has no effect. In addition, the
least amount of mixing occurs during these simulations
compared to the mixing computed for helices that are
closer together. The overall trend we observe is that as
the helices become closer together, there is both a larger
mixing measure and a more prominent effect from vary-
ing phase difference. The maximal mixing, after 20 ro-
tations, results from helices that are very close together
and rotating completely out of phase.

IV. CONCLUSION

We have investigated the fluid dynamics of a pair of
rigid helices rotating at a constant velocity in a viscous
fluid. We examined how the spacing between the helices
and their phase difference influence their axial thrust and
pumping ability. In essence, we have shown that the
answer to the question “Are two helices twice as effec-
tive as one helix?” is “no”. Two helices close to one
another do not pump twice as much fluid across a flow
meter as a single one, nor do they impart twice as much
thrust. However, if the goal of these two helices is to
mix their surrounding fluid, then our results suggest that
they should be placed close together and rotated out of
phase. While motivated by bacterical flagella, this study
may have more direct implications in the design of fab-

o
o

o
~

o
w

o
o

Mixing measure M(t)
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o
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FIG. 13. Mixing as a function of number of helical rotations.
Line style denotes helical spacing d = 3a (-), 4o (——), Sa
(=), 6a(---) and color denotes phase difference ranging from
in phase (¢ = 0 dark purple) to completely out of phase (¢ =
m light purple).

ricated helical rotors actuated in microfluidic environ-
ments, where precise geometries and rotation rates can
be controlled, which is not possible in the world of biol-
ogy.

Nevertheless, while the two-helix system studied here
is certainly idealized, it is interesting to examine its re-
lationship to the biological question of bacterial motility.
The findings of the idealized system that two helices are
not twice as effective as one is consistent with observa-



tions that bacteria with multiple flagella do not achieve
greater swimming velocities than those with a single flag-
ellum [15]. Moreover, the flagellar bundling model of
Reigh et al. [15] demonstrate that tighter flagellar bun-
dles enhance swimming efficiency compared to loosely
bundled flagella, and that loosely bundled flagella are, in
turn, not more efficient than an individual helix.

A similar idealized two helix system has previously
been studied using a physical model that tracked veloci-
ties using PIV and a numerical model based upon slender
body theory, all in free-space [29]. The studies presented
here use a regularized Stokeslet formulation with images
that accounts for the surface that the helices emanate
from. By turning off the images, we see a significant
change in flow features compared to those in the free-
space idealization. Of course, we recognize that these
calculations using images still represent an unbounded
domain. Certainly, the flow generated by rotating he-
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lices in a microfluidic device is confined by more than
one plane, as is the flow generated by nodal cilia during
embryonic development [32]. We also offer these calcula-
tions as a caution and a reminder that using free-space
solutions to quantify flow in a confined environment at
the microscale only tells part of the story.
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