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We report on the results of a molecular dynamics simulation study of porous glassy media, formed in the

process of isochoric rapid quenching from a high-temperature liquid state. The transition to a porous solid

occurs due to the concurrent processes of phase separation and material solidification. The study is focused

on topographies of the model porous structures and their dependence on temperature and average density. To

quantify the pore-size distributions, we put forth a scaling relation that provides a satisfactory data collapse in

systems with high porosity. We also find that the local density of the solid domains in the porous structures

is broadly distributed, and, with increasing average density, a distinct peak in the local density distribution is

displaced toward higher values.
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I. INTRODUCTION

Physical processes taking place in a metastable liquid and

solid matters have long been a focus of active research [1, 2].

Among other phenomena, the bubble nucleation in metastable

liquids has been under intense scrutiny due to both richness

of the fundamental science and technological significance.

The cavity (bubble) formation is known to occur in super-

heated liquids, at temperatures in excess of those of the boil-

ing threshold, or in liquids under tension, at tensile pressures

lower than the temperature-dependent saturation value of the

pressure. An important milestone in the theory of bubble nu-

cleation was set by Zel′dovich in the year of 1942 [3]. Specif-

ically, in Ref. [3], a one-dimensional theory of bubble nu-

cleation in a liquid at high negative pressures was developed.

Subsequent works have improved our understanding of the

underlying physical and chemical processes at both macro-

scopic and microscopic levels [1, 2]. Thus, it is established by

now that the maximum tensile stress corresponds to the state

in which the liquid becomes unstable with respect to an ar-

bitrarily small disturbance of a mechanical or thermal nature

[4]. The relaxation of a metastable state into a thermodynam-

ically stable state occurs via a formation of a nucleus of a new

phase. In general, the theory of relaxation of metastable states

was developed by Patashinskii and Shumilo [5]. In the few

last decades, a number of experimental and theoretical studies

have been focused on the physical processes in both super-

heated and supercooled liquids, including those by Skripov

and coworkers [6–9].

In Refs. [6–8], it was shown that the essential thermody-

namic properties of liquids in the metastable states can be de-

termined by experimental means. Later on, the experimental

data on the nucleation in superheated condensed noble gases

(argon, krypton, and xenon) were summarized in Ref. [9], and

compared to the theoretical results, obtained within the frame-

work of the homogeneous nucleation theory [1, 2]. A good

agreement between theory and experiment was reported. The

stability of coexisting phases in the liquid-vapor and crystal-

liquid transitions was considered in Ref. [10]. It was found

that, in the liquid-vapor transition, the stability of both phases

on the equilibrium line decreases as temperature increases,

while exactly the opposite trend is observed in the case of

crystal-liquid transition. Important further advances in theo-

retical understanding are due to the use of statistical geometry

in the theory of cavity nucleation. The statistical geometry

of fluctuating void space (weak spot formation), which pro-

vided a microscopic basis for the theory of void nucleation

in metastable matters has been put forward in Refs [11, 12].

More recently, a novel kinetic theory of homogeneous bubble

nucleation was advanced, based upon the explicit calculation

of the single-molecule evaporation and condensation rates as

a function of the size of the vapor bubble [13].

In the past, the phenomenon of phase separation has also

been studied in binary mixtures via both theoretical (Monte

Carlo simulations) and experimental means. The following

findings are worth noting. The mean-field theory approach

[14] predicts that the initial instability in phase-separating sys-

tems is defined by either negative derivative of the chemical

potential with respect to concentration in binary mixtures or

by negative pressure derivative with respect to the local den-

sity in one component fluids. In Ref. [15], the temporal evolu-

tion of pores in a glassy matrix was studied in model systems

comprised of liquid phase droplets of small volume fraction,

immersed in the glassy phase. The authors reported on a novel

mechanism of the dynamics of coarsening, which was found

to be driven by migration and eventual coalescence of liquid

droplets in the glassy phase.

More recently, the kinetics of the liquid-gas phase sep-

aration in a (80:20) binary Lennard-Jones mixture (Kob-

Andersen model) was studied using molecular dynamics sim-

ulations in Refs. [16, 17]. The phase separation was shown

to occur during the dynamical evolution of the systems under-

going a rapid quenching. Among many other findings, these

studies have provided important information on scaling rela-

tions, underlying the temporal evolution of phase separating

systems during a transition to a porous solid state, and re-
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ported on effects of the simulation system size on the corre-

sponding scaling behaviors. It should be noted that the Kob-

Andersen (KA) binary mixture model [18], used in the afore-

mentioned studies, is a well-known and successful atomistic

model. In the past, the KA model has been used for a di-

verse range of applications, which include - but not limited

to - the simulation studies of Refs. [19–24]. The KA model

has been proven useful for gaining insight into topics ranging

from atomic-level structure of glasses to long-range dynami-

cal correlation [25, 26]. Also, it was instrumental in reveal-

ing the existence of spatio-temporal correlations in dynami-

cal behavior of glassy materials (i.e., dynamic heterogeneity

[26, 27]). The KB model is used in this work to study the

topographies of phase-separated binary mixtures.

In the present study, the dynamical aspects of the phase sep-

aration process are left beyond the scope. Rather, we fully

concentrate on the topographical properties of the void-space

in the phase-separated systems and make an attempt to bridge

two extreme cases of free volume distributions; the ones that

are characteristic for highly porous and dense glasses. Corre-

spondingly, we consider systems, where, at the upper bound,

the free volume is the largest one can achieve under the condi-

tion that the quenched samples are solid. At the lower bound,

the free volume is close to the one characteristic for conven-

tional vitreous systems.

The remainder of the paper is organized as follows. The

modus operandi, employed in this work, is described in the

next section (Sect. II). In Sect. III, we present our simulation

results on the topography of porous structures and tempera-

ture dependence of the pore-size distributions. Also, we dis-

cuss the local density distributions in the solid domains of the

phase-separated systems. Finally, in Sect. IV, we summarize

our principal findings and draw conclusions.

II. MODUS OPERANDI

In this work, the atomic systems are modeled as the KA

binary (80:20) mixture of particles [18, 28] in a periodic box.

Within the KA model’s framework, a pair of atoms α, β =

{A,B} interact via the Lennard-Jones (LJ) potential of the

form:

Vαβ(r) = 4 εαβ[(σαβ/r)
12 − (σαβ/r)

6]. (1)

The parameters of the interatomic potential are set to εAA =
1.0, εAB = 1.5, εBB = 0.5, σAA = 0.8, σBB = 0.88,

and mA = mB [28]. The cutoff radius of the potential is

fixed at rc,αβ = 2.5 σαβ . The units of length, mass, energy,

and time are measured in σ = σAA, m = mA, ε = εAA,

and τ = σ
√

m/ε, correspondingly. The equations of motion

are integrated using the Verlet algorithm with the MD time

step of 0.005 τ [29], and the temperature was controlled by

velocity rescaling. Note that this work adopts the simulation

methodology from Refs. [16, 17] in what related to the dy-

namical evolution of the systems under consideration. Corre-

spondingly, all the behavioral features pertained to the dynam-

ics of solidification and the phase separation are equivalent to

those reported on in the above references. The initial atomic

configurations are prepared as follows. First, the systems of

3×105 atoms were thoroughly equilibrated at the temperature

of 1.5 ε/kB during 3 × 104τ at a constant volume. Five in-

dependent samples were prepared at each density in the range

0.2 ≤ ρσ3 ≤ 1.0. Thereby equilibrated systems were then

quenched to low temperatures; that is, well below the glass

transition temperature of 0.435 ε/kB [16, 17]. The tempera-

ture of the phase-separated systems was varied in the range

from 0.02 to 0.20 ε/kB, the increment being 0.01 ε/kB. At

each fixed temperature, the atomic systems were relaxed at a

constant volume during the additional time interval of 104τ
to form porous structures. It was found that the final atomic

configurations are stable and correspond to porous solids at

different densities. Moreover, the mobility of atoms is sup-

pressed; the atoms remain largely in their positions at the

time scales accessible to molecular dynamics simulations. In

Refs. [16, 17], the authors found that the system-size effects

become negligible, when the number of atoms is no less than

≃ 3 × 105. The choice of the system size, used in this work,

is based upon this finding.

III. RESULTS

A. Notes on the process of void-space formation

As made explicit above, the transition to the phase-

separated states at a constant volume occurs via concurrent

decomposition of the systems into material and void domains,

and solidification of the former. The process take place dur-

ing a rapid quenching to a low- temperature state from a liq-

uid state. The underlying physical mechanisms, responsible

for phase separation, are probably nucleation and spinodal de-

composition. The study, however, does not include the tem-

poral aspects and therefore the nature of transition is omitted

from further discussion. In Fig. 1, we show the representative

examples of the topographical patterns, obtained in our sim-

ulations study. The major goal is to illustrate the larger-scale

patterns in the solidified samples. Two main factors in shap-

ing topography of the porous systems can be identified as the

average density and temperature of phase-separated solids. It

was found that the topographical patterns vary significantly

with ρσ3. The free volume forms primarily conglomerates of

complex nanometer-sized shapes. Formation of nanometer -

scale channels running across the entire sample also found to

occur at low values of ρσ3. The channels possess distinctly

different characteristic length-scales, as compared to having

nanometer - scale (in all three dimensions) voids. Also note-

worthy is the observation that, in the whole range of average

density variation, the pores show no tendency to adopt even

a quasi-spherical shape. This observation can be of essence

for theoretical models, dealing with nano-porous continua.

The deviations from sphericity can be interpreted as resulting

from highly inhomogeneous and asymmetric tension in the

systems. As mentioned above, the degree of porosity in this

work was varied in a rather wide range. This allows for com-

parison of the present results with findings reported in previ-
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FIG. 1: (Color online) Equilibrium instantaneous atomic configura-

tions of the porous glass, computed at different values of ρσ3: a) 0.3,

b) 0.5, c) 0.7, and d) 0.9 (from top to bottom). All the configurations

are obtained at T = 0.05 ε/kB . The left panels show the full three-

dimensional plots of the atomic configurations and the right panels

display slices of the central parts of the simulation cell with thickness

of 5σ. Different colors mark atomic types A and B.

ous studies. While the low-density (high porosity) systems

have not been investigated in sufficient details to compare

theoretical predictions with experimental works, highly dense

systems have been the focus of experimental studies, which

makes a qualitative comparison feasible. Indeed, the simula-

tion results of our study show that the free volume distribution

at ρσ3 = 0.9 is that of a random quantity. This is consis-

tent with the recent experimental results of Ref. [30], where it

was shown that the quenched-in free volume in glasses is ran-

domly distributed. Furthermore, the shape of the distribution

at the above density is similar to the experimental results, ob-

tained on the hole-radius density distribution in polycarbonate
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FIG. 2: (Color online) The average pressure, P , in equilibrium sys-

tems as a function of temperature, T , for the indicated values of ρσ3.

The inset shows the scaling collapse using P/T ∼ ρα relation. See

text for details.

and polystyrene [31]. As discussed below (see Fig. 3 and dis-

cussion), the differences in the pore-size distributions in the

high- and low-porosity systems manifest themselves in differ-

ent scaling behaviors. In particular, the data at ρσ3 = 0.9 (and

higher values of ρσ3) do not obey the same scaling as the one,

obtained for systems with high porosities.

As discussed in the above, the cavitation in liquids takes

place due to overcritical negative tension, applied to the sys-

tem. The systems under consideration are not under any exter-

nal load. However, in our study, we also find that the transition

to the porous structure is driven by negative pressure. In the

past, a number of studies were devoted to the mechanism of

void formation under negative pressure. Thus, cavitation in

LJ model systems was studied in Ref. [32] using the Monte

Carlo method. It was found that there exists a critical density

at which the volume fraction of void vanishes, and this den-

sity coincides with the minimum in the pressure versus den-

sity curve for inherent structures (the Sastry curve) at a nega-

tive pressure. In a subsequent study of Ref. [33], the Sastry

curves were used to show that the properties of glass-forming

mixtures depend on softness of the interatomic potentials. In

this respect, it should be noted that our study employs the in-

teraction potential with fixed softness. Given all of the above,

it is important to provide some insights into the details of pres-

sure variation with temperature of the solid regions and as a

function of ρσ3.

In Fig. 2, the mechanical pressure versus temperature de-

pendencies are plotted for the model systems with different

ρσ3. As follows from Fig. 2, the transition to solidified porous

states and dynamical evolution of the systems take place under

negative pressure, which relaxes in the process of phase sep-

aration. At very low densities (see ρσ3 = 0.2 in Fig. 2), the

pressure is relatively small and its absolute value is an increas-

ing function of temperature when T . 0.1 ε/kB. As tem-

perature increases above ≃ 0.1 ε/kB, the pressure becomes a

decreasing function of temperature.
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The pressure variation as a function of temperature at den-

sities ρσ3 ≥ 0.3 is universal, and, depending on the temper-

ature range, three different regimes can be identified. As is

evident in Fig. 2, in this range of densities, the pressure in-

creases monotonically with temperature. However, the rate

of increase at temperatures below ≃ 0.05 ε/kB differs con-

siderably from those, observed at intermediate temperatures,

and those close to ≃ 0.20 ε/kB. Thus, at temperatures higher

than ≃ 0.07 ε/kB, the dependencies flatten out significantly.

The decrease in negative pressure is due to two important fac-

tors. First, the micro-structural rearrangements are fully con-

trolled by thermally activated processes. However, the aver-

age density is the factor, which affects collective motion and -

in effect - shapes the pore topography. An increase in density

suppresses the mobility of atoms at a fixed temperature. Cor-

respondingly, at low temperatures, the degree of structural re-

laxation depends strongly on temperature. In the intermediate

range of temperatures, between ≃ 0.05 ε/kB and 0.15 ε/kB,

the rates of pressure variation are smaller compared to the

low-temperature range, yet a significant decrease in pressure

magnitude is observed at all densities studied. At low densi-

ties, this regime corresponds to a nearly complete relaxation

at any temperature (above ≃ 0.15 ε/kB). As expected, in

the third region, a nearly flat dependence is observed. Note

that qualitative features of the topographical patterns do not

change with temperature. Also, in the whole range of temper-

atures, the observed variations in pressure with temperature

are rather small, as compared to the effects due to the aver-

age density. Indeed, the pressure changes by approximately

an order of magnitude, while the average density varies in the

range ρσ3 ∈ [0.2, 0.9].

In order to establish a more quantitative basis for estimating

the effect of density, in the inset to Fig. 2, we show the data

collapse obtained by using the scaling relation P/T ∼ ρα

with α ≃ 5/2. Given such a strong dependence, we conclude

that pressure is largely controlled by the average density in

a wide range of ρσ3. Also, pressure depends on topological

properties of void domains. One of the possible explanation

for such a behavior is that it is associated with surface energy.

However, further studies of the near-surface effects should be

performed to uncover all the details of the observed behavior.

Note that the deviations from the scaling behavior are quite

significant at ρσ3 6 0.3 and ρσ3 = 0.9.

B. Pore size distribution functions

Further analysis involves pore-diameter, dp, distribution

(PSD) functions, Φ(dp). To quantify the topographical prop-

erties of the ensembles of pores (see Fig. 1 for illustration),

we employed the methods and the computer code developed

in Refs. [34, 35]. Fig. 3 shows the behavior of the PSD func-

tions, computed at different values of ρσ3. As can be observed

in Fig. 3, in the region of small pore-sizes, each PSD is an in-

creasing function of dp. This behavior holds for pore-sizes

below a characteristic length-scale. Note that both the rate

of increase of the PSDs and their magnitudes are smallest at

ρσ3 = 0.2. In general, both of these quantities are increasing
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FIG. 3: (Color online) The pore size distribution functions, Φ(dp),
computed for systems with densities ρσ3 ∈ {0.2, 0.5, 0.7, 0.9} and

T = 0.05 ε/kB . In the analysis, the original bin size is fixed at

≃ 0.05 σ. Subsequent averaging was performed within ≃ 0.5 σ; a

reduced set of data points for each ρσ3 is shown for clarity. The

dashed orange curve is a Gaussian fit to the ρσ3 = 0.9 data. The

inset shows the data collapse for all densities according to Eq. (1).

The same color code as in Fig. 3.

functions of ρσ3. At larger dp values (than the characteristic

one), the PSDs flatten out. One more common feature of sys-

tems with ρσ3 < 0.9 is that they exhibit a peak at dp values

close to maximum pore-sizes. The above behavior is quali-

tatively different from that of dense (low-porosity) systems.

In this respect, the cases with ρσ3 = 0.9 and 1.0 serve as

representative examples. Indeed, in dense systems, the PSDs

profiles are close to Gaussian (see the orange dashed curve in

Fig. 3). In this case, the PSDs are fully described by the po-

sition of the peak and the width of the distribution. Thus,

one can approximately define the critical value of density,

ρcσ
3 = 0.9, at which the transition from the porous system-

type behavior to bulk-type behavior is observed. As discussed

above, the bulk-type behavior is characterized by Gaussian

distribution of pore sizes and distinctly differs from that char-

acteristic for systems with high porosity.

As shown below, there exists a universal scaling in the

regime of small and intermediate length-scales. To formulate

the corresponding scaling law, let us introduce the average

pore diameter as: 〈d〉 =
∑M

i=1 d
2
p(i) ndp(i)

/
∑M

i=1 dp(i) ndp(i)
,

where ndp(i)
is the number of pores having a discrete diame-

ter dp(i) and M is the number of the discretization points [36].

Further, for the equilibrium continuous PSDs, Φ(dp), we pos-

tulate the following scaling ansatz:

Φ(dp) ∼ (dp/〈d〉)
γf(dp/〈d〉). (2)

The function f(x) possess the following properties: a) f(x ≤
1) ∼ const; b) f(0.5 < x < 1.5) ∼ x−γ . We applied the

scaling form to the data obtained on all the considered herein

systems. The scaling collapse for all ρσ3 is shown in the inset

to Fig. 3. As can be observed in the figure, the data collapse

is quite convincing. The following findings are noteworthy.
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First, there exists a universal exponent γ ≃ 3, which describes

the data for all densities up to ρσ3 = 0.8 inclusive. Sec-

ond, the average pore diameter is a strong function of poros-

ity. By a numerical analysis of the corresponding quantities,

we found the following relation between the average pore size

and porosity: 〈d〉 ∼ pδ, where δ is close to 2/3, as shown in

Fig. 3. In essence, this relation signifies the fact that the av-

erage pore size is determined by the average surface area of

the void space inside the solid material. The maximum pore

diameter, dm, is defined by the effective size of the available

free space, which can be approximated as λ = p1/3L, where

L is the linear system size. The relation holds for all densities,

such that ρσ3 ≤ 0.8. Also, the deviation from the scaling law,

Eq. (1), occurs at the length- scales close to dm. This indicates

the existence of two independent length-scales in the system:

〈d〉 and dm. The effects associated with the second length-

scale manifest themselves by the observed deviations in the

scaling behavior at dp/〈d〉 values above 1.5 [ see the inset in

Fig. 3 ].

The behavior of the PSDs was studied in a temperature

interval between 0.02 ε/kB and 0.20 ε/kB. We found that

the general shape of the PSD functions is preserved in the

whole range of temperature variation. At small pore diame-

ters, all the PSD functions follow a power-law behavior, with

the power-law exponent close to ≃ 3.0. Further, in the range

of intermediate dp values, Φ(dp) flattens out. Thus, the scaling

relation, Eq. (2), holds in the whole temperature range studied.

Correspondingly, a variation in temperature changes only the

width and height of the PSDs, leaving the other features intact.

Note, however, that, in the proximity of the maximum pore di-

ameter, dm, a peak is observed. We found that the magnitude

of the peak is nearly negligible, when temperature is less than

≃ 0.05 ε/kB. At higher temperatures the peak magnitude in-

creases, being ≃ 100% greater than that of the plateau region

at T = 0.2 ε/kB. As explained above, the PSD functions

can be regarded as piecewise combinations of two distinctive

part. The first part corresponds to small and intermediate pore

diameters and is described by Eq. (2). The second part cor-

responds to a separate peak in the vicinity of dm. In this re-

gions, the scaling breaks down. Although, the general shape

of the PSDs is not affected by the variation in temperature,

the parameters of distributions vary substantially. The maxi-

mum pore diameter versus temperature is plotted in Fig. 4 at

different values of ρσ3. As can be observed in the figure, at

every ρσ3 value, dm is an increasing function of temperature,

as expected. Moreover, the relative maximum increments in

dm due to temperature variations are independent of ρσ3 and

can roughly be estimated as ≃ 30%. One curious feature of

behavior is worth noting. Three density ranges can be dis-

criminated in Fig. 4. In each density range, the curves show

remarkably similar behavior in what related not only dm val-

ues, but also the specifics of the functional dependence. From

this behavior, one can infer that there exist dynamical con-

straints on the pore evolution, such that there is no continuous

dependence of the pore-formation dynamics on density.

It might also be instructive to compare the present study

with the predictions of Ising-type models of domain growth

with conserved order parameter. With regard to dynamics of
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domain growth, it was shown that in three dimensions the do-

main size grows in time as ∼ t(1/3) [37]. In the case of Model

B (Ising model with the usual Kawasaki spin-exchange kinet-

ics), the same exponent has been observed in simulations stud-

ies, performed in two and three dimensions [38]. Note that

similar power-law exponents have been derived in the study

of Ref. [16, 17] for the systems under consideration. In the

case of Model S [the usual Kawasaki spin-exchange kinetics

(Model B) with a kinetic constraint], the domain size distri-

bution function was obtained in Ref. [39]. At small and in-

termediate length-scale, the scaling form is a power-law, with

the exponent equal to −(1/2). At large domain sizes, it ex-

hibits an exponential decay [39]. Further work is needed to

understand the behavior of pore-size distributions in the phase

separating systems.

C. Local density distributions

In the preceding sections, we studied the properties of pores

in the phase-separated systems. In what follows, the fo-

cus is put on the solid domains of the model systems under

consideration. In particular, we compute local densities in

the solid-state domains. Henceforth, the local density is de-

fined by a number of atoms located within a predefined radial

range centered on a site of the cubic lattice L ⊂ R
3. Cor-

respondingly, for each lattice site, we define a closed ball,

BR = {R ∈ R
3 :

∑3
j=1 R

2
j ≤ R2

0 }, where R0 = |~R0| is

a fixed rational number. Then, the average density is given

by: 〈ρ〉 = 1/V
∑N

i=1 δ(~ri) = N/V = ρσ3. The on-site lo-

cal density is computed as 〈ρ〉R = 1/BR

∫

BR
dR3δ(~ri − ~R),

where the integral is taken over BR. Note that the local den-

sity, 〈ρ〉R, depends on R0. In our calculations, we used a fixed

value of R0 = 2.5 σ. The rationale for choosing this value is

based upon the behavior of 〈ρ〉R(R0) in dense (nearly void-

free) systems. At this value of R0 the local density becomes

constant and thus is equal to the average density of a homo-
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FIG. 5: On-lattice local density distribution functions, 〈ρ〉R, are shown for the normalized average density, ρσ3, values: a) 0.2, b) 0.3, c) 0.4,

d) 0.5, e) 0.6, f) 0.7, g) 0.8, h) 0.9, and i) 1.0. The distribution functions are computed using the bin size of 〈ρ〉max
R /400 and T = 0.05 ε/kB;

no averaging of any kind is involved.

geneous non-porous system. That is why, 〈ρ〉R can be re-

garded as a measure of deviation of the local density from the

average density of homogeneous dense solid. In Fig. 5, we

plot the local density distribution functions, Π(〈ρ〉R), com-

puted at nine different average densities. As can be seen in

the figure, depending on ρσ3, three different types of behav-

ior can be discriminated (see lower, middle, and upper panels

of the figure). In the regime of small ρσ3 values (upper panel),

the major characteristic features are the following: a) a strong

peak in the vicinity of zero density; b) Π(〈ρ〉R) is a decreas-

ing function of 〈ρ〉R. This is not an unexpected behavior for

phase separating systems with a large fraction of pores. In-

deed, pores and thin solid domains contribute to the peak at

zero and small value of 〈ρ〉R. Note that the surface to vol-

ume ratio in solid domains is rather large in this regime and

therefore particles located in near-surface regions contribute

significantly to the behavior at intermediate 〈ρ〉R. The func-

tional dependence with 〈ρ〉R resembles closely a continuous

decay. Note, however, that there is a peak in the region slightly

above 〈ρ〉R = 1.2. The nature of the peak is discussed below.

Lets us now turn the attention to the opposite case of dense,

nearly homogenous solid. The panels g), h) and i) in Fig. 5

correspond to the large ρσ3 values. The behavior is, in a sense,

the opposite to the one, observed at small values of ρσ3. In-

deed, the highest peak is expected to be at a value close to the

average density of the solid material. The plateau centered at

approximately ρσ3 = 0.6 is due to the near-surface regions

of the solid domains, where the numbers of atoms is close to

one half of the bulk. Once again, a peak at a value of 〈ρ〉R
close to 1.2 is observed. In the region of small values of 〈ρ〉R,

only a small deviation from zero can be seen. Those are due

to local fluctuations in free volumes that can be regarded as

microstructural defects. The peak in the intermediate range of

the local density are due to atoms in near-surface regions of

pores of small sizes. At the intermediate values of 〈ρ〉R, the

patterns can be regarded as a superposition of the two cases,

discussed in the above. The solid domains are represented

by the peaks at the densities characteristic for large values of

ρσ3. The peaks near zero decrease in magnitude with the aver-

age density, while, at intermediate values of 〈ρ〉R, the behav-

ior is characteristic for phase separating systems with a large

surface-to-volume ratio.

The behavior of Π(〈ρ〉R) functions in the regions close to

the maximum density requires an additional analysis. Those

regions correspond to the density of solid domains, away from

the interfaces with the pores, and thus are of interest for sev-

eral reasons. First, mechanical response properties of porous

materials depend on density of the solid material in the sys-

tem. Second, diffusivity (as mentioned above, it is highly

suppressed in a solid state) is generally a decreasing function

of density [40]. Here, we focus on the behavior of the av-

erage density of solid domains as a function of porosity. To

get a measure of the solid phase average density, we define the

quantity denoted as 〈ρ〉S , such that it provides an average over

the density distributions in the region around the maxima cor-

responding to the solid fraction (in Fig. 5, the average solid
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pendence (open circles). The power-law fit to the simulation data is

indicated by the dashed curve. The fitting procedure is discussed in

the text.

fraction density corresponds to the peaks around 〈ρ〉R = 1.2).

To find the average we assume that the peaks in regions close

to 〈ρ〉R = 1.2 can be approximated as Gaussian forms. Then,

the parameters of each Gaussian curve can be obtained from

the corresponding numerical fits. The porosity, p, was com-

puted using the methods and the computer code developed by

the authors of Refs. [34, 35]. In Fig. 6, we plot 〈ρ〉S , as a

function of p. As follows from the figure, the solid-fraction

density of the porous systems does not differ much from that

of the dense ones. In the wide porosity range studied, the max-

imum variation in the density is less than ≃ 5%. The behav-

ior of 〈ρ〉S with porosity, however, possess some noteworthy

features. First, there is a rather abrupt change in 〈ρ〉S in the

region of small values of p. Second, in the high porosity limit,

p ≥ 0.6, the density is a strongly increasing function of p. At

the intermediate values of p, 〈ρ〉S demonstrates a moderate

growth. This range spans p values from ≃ 0.1 to ≃ 0.5. Next,

we discuss the behavior of porosity with the average density,

ρσ3. The result is shown in the inset to Fig. 6. As our analysis

shows, the behavior can be represented by the following scal-

ing relation p ∝ (ρcσ
3 − ρσ3)γ . In this formula, ρcσ

3 is the

critical density, corresponding to p = 0. Curiously enough,

the value, obtained from the fitting is: ρcσ
3 = 1.24. Note

that the value ρcσ
3 = 1.25 was reported in Ref. [33] as the

critical density below which LJ systems develop voids upon

isochoric energy minimization. The computed power-law ex-

ponent is γ ≃ 2.0. The above relation works well at both the

small and the intermediate values of ρσ3. At the values of

ρσ3 greater than ≃ 0.8, deviations from the scaling behavior

occur. Note that, in this region, 〈ρ〉R is a strongly increasing

function of p. This means that the density changes drastically

with a minor variation of p. The behavior is consistent with

the large negative pressures at this value of ρσ3.

IV. CONCLUSIONS

In this paper, we studied the structural and thermodynamic

properties of binary-mixture systems with varied porosity, ob-

tained by an isochoric rapid quench from a liquid phase to

low-temperature porous systems. The transition to vitreous

phase occurs as an instability, defined by negative derivatives

of the chemical potential and pressure with respect to the con-

centration and the local density, respectively. The temperature

of equilibrated porous systems was varied in a relatively wide

range to reveal effects of temperature on the thermodynami-

cal properties and structural specifics of the porosity patterns.

We computed the temperature dependence of the pressure in

the systems with different densities and deduced a scaling law

governing the behavior of the pressure versus temperature de-

pendence with average density. Further, the pore-size distri-

bution functions were studied. We found that in the systems

with porosity exceeding a characteristic value, the distribu-

tion function obey a single scaling relation. For the highly

dense systems, the distribution resembles closely a Gaussian;

this finding being in agreement with available experimental

data. It was found that a change in temperature of porous sys-

tems does not alter general shape of the pore-size distribution

functions, the major effect being a widening of the curves.

The local density distribution functions for samples with var-

ied density were also scrutinized. We found that local density

of the solid domains is a decreasing function of the porosity

in the high porosity limit, while it decreases with the porosity

for dense systems. The present study can be of use for design

of porous absorbent materials and related technologies. Also,

it can provide some information for the general area of porous

materials.
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