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Abstract  

Networks of semiflexible filaments are building blocks of different biological and structural 

materials such as cytoskeleton and extracellular matrix. The mechanical response of these 

systems when subjected to an applied strain at zero temperature is often investigated numerically 

using networks composed of filaments, which are either rigidly welded or pinned together at 

their crosslinks. In the latter, filaments during deformation are free to rotate about their 

crosslinks while the relative angles between filaments remain constant in the former. The 

behavior of crosslinks in actual semiflexible networks is different than these idealized models 

and there exists only partial constraint on torques at crosslinks.  The present work develops a 

numerical model in which two intersecting filaments are connected to each other by torsional 

springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely 

rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the 

effects of stiffness of crosslinks on effective elastic modulus of semiflexible networks as a 

function of filament flexibility and crosslink density. The effective elastic modulus is determined 

as a function of the mechanical properties of crosslinks and is found to vanish for networks 

composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found 

that the effective elastic modulus is a function of fiber flexibility and crosslink density.  In low 

density networks, filaments primarily bend and the effective elastic modulus is much lower than 

the affine estimate. With increasing filament bending stiffness and/or crosslink density, the 

mechanical behavior of the networks becomes more affine and the stretching of filaments depicts 

itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly 

affects the effective elastic modulus of the semiflexible random fiber networks.  

Keywords: Elasticity, mechanical behavior, semiflexible polymer networks, crosslink stiffness
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1. Introduction: 

Semiflexible networks are composed of filaments that are crosslinked on the length scale of their 

thermal persistence length [1-4]. In these systems, the bending stiffness of the filaments cannot 

be ignored in comparison with their axial stiffness. In other words, the constituent filaments store 

strain energy in both bending and axial modes of deformation. Because of this property, the 

behavior of semiflexible networks, such as cytoskeleton of cells and extracellular matrix of 

tissues, is different than the behavior of flexible polymer networks. 

There exists large literature on mechanical behavior of flexible fiber networks [5]. Classical 

rubber elasticity theory is often used to model the response of these polymeric networks. In this 

theory, it is assumed that filaments behave as Hookean springs and they store elastic energy 

because of the change in their end-to-end distance. Thus, flexible fibers are always in stretching 

and their deformation has no bending energy cost. Furthermore, the deformation field is assumed 

to be affine, i.e. the stretch and orientation of individual filaments can directly be obtained from 

the applied uniform far-field strain. The affine deformation assumption breaks down in 

semiflexible fiber networks because their constituent fibers store elastic energy by both bending 

and stretching. F-actin, DNA, collagen networks and carbon nanotubes are examples of 

semiflexible filaments [6-9]. The behavior of networks of semiflexible fibers cannot be 

accurately predicted using traditional flexible network theories [1-4].  

In this work, we focus on the mechanical response of semiflexible filament networks at zero 

temperature. These networks are usually represented by Mikado Networks in computational 

studies, i.e. the network microstructure is created by random deposition of straight lines in a 
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square domain [10-14]. Although the nature of crosslinks is expected to have significant effects 

on the mechanical response, the intersecting lines in previous studies are modelled as either 

welded (rigid) or freely rotating crosslinks. Both crosslink types cause the translation of crossing 

filaments at their crosslink point to be the same. However, the latter allows free rotation, i.e. no 

constraint is applied on the continuity of bending moments at crosslinks. Wilhelm and Frey used 

Mikado model with both crosslink types to investigate the elasticity of random fiber networks 

[10]. They concluded that networks with rigid and freely rotating crosslinks behave similarly. 

They also found a scaling regime for which the behavior of these networks is bending 

dominated. Similar observation has been made by Head et al. using networks with freely rotating 

crosslinks [11]. They introduced a scalar quantity which can be used to determine whether the 

behavior of networks is affine or nonaffine. Hatami-Marbini and Picu characterized the effects of 

network microstructure and mechanical properties of filaments on nonaffine behavior of 

semiflexible fiber network using a strain-based nonaffinity measure [12,15]. In their study, they 

considered rigid crosslinks. Shahsavari and Picu showed that the relation between network 

effective elastic modulus and fiber density remains the same if welded or freely rotating 

crosslinks are used in numerical models [14]. In networks of semiflexible filaments such as 

carbon nanotubes, elasticity of crosslinks can be different than that of individual filaments [16-

21]. For example, Terrones et al. showed that single-walled carbon nanotubes joined together by 

electron beam welding form stable junctions whose atomic arrangements are defective [21].  

Thus, the mechanical behavior of junctions is expected to be different than the constituting 

carbon fibers and needs to be accounted for in the numerical simulations. Similarly, in systems 

such as F-actin fiber networks, the filaments are attached together via binding proteins whose 

elasticity defines the behavior of crosslinks and subsequently the whole fiber network [22,23]. 
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For example, it has been observed that the elastic modulus of F-actin networks with the highly 

compliant filamin is much lower than that of rigidly crosslinked actin networks. However, 

despite their low elastic modulus, they could stiffen significantly and withstand large stresses 

[24,25]. These experimental observations have been described numerically by an effective 

medium theory and a numerical filamentous network model with compliant crosslinks 

[23,26,27]. In these previous studies, filaments are assumed to be infinitely rigid and their 

bending/stretching flexibility is neglected. In the present study, we extend these previous studies 

and investigate the effects of crosslink stiffness on the mechanical behavior of networks 

composed of semiflexible filaments. To this end, we develop a numerical model in which two 

intersecting filaments are connected to each other by torsional springs of adjustable stiffness. 

Networks composed of rigid, pinned jointed, and freely rotating crosslinks are the limiting cases 

of this model. We use Mikado algorithm to generate 2D random fiber networks and represent the 

crosslinks as hinges with torsional springs. The torsional springs connect filament segments 

together and stabilize the networks. Using this numerical model, we investigate the effects of 

torsional stiffness of crosslinks/junctions on the overall mechanical behavior of networks with 

different characteristics when subjected to small deformation. We present the results for 

sparse/dense Mikado networks composed of stiff/soft filaments. We find that the effective elastic 

modulus of the semiflexible random fiber networks is significantly reduced with decreasing the 

torsional stiffness of the crosslinks.  Furthermore, we observe that torsional stiffness of the 

crosslinks has important effects on the range of network parameters over which the effective 

elastic modulus shows a power-law variation.  
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2. Numerical Model 

Two dimensional random fiber networks are generated by deposition of straight lines in a square 

box of size L. The straight lines are of equal length L0 and their orientation is obtained from a 

uniform distribution over (0, π].  The distance between two intersection points on a filament is 

called a segment length and is denoted by lc. The mean segment length lc is proportional to the 

fiber density ρ, defined as the total length of lines per unit area of the square box. Most likely, 

two lines will only intersect at each crossing point; however, since free dangling ends are 

eliminated, the mean coordination number of the networks will be less than 4. Filaments are 

modelled as linear elastic materials with bending stiffness κ = Ef I and stretching stiffness μ = Ef 

A, where Ef is Young’s modulus, A is cross-sectional area, and I is the second moment of inertia 

of the filaments. The relative importance of bending stiffness and stretching stiffness is 

represented by filament flexibility parameter = κ μ2
bl /  . The filaments become more flexible 

with decreasing lb.  Note that lc, lb, L0, and L are independent length scales of the problem. Here, 

we keep the ratio of L / L0 large and use the initial filament length L0 to normalize all other 

length scales. Moreover, we represent the network density by crosslink density L0 / lc which can 

be shown, in the high density networks, is proportional to network fiber density ρ, i.e. L0 / lc ~ 

ρ [11].   Crosslinks are defined at intersection points of filaments, Figure 1. These crosslinks are 

modelled as torsional springs with torsional stiffness Ks, which is proportional to the bending 

stiffness of the neighboring filament segments, i.e. = α < κ >3
s cK / l  where α is a constant. 

When α →∞ , crosslinks become rigid connections (i.e., no rotation is allowed). They behave as 
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hinges when 0α → .  In literature, the above limiting cases are often referred to welded (rigid) 

crosslinks and pin-jointed crosslinks, respectively. In this work, we vary the spring constant α to 

determine the effects of crosslink rigidity on the mechanical response of semiflexible fiber 

networks. Three types of crosslinks will be investigated: 1- Rigid crosslinks: where filaments are 

rigidly connected to each other, 2- Freely rotating crosslinks: where the moments are transferred 

along the individual filaments but not from one to another, and 3- Freely rotating crosslinks with 

torsional springs: where filament segments are allowed to rotate independent of each other and 

depending on the torsional spring constant α, Figure 1.  

 

 

 

 

 

 

Figure 1. a) A typical random fiber network whose crosslinks are modelled as 

torsional springs with different spring constants. b) Four filament segments are 

pinned together at the crossing points and torsional springs resist the change of angle 

between them. c) Two filaments are pinned together at crossing point and torsional 

springs inhibit their free rotating. d) Two filaments are rigidly connected together at 

the crossing point. 

(b) 

(c) 

(d) 

(a) 
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The semiflexible fiber networks are subjected to uniaxial displacement boundary condition in x1 

direction. The corresponding strain field is ε11= ε0 and ε12 = ε22 = 0 where ε0 is a nonzero small  

far-field strain. The total energy of the system at zero temperature is written as: 

( )= μ + κ φ + ψ∑ ∑∫ 2 2 2
s

fibers crosslinks

1 1U (u') ( ') ds K
2 2

            (1) 

where ψ is the difference between current and reference angle at a crosslink,  φ’ is the curvature 

and u’ is the axial strain along filaments whose contour length is parameterized by s.  The elastic 

response of a single semiflexible polymer is not trivial and includes both energetic and entropic 

contributions. The system Hamiltonian, eq. (1), does not include the entropic contribution [10-

12]. Nevertheless, it is still a popular model because it simplifies the numerical simulations while 

still capturing the anisotropic elastic response of filaments, i.e. the ratio of axial and bending 

stiffness is proportional to (lc / lb)
2 and significantly greater than 1 for typical system parameters. 

Note that when the temperature is nonzero, a semiflexible filament of length lc with one end 

clamped has the transverse stiffness proportional to κ / lc
3 and axial stiffness proportional to κ2 / 

(KB T lc
4) [10]. Thus, the ratio of axial and bending stiffness is proportional to lp / lc >1, where lp 

is the persistence length and is proportional to κ / (KB T). The readers are referred to other papers 

for the limitations of zero-frequency network models as well as recent advances on the 

semiflexible polymer elasticity at the molecular level [2,28-30].  
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The strain energy is computed numerically by discretizing the filament segments into several 

smaller segments and writing the discrete version of equation (1) in terms of degrees of freedom; 

more details can be found in references [11,12,31]. The solution for the degrees of freedom 

under the imposed uniaxial displacement boundary condition is obtained from minimizing the 

discrete form of the total energy using a finite element solver. In all simulations, we keep L / L0 

large in order to minimize finite size effects. The discrete form of equation (1) is then used to 

calculate the total energy U of the network when subjected to the uniform axial strain field  

ε11= ε0. The effective elastic modulus, E, of the semiflexible fiber network is obtained using 

∝ ε2
0E U /  [11,31].  

The affine effective elastic modulus Eaff can be obtained from the affine deformation assumption 

and by assuming that the mechanical response of network is only due to the stretching of the 

filaments. The axial deformation of a filament segment lying at an angle θ is 

( )ε + θ0 cl 1 cos(2 ) 2  when the domain is subjected to far-field axial strain ε11= ε0. As stated in 

Section 2, the orientation of filaments in Mikado networks follows a uniform distribution 

function; thus, averaging the energy associated to all individual fiber segments gives ∝ ρ
μ

affineE
 

or ∝
μ

affine
0 0

c

E L L
l

 when ρ is large. 

In this work, we change the crosslink density from L0 / lc ~ 10 to 100, parameter lb / L0 from 10-

7 to 10-1,  and torsional spring constant α from 10-15 to 103 in order to investigate the effects of 

the torsional stiffness of crosslinks on the mechanical response of random semiflexible fiber 

networks. The results presented in this work are the averages over at least five replicas for each 
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case. Furthermore, since we did not perform any finite-size analysis, the results may involve 

some size effects [14,32]. 

3. Results and Discussion 

Figure 2 plots the normalized effective Young’s modulus as a function of torsional spring 

constant for filamentous networks with L0 / lc = 30 and lb / L0 = 0.01. It is seen that as the 

stiffness of the torsional springs at crosslinks reduces, there is a significant drop in the effective 

modulus. Moreover, this plot shows that the effective elastic modulus becomes negligible (and 

eventually vanishes) if the stiffness of torsional springs becomes much lower than the bending 

stiffness of the filaments. The effective elastic modulus reaches a plateau and becomes 

independent of the stiffness of the torsional springs when α become very large, i.e. the spring 

stiffness is significantly larger than the bending stiffness of filaments. In the limits α →∞  and 

0α → , the present numerical model captures the mechanical behavior of the semiflexible fiber 

networks with rigid and  pin-jointed crosslinks, respectively.  
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Figure 2. The normalized effective Young’s modulus E L
0 

/ μ as a 

function of stiffness coefficient of torsional springs, α, for fiber networks 

with L0 / lc = 30 and lb / L0 = 0.01. In the limiting case of −α > 310 , 

crosslinks behave as rigid connections, the dashed line shows the results 

obtain from solution of fiber networks with rigid connection. When 
− −< α <15 310 10 , the effective stiffness of the network is decreasing with 

decreasing of α. The system becomes unstable and floppy for −α < 1510  

due to numerical instabilities.   

It has been shown that fiber networks created by Mikado algorithm reaches their geometric 

percolation when L0 / lc ~ 5.4 [11,33]. The geometric percolation occurs when there is at least 

one continuous path inside the domain. Nevertheless, this does not guarantee a nonzero stiffness 

for fiber networks. It has been shown that these networks reach their rigidity percolation at 

higher value of L0 / lc ~ 5.9 [10,11,34]. The rigidity percolation depends on the types of 

crosslinks and coordination number of the structure. The coordination number of a crossing point 

is defined as the number of line segments emerging from that point. Maxwell Counting Method 

states that two-dimensional pin-jointed frames will be rigid only if their coordination number is 
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greater than 4. In Mikado Networks, it is unlikely that more than two fibers cross at the same 

point. This means that the coordination number of most crosslinks is 4. However, Mikado 

generation algorithm yields a large number of dangling ends, which do not contribute to the total 

energy of the system under deformation. The removal of these dangling ends creates crosslinks 

with coordination number of 2 and 3, and subsequently, the mean coordination number becomes 

less than 4. Thus, Mikado networks are floppy if their crosslinks are pin-jointed, i.e. no bending 

moments are transferred (this is why the effective elastic modulus reduces to zero when 0α →  

in Figure 2). In other words, without torsional springs, fiber networks accommodate the external 

deformation solely by rigid translation and rotation of their constituting filaments. Floppy pin-

jointed Mikado networks can be made rigid by considering bending stiffness of the filaments and 

their bending at crosslinks, i.e. filaments should be able to resist bending modes of deformation 

and their independent rotations at the crosslinks should be prevented. In literature, this has been 

mainly done by assuming rigid crosslinks or freely rotating crosslinks. In both of these crosslink 

types, force and moment remain continuous along individual filaments; however, the angle of 

rotation is preserved along intersecting fibers in rigid crosslinks and changes from a fiber to 

another in freely rotating crosslinks. Freely rotating crosslinks are most commonly used in 

modelling actin filaments based on the assumption that binding proteins can only transfer forces 

between filaments. Nevertheless, it has been observed that using rigid crosslinks (which is 

computationally convenient) does not significantly affect the computational results especially if 

the fiber density is not close to the rigidity percolation.  

Figure 2 shows that if α is large, the effective elastic modulus of the fiber networks becomes 

independent of the stiffness of torsional springs. In this limit, springs are much stiffer than the 

bending stiffness of neighboring filaments; therefore, crosslinks behave as if they are rigid 
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crosslinks. As stated in Section 2, mean segment length (lc), filament flexibility parameter (lb), 

and filament initial length (L0) are independent length scales of the problem. Thus, the effective 

elastic modulus is a function of lc, lb, and L0. Shahsavri and Picu calculated the effective elastic 

modulus of semiflexible fiber networks with welded (Fig. 1 c) and freely rotating (Fig. 1b) 

crosslinks [14]. Using the relation ρ ~ 1 / lc and by varying the exponents x and y in the 

expression log10 ( (ρ L0)
x / ( lb / L0)

y ), they were able to show that the effective elastic modulus 

collapses on a master curve if x = 7 and y = 2. In Figure 3, we compare the results of this work 

with this previous study. It is seen that the results of the present work, when the stiffness of 

torsional springs is large, match those obtained from modelling fiber networks with welded 

(rigid) crosslinks in Shahsavari and Picu. Moreover, we determined the effective elastic modulus 

of the fiber networks with freely rotating joints (Fig. 1b). For this purpose, we use stiff torsional 

springs (α ~ 103) between segments of a filament at each crosslinks but soft torsional springs 

(α ~ 10-12) between segments of different filaments. We observed that the mechanical behavior 

of these networks was almost the same as the behavior of networks with rigid crosslinks (data 

not shown). Figure 3 shows that lowering the torsional stiffness of crosslinks results in a 

different behavior. Furthermore, a good collapse of data for these semiflexible networks is not 

observed. Thus, we conclude that the master curve given in Shahsavari and Picu’s work depends 

on the behavior of crosslinks and cannot be used for all sparsely crosslinked fiber networks [14]. 

It remains for future studies to investigate the existence of such a mater curve for semiflexible 

fiber networks with compliant crosslinks. Despite this, Figure 3 shows that the normalized 

effective modulus approaches a horizontal asymptote as ρ and/or lb become(s) very large. In this 

region, the effective elastic modulus has a linear scaling with density, as predicted by the affine 

deformation assumption.  
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Figure 3. The normalized effective Young’s modulus log10 (E / 0.38 ρ μ) 

for fiber networks with torsional springs with stiffness constant 

α = 10−9 (relatively soft crosslinks) and α = 103 (relatively stiff crosslinks). 

The results for fiber networks with welded crosslinks from a previous study 

[15] is also shown for comparison. The data are for fiber networks with 

different crosslink density and filament flexibility parameter. 

It is noted that, without torsional springs, fiber networks are floppy and accommodate the 

external deformation solely by rigid translation and rotation of their constituting filaments. In 

order to make these structures rigid, we should prevent free and independent rotations of 

filament segments at the crosslinks and assume that filaments resists bending modes of 

deformation as well as stretching ones. Figure 2 clearly captures this behavior and shows that the 

structures become floppy when the crosslinks start to behave as hinges. It is interesting to see 

whether the density of networks may have any influence on the behavior of these networks and 
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could possibly negate the effect of stiffness of crosslinks on the overall network rigidity. In 

Figure 4, we plot the effective Young’s modulus as a function of crosslink density L0 / lc for 

networks with lb / L0 = 10-4. We choose to plot E L0 / μ because, as stated in section 2, Eaffine L0 / 

μ varies linearly with the crosslink density.  A linear dependence of the Young’s modulus with 

crosslink density is observed independent of the stiffness of torsional springs. The range of this 

linear dependence changes with stiffness of the torsional springs. Furthermore, for networks with 

similar fiber density, those with softer torsional springs have much lower effective elastic 

modulus. This figure suggests that decreasing the fiber density reduces the effective elastic 

modulus whether soft or stiff torsional springs are used at the crosslinks. In other words, fiber 

networks, independent of their number of density, become floppy when the stiffness of springs is 

significantly reduced. This is because the intrinsic randomness of the microstructure guarantees 

that filaments in these networks, independent of their density, deform rigidly when subjected to 

the far-field displacement. It is noted that this statement is only true for the response of these 

networks under small deformation (the scope of the present work). When subjected to finite 

deformation, the network microstructure is expected to align itself to the direction of the far-field 

load and resist further deformation.  
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Figure 4. The normalized effective Young’s modulus E L0 / μ as a function of 

crosslink density L0 / lc for fiber networks with α = 103 (rigid crosslinks) and 

α = 10−9 (relatively soft crosslinks)  and lb / L0 = 10−4. The dashed line shows the 

affine estimate of Young’s modulus. It is seen that the torsional stiffness of the 

crosslinks significantly reduces the effective Young’s independent of the 

crosslink density of the polymer network.  

In addition to fiber density, the flexibility of the filaments should affect the response of fiber 

networks. The effect of stiffness of individual filaments is shown in Figure 5. As the stiffness of 

filaments decreases, the effective elastic modulus of the networks reduces following a power-law 

with power of 2, which means that E ~ κ. The same power-law relation is seen irrespective of the 

stiffness of the torsional springs when the constituting filaments become very soft. Nevertheless, 

the range of power-law behavior depends on the stiffness of springs: softer springs extend the 

range of this power-law dependence to larger lb’s.  Outside the power-law relation, the 

normalized effective elastic modulus becomes independent of lb, which means that E ~ μ. When 

fibers are very flexible (very small lb / L0), the energy cost of bending deformation modes 
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becomes significantly less than the cost of their stretching (κ << μ). Thus, the dominant mode of 

deformation is bending. However, as fibers become stiff, their stretching becomes energetically 

favorable. Thus, a transition in the behavior of the network is expected with increasing parameter 

lb / L0 and/or crosslink density L0 / lc.  

 

Figure 5. The normalized effective Young’s modulus E L0 / μ as a function 

of filament flexibility parameter lb / L0 for fiber networks with 

α = 103 (relatively stiff crosslinks) and α = 10−9 (relatively soft crosslinks)  

and L0 / lc = 30. It is seen that the torsional stiffness of the crosslinks 

significantly reduces the effective Young’s modulus independent of the 

flexibility of constituent filaments. Furthermore, a bending dominated 

region (lines with slope 2) exist independent of stiffness of torsional springs. 

In Figure 6, we plot the ratio of axial energy Uaxial and total strain energy Utotal of fiber networks 

with crosslink density L0 / lc ~ 30. The data presented in this plot provides further support for the 

above discussion: Uaxial / Utotal increases with increasing lb / L0. This ratio is independent of the 
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stiffness of crosslinks when lb / L0 is less than a critical value. Nevertheless, as the filament 

rigidity increases, fiber networks with stiff crosslinks show a different response than those with 

softer crosslinks. This behavior is observed because, as discussed earlier, Mikado fiber networks 

with pinned crosslinks are floppy and their deformation includes rigid rotation of filaments at 

certain numbers of crosslinks. The soft torsional springs accommodate these rigid rotations 

without significant bending of filaments. Nevertheless, when these springs become stiff, they 

require the filaments to bend, no matter how energetically costly their bending is, in order to 

keep the whole structure rigid. Thus, the ratio Uaxial / Utotal is expected to decrease as it is 

captured in our numerical simulations, Figure 6. Because of this behavior, the effective elastic 

modulus of these networks will not converge to the prediction of the affine model. The affine 

estimate assumes that affine rotation of filaments does not incur any cost to the total energy of 

the system. Nevertheless, this assumption is not true for fiber networks composed of rigidly 

crosslinked filaments. For these networks, affine estimate should be obtained by accounting for 

the bending of filaments in addition to their stretching [35].   
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Figure 6. The ratio of axial energy and total strain energy as a function of 

filament flexibility parameter lb / L0 for fiber networks with α = 103 (relatively 

stiff crosslinks) and α = 10−9 (relatively soft crosslinks)  and crosslink density of 

L0 / lc = 30. With increasing rigidity of filaments, the behavior of the fiber 

networks becomes stretching dominant. Nevertheless, for networks with rigid 

crosslinks, there exist a critical lb / L0 greater than which the bending modes 

become important again. This critical value depends on crosslink density L0 / lc. 

 

In conclusion, we develop a numerical model for the mechanical behavior of semiflexible fiber 

networks in which filaments are connected together by torsional springs with adjustable stiffness. 

This model is more general than previous numerical models in the literature and gives a more 

realistic representation of the behavior of semiflexible networks, such as carbon nanotubes, 

whose crosslinks cannot fully transfer moments between individual fiber segments. We find that 

the stiffness of crosslinks has a significant effect on the effective stiffness of the structure 

independent of other parameters defining the network elasticity. Moreover, it is found that the 
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effective elastic modulus of fiber networks with crosslinks of different stiffnesses has a relatively 

similar power law dependence on the filament flexibility parameter lb. This power-law behavior 

exists when the dominant mode of deformation is bending and its range depends on the stiffness 

of torsional springs. The effect of crosslink density on the stiffness of the networks is also 

determined. Although the system becomes stiffer with increasing crosslink density, networks 

composed of soft crosslinks have a much lower elastic modulus compared to those with stiffer 

crosslinks. The present model can be extended in future studies such that it includes the axial 

elasticity of crosslinks in addition to their torsional stiffness. Furthermore, the findings of the 

present work are pertinent to the linear elastic response of the networks under small strain. 

Future studies are needed to determine the nonlinear behavior of networks subjected to large 

deformation when crosslinks are modelled as torsional springs.  
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