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Abstract

We use off-lattice, pruned-enriched Rosenbluth method (PERM) simulations to compute the

confinement free energy of a real wormlike chain of effective width w and persistence length lp in

a slit of height H. For slit heights much larger than the persistence length of the polymer and

much smaller than the thermal blob size, the excess free energy of the confined chain is consistent

with a modified version of the scaling theory for the extended de Gennes regime in a channel that

reflects the blob statistics in slit confinement. Explicitly, for channel sizes 2lp . H . 0.2l2p/w, the

difference between the confinement free energy of the real chain and that of an ideal chain scales

like w/H.
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I. INTRODUCTION

When a polymer is confined in a channel or a slit, excluded volume interactions cause the

polymer to swell in the unconfined direction [1]. The extent of this swelling depends on the

length scale H characterizing the confinement, the persistence length lp of the polymer, and

the effective width w of the polymer backbone. A region of phase space of considerable recent

interest is the so-called “extended de Gennes” regime [2], corresponding to confinement

length scales H lying between the polymer Kuhn length 2lp and the thermal blob size l2p/w.

Although the existence of this regime was known for quite some time through various less

descriptive terms [3–5], the moniker extended de Gennes emphasizes that the scaling law

for the size of a chain confined in a channel or slit where H > l2p/w (normally called the

de Gennes regime) “extends” to channel or slit sizes below the thermal blob size [2]. In

the context of blob theory, the extended de Gennes regime is characterized by anisometric

blobs [4, 5], with the subchain inside the blob existing at the border between ideal and real

behavior. As such, there is a strong connection between the thermodynamics of the extended

de Gennes regime for a confined polymer and the theory of marginal polymer solutions [6],

with the extended de Gennes regime corresponding to confined version of marginal solution

theory [7, 8].

The extended de Gennes regime for channel confinement has attracted substantial atten-

tion over the past several years [2, 6, 9–16]. Here, fluctuations about the average extension

of the chain along the channel axis provide a simple way to distinguish the extended de

Gennes regime and de Gennes regime — the variance in chain extension is independent

of the channel size D in the extended de Gennes regime [2, 10–12], whereas the variance

scales like D1/3 in the de Gennes regime [1, 2]. Importantly, this quantity can be measured

experimentally using DNA as a model polymer. Recent experimental work indicates that

the variance in chain extension is indeed independent of channel size [14, 15], confirming a

key prediction of the extended de Gennes regime in channels.

In contrast, the extended de Gennes regime in slit confinement has attracted considerably

less attention [17]. One possible reason is that the average value of the end-to-end distance of

a polymer in slit confinement is zero, whereas excluded volume leads to a non-zero average

extension in channel confinement [18]. Rather, the size of a chain in slit confinement is

measured by the root-mean-square (RMS) end-to-end distance of the chain. The problem
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of determining the size of a semiflexible chain in slit confinement has been the subject of

extensive experimental work using DNA as a model polymer [19–27], along with concomitant

simulations [17, 19, 27–47], and theory [1, 3, 5, 45, 48]. A key conclusion emerging from this

body of work is that the scaling law prediction for the RMS size of a chain of length L [1],

〈R2〉1/2 ∼= L3/4

(

lpw

H

)1/4

(1)

indeed holds for for channels where H > 2lp, with small corrections at smaller channel sizes

due to orientation of the chain by the walls [5, 17, 45]. In practice, one typically measures

the in-plane radius of gyration or in-plane end-to-end distance, as these are experimentally

accessible and provide better correspondence with the theory in the limit of relatively small

chains.

Inasmuch as the RMS size of the chain is already a measure of the variance in the chain

size about its zero average value, the strategy used to demonstrate the existence of the

extended de Gennes regime in channels [2, 10–12, 14, 15], i.e., from the scaling for the

second moment of the span of the chain in a nanochannel, cannot be applied to slits. Thus,

a previous claim of the existence of an extended de Gennes regime in slits [17] rests upon

the lack of contradictory evidence from an exceptionally thorough exploration of the phase

space for 〈R2〉1/2. In the present contribution, we provide affirmative evidence in support of

the extended de Gennes regime in slits by adopting the free-energy based strategy used by

Dai et al. [6] for channel confinement.

II. SCALING THEORY

Computing the confinement free energy of a polymer is a problem of long-standing interest

[49], owing to its connection with size exclusion chromatography [50]. Note that, while Flory

theory provides the correct scaling law in Eq. (1) for the size of the size of the confined chain

[17], it fails to provide the correct confinement free energy.

Let us begin with the blob theory argument [1] for the de Gennes regime H & l2p/w, as it

makes clear the approach required to modify the theory for the extended de Gennes regime

[6]. The confinement free energy in the de Gennes regime is approximately equal to the

number of blobs Nb,

β∆Fr
∼= Nb (2)
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where β−1 = kBT is the inverse Boltzmann factor. In the latter, ∆Fr is measured relative

to a reference state of an unconfined real chain [1], and the subscript “r” denotes that this

quantity refers to the confinement free energy of a real chain. For the de Gennes regime,

the blob size is equal to the slit height [1] and given by real chain statistics,

Rb ∼ H ∼ L
3/5
b w1/5l1/5p (3)

where Lb is the contour length within a blob. Noting that the number of blobs is Nb = L/Lb,

we arrive at [42]

β∆F̂r
∼=

l
4/3
p w1/3

H5/3
(4)

where ∆F̂r = ∆Frlp/L is the free energy per persistence length.

In the extended de Gennes regime, Dai et al. [6] proposed that the confinement free

energy consists of two terms,

β∆Fr
∼= Nb

(

Lblp
H2

)

+Nb (5)

The bracketed quantity in the first term is the free energy required to compress a blob

containing a contour length Lb from its unconfined size (Lblp)
1/2 to a smaller size H . This

is the dominant term, and appears in a previous scaling theory by Hsu and Binder [42].

Noting that L = LbNb, the first term in Eq. (5) can also be written as [6]

Llp
H2

∼= β∆Fi (6)

where ∆Fi is the confinement free energy required to compress an ideal semiflexible chain

of length L in a slit of size H , using an unconfined ideal chain as the reference state. The

second term in Eq. (5), which is small and does not appear in the theory by Hsu and Binder

[42], is the free energy cost required to arrange the Nb anisometric blobs in the plane, and is

analogous to Eq. (2). In the extended de Gennes regime, it is assumed that the blobs have

ideal chain scaling [4],

H ∼= (Lblp)
1/2 (7)

and that the z-parameter characterizing the excluded volume interactions is unity [17],

z =
Lbw

HB2
∼= 1 (8)
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where B is the in-plane size of the anisometric blob in a slit. Solving these two equations for

B and Lb [17], and then inserting the result into Eq. (5) yields the confinement free energy

β∆Fr
∼= β∆Fi +

Lw

Hlp
(9)

In our analysis, it proves convenient to define the excess free energy per persistence length

as

β∆F̂ex ≡ β(∆F̂r −∆F̂i) ∼=
w

H
. (10)

The extended de Gennes regime is most relevant for highly anisotropic chains, lp ≫ w,

so that a broad window exists between the lower bound at H ∼= 2lp and the upper bound at

H ∼= l2p/w [17]. As the slit height H approaches the lower bound at H ∼= 2lp, the first term

in Eq. (9) approaches L/lp and thus becomes large compared to the second term [6]. At the

upper bound for the slit height, both terms are comparable in magnitude and eventually

merge with the result in Eq. (4) when H = l2p/w. Thus, there is a gradual transition in the

extended de Gennes regime from almost ideal chain confinement to real chain confinement.

Although detecting such subtle changes in confinement free energy can be quite challenging

[1], the success of this approach in channel confinement [6] makes it worth attempting here

for slit confinement.

It is worthwhile to compare the de Gennes and extended de Gennes scaling theories to

the theory of Casassa [49], which has been used recently [27] to model the confinement of

relatively short DNA molecules. Casassa’s calculation of the confinement free energy [49] is

valid for flexible, ideal chains as the confinement passes from H > Rg, where the polymer

easily fits into the slit but experiences a depletion near the slit walls, to H < Rg, where

the polymer must adopt a pancake-like configuration to fit inside the slit. The de Gennes

and extended de Gennes theories only apply for the case H < Rg, such that the confined

chain can be modeled as a chain of compression blobs. For cases H < Rg that are in

the de Gennes regime, there is a distinct difference with the Casassa theory; the confined

chain experiences substantial excluded volume interactions, which lead to a confinement

free energy in Eq. (4) that is markedly different than Casassa’s ideal polymer theory. For

the extended de Gennes regime with H < Rg, the situation is subtler. The leading-order

contribution to the confinement free energy in Eq. (9) is that of an ideal chain. However,

there is an important distinction between the two theories in that ∆Fi from Casassa’s theory

[49] is that of a flexible chain, while ∆Fi in the extended de Gennes regime is for a semiflexible
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chain [48]. The situation surrounding the excess free energy is much clearer; inasmuch as

Casassa’s theory is for ideal chains, it predicts no excess free energy of confinement.

III. SIMULATION METHOD

To test whether Eq. (9) indeed provides a probe for the extended de Gennes regime, we

performed Pruned-Enriched Rosenbluth Method (PERM) simulations [51, 52] of a discrete

wormlike chain model, following our previous work in this area [9, 11, 18, 45]. Both our

implementation of off-lattice PERM and the discrete wormlike chain model have been de-

scribed in detail elsewhere [9, 53], so we will be brief here. The chain consists of N + 1

touching beads of size b such that the contour length of the chain is L = Nb. Both bead-

bead and bead-wall excluded volume are modeled with a hard-core potential of size w. The

stiffness of the chain results from a potential

βUbend = κ
N−1
∑

n=1

(1− cos θn) (11)

where θn is the angle formed by the bead trio starting with bead n. The bending constant

κ is related to the persistence length of the chain by [54]

lp
w

=
κ

κ− κ coth(κ) + 1
(12)

The chain is confined between two parallel plates separated by some distance Hwall. In the

theory described above, the quantity H refers to the slit that is accessible to the chain. For

real chains, H = Hwall − w. To test Eq. (9), we also need to simulate ideal chains. In our

code, this is accomplished by setting w = 0, whereupon H = Hwall.

PERM is a biased chain growth method that avoids the attrition problem during chain

growth, making it well suited for self-avoiding random walks and polymers in confinement

[55]. For our purposes here, one of the most important points about PERM is that it

provides a direct measure of the free energy during chain growth relative to a reference

state [51]. In our implementation, the reference state is an unconfined, ideal wormlike chain

[9]. For a given combination of H , lp, and w, we perform three PERM simulations: (i) a

real, unconfined chain, (ii) a real, confined chain, and (iii) an ideal, confined chain. The

quantity ∆Fr is obtained as the difference of the free energies computed from the first two

simulations, whereas ∆Fi is obtained directly from the third simulation.
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TABLE I. Table of simulation parameters range used in PERM. For the real chains, the bead size

used is b = 1 with w = b. For the ideal chains, we used the same parameters but set w = 0.

lp/w H/w L/w

[3.5-100] [10 - 1200] [40,000 - 100,000]

We have used a wide range of H/w, lp/w, and L/w ratios, which are tabulated in Table I.

These values were selected to provide almost 3 orders of magnitude of distributed data points

in Hw/l2p while keeping H > 2lp and maintaining a reasonable values for the contour length

within a blob, Lb, for computational tractability. The contour lengths were set such that

each data point produces free energies that are proportional to the contour length, with the

largest contour length being N = 105.

A PERM simulation consists of an ensemble of tours [51]. A tour comprises chain growth

starting from a single bead with enrichment (copying) of chains and pruning (removal) of

chains to enhance the sampling, with appropriate reweighting to remove the bias in the chain

growth when computing ensemble averages such as the free energy. Each tour potentially

can produce many configurations in the ensemble through the enrichment process, but these

configurations are correlated. Configurations from different tours are uncorrelated. Each

simulation was performed for m = 105 tours to provide sufficient statistics.

To validate the our code against known results, we computed the in-plane radius of

gyration 〈R2〉1/2 over a wide range of the phase space and the confinement free energy

∆Fr for H > l2p/w, which corresponds to the de Gennes regime. Figure 1 shows that our

simulations furnish the expected scaling behaviors. Note that these figures only include

chains that are sufficiently long such that 〈R2〉1/2 ∼ L3/4 and ∆Fr ∼ L. We found that the

free energy converges more quickly than the chain size, which is convenient for our purposes.

The predictions by de Gennes for both of the in-plane radius of gyration [17, 19, 28, 30, 31, 40,

42, 43, 46] and confinement free energy [29, 30], or equivalently the force of the confinement

[31, 42], have been verified many times. There is one report [39] claiming that the de Gennes

theory for the confinement free energy fails for long chains; our results correspond to very

long chains simulated with a state-of-the-art methodology and the agreement of the data in

Fig. 1b with Eq. (4) is quite good.

We have previously shown [45] that our PERM simulations provide essentially the same

confinement free energy for ideal chains as the interpolation formula of Chen and Sullivan
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FIG. 1. (a) Normalized in-plane radius of gyration and (b) normalized confinement free energy per

persistence length as a function of their scaling variables in Eq. (1) and Eq. (4), respectively. In

(a), the colors correspond to the values of lp/w and the solid line is Eq. (1) with a prefactor of 0.4

and exponent of 0.26. In (b), the colors correspond to Hw/l2p and the solid line is Eq. (4) with a

prefactor of 3.7 and exponent of 1.

[48], the latter obtained from the ground-state approximation in a propagator approach.

We have repeated these ideal chain simulations for additional values of H/lp in the context

of the present work and again obtained excellent agreement with Chen and Sullivan [48],

essentially identical to our previous work [45] and that obtained using a different simulation

method [27].
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FIG. 2. Normalized free energy of confinement per persistence length for real chains as a function

of the scaling variable for a confined ideal chain given by Eq. (6). The black squares are the data

for the de Gennes regime (Hw/l2p > 1) appearing in Fig. 1b. The triangles are data presumably in

the extended de Gennes regime (Hw/l2p < 1), where the color code indicates the value of Hw/l2p.

The solid line is the interpolation formula for the confinement free energy of an ideal chain in a

slit from Chen and Sullivan [48].

IV. RESULTS AND DISCUSSION

Figure 2 compares the free energy of confinement of real chains in slits to the scaling for an

ideal chain in Eq. (6). As we would expect, there is a substantial deviation between the real

chain and ideal chain confinement free energies for the de Gennes regime, i.e. whenH > l2p/w.

Note that the prefactor demarcating the start of the de Gennes regime is somewhat arbitrary,

since the crossover is gradual. For notational simplicity, we use a prefactor of unity here.

As the slit size is decreased below the thermal blob size, the confinement free energies are

increasingly closer to those for a confined ideal chain. To make this point even more clear,

we have included the interpolation formula from Chen and Sullivan [48] as the solid line in

Fig. 2; the free energy for the most strongly confined chains is almost indistinguishable from

that of an ideal chain.

To test the prediction for the extended de Gennes regime, we simply need to compute the

excess free energy from Eq. (10) by subtracting the solid line in Fig. 2 from the confinement

free energy. Figure 3 represents the key result of our study. In this figure, we plot the data

in a form similar to that used by Dai et al. [6] to analyze the excess confinement free energy
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FIG. 3. Test of the extended de Gennes theory for the excess free energy in Eq. (10). The excess

free energy of confinement per persistence length, β∆F̂ is multiplied by the square of the monomer

anisotropy, (lp/w)
2, so that the data can be plotted as a function of Hw/l2p [6]. The data for the de

Gennes regime (H > l2p/w) are plotted as squares and the data for the extended de Gennes regime

(H < l2p/w) are plotted as triangles to provide correspondence with Fig. 2. The data are colored

according to their H/lp values up to H/lp = 10. The triangle indicates a −1 scaling.

for a wormlike chain in channel confinement. The data in Fig. 3 show that the expected

scaling of Eq. (10) only arises when the system is sufficient far from the boundaries of both

the de Gennes regime at H = l2p/w and the Odijk regime at H = 2lp. Indeed, the transition

between the confinement free energies for the de Gennes and extended de Gennes regimes

is a gradual one, with the extended de Gennes regime requiring at least a decade in Hw/l2p

to emerge in a convincing manner. We performed a regression on the subset of data for

0.01 < Hw/l2p < 0.2 and recovered an exponent of −1.04±0.05, in excellent agreement with

Eq. (10). Figure 4 shows that, for the extended de Gennes regime, the excess free energy is

quite small, typically contributing around 5% of the total confinement free energy.

V. CONCLUSION

The simulation data provided here provide affirmative evidence in support of the existence

of an extended de Gennes regimes in slits through the excess free energy of confinement.

Inasmuch as this regime requires simultaneously satisfying H ≪ l2p/w and H ≫ lp, the

scaling law predictions for the free energy of the extended de Gennes regime in a slit in
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FIG. 4. Ratio of the excess free energy of confinement to the total free energy of confinement

for Hw/l2p < 0.2, where Fig. 3 indicates good agreement with the extended de Gennes excess free

energy in Eq. (10). The data are colored according to their H/lp values up to H/lp = 10.

Eq. (9) only apply for highly anistropic chains, lp ≫ w. Our data suggest that extended

de Gennes excess free energy scaling is observed for 2lp < H < 0.2l2p/w. Taking lp = 50

nm [56] and w = 5 nm [2, 57] as typical values for DNA at high ionic strength, the scaling

law for the excess confinement free energy of the extended de Gennes regime would not be

observable for DNA. Reducing the ionic strength does not improve the situation, as the ratio

lp/w decreases and ionic strength decreases [53]. Nevertheless, it would be interesting to see

if recent experimental methods for experimentally measuring the free energy of confinement

for DNA in slits [27, 58] can detect a deviation from the de Gennes regime that would

indicate the existence of marginal solution behavior [7, 8]. We are cautiously optimistic,

as experiments focused on the variance in DNA extension in a nanochannel [14, 15] have

provided clear evidence for the extended de Gennes regime even though the restrictions

on channel size noted above for nanoslits also apply in nanochannels [13]. Indeed, even if

the scaling regime βF̂ex ∼ w/H is not reached, one can still compare the confinement free

energy obtained in such an experiment to our data in Fig. 2. It would also be interesting

to explore the possibilities engendered by confining highly anisotropic biopolymers, such as

bottle-brush coated DNA [59], RecA-coated DNA [60], actin [61], or polyethlylene-grafted

methylcellulose [62], which will allow one to reach larger values of lp/w than are possible

with naked DNA.
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