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Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer

network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a grow-

ing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions

in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior

spreading model on a double layer network, where the key manifestation of the synergistic interactions is that

the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the

other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors

in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition

associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of

one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous

(second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A sur-

prising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer

adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt

the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis

to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the

network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics

in the whole system.

I. INTRODUCTION

A central problem in network science and engineering is to

understand, predict, and control the dynamics of virus or in-

formation spreading on complex networks [1–3]. Social con-

tagion processes such as the propagation of an opinion, dif-

fusion of a belief, and spread of a particular behavior, occur

commonly in the real world [4–11]. With the modern techno-

logical advances, a variety of online social networking plat-

forms (e.g., Facebook and Youtube) have become a routine

necessity for a substantial fraction of individuals in the en-

tire population. Spreading dynamics in modern online social

networks have attracted a great deal of recent attention and a

variety of mathematical models have been articulated to un-

derstand and predict the relevant phenomena [3, 12–14]. For

example, the threshold model, a binary state spreading model,

was introduced earlier to address the phenomenon of behav-

ior adoption, where a node in a social network adopts a new

behavior only when the number [15] or the fraction [16] of

its nearest adopted neighbors exceeds a threshold value. A

representative threshold model reveals the phenomenon that

the final size of the nodes adopting the behavior first grows

continuously and then decreases discontinuously as the mean
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degree of the network is increased [16]. Within the threshold

model, the effects of parameters and network structure on the

dynamics of social behavioral spreading have been studied,

which include the initial seed size [17], the clustering coef-

ficient [18–20], the community structure [21, 22] and mul-

tiplexity [23–25]. The dynamical process described by the

threshold model, however, is Markovian because the state of

a node depends only on the current state of its neighbors. The

original model is thus not able to encompass an important as-

pect of real contagion dynamics: social reinforcement origi-

nated from the memory effect [26–29] - a feature that is char-

acteristically non-Markovian. To overcome this deficiency

of the classical threshold model, a non-Markovian behavior

spreading model taking into account the received cumulative

pieces of behavioral information for any node to adopt the

behavior was introduced [30]. A prediction of the modified

model is that the dependence of the final behavior adoption

size on the information transmission rate can change from

being discontinuous to being continuous through continuous

changes in the dynamical or structural parameters. The non-

Markovian behavior spreading model also allows additional

issues such as the heterogeneity of adoption thresholds [31],

the limited contact capacity [32], and the effect of temporal

network structure [33] to be addressed.

Most previous works on network behavior spreading fo-

cused on a single social behavior contagion process through

empirical methods [8, 9] and mathematical models [13–
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16, 30, 34]. In the real world, it is common for two or more

distinct behaviors to spread simultaneously in a social system,

where interactions between the corresponding spreading pro-

cesses inevitably arise. For example, individuals who have

adopted Windows services are more likely to use other ser-

vices from the same company, e.g. Microsoft Office. In online

networking systems, two different tweets on the same event

or subject can diffuse on the twitter network at the same time.

The user seeing one tweet will experience an increased expo-

sure to the other tweet, and vice versa, since these two tweets

are closely related. In this case, the two tweets spread syner-

gistically as they mutually prompt each other in the process

of retweeting [35]. The synergistic mechanism is also typ-

ical in the adoption of online services. A good example is

the adoption of two online services, say Google and Youtube

through two types of tweets: one containing the URLs with

google and another with youtube. The numbers of the two

types of tweets are synchronized most of the time, implying

that they are synergistic to each other [36]. The synergistic

effect also occurs in disease spreading, where the interaction

between pathogens may mutually strengthen their spreading

process, and such an effect may have played a role in the co-

epidemic of the Spanish flu and pneumonia in 1918 [37–41].

In spite of its ubiquity, the synergistic mechanism among two

or more simultaneously spreading behaviors was not investi-

gated in previous studies [13–16, 30].

In this paper, we articulate a synergistic social behaviors

spreading model to address and understand the impacts of

synergistic interactions among multiple behaviors on their

spreading. As the spreading of each behavior typically oc-

curs on a different network layer, it is necessary to incorpo-

rate a multilayer network structure [42–44]. To be concrete,

we consider the spreading dynamics of two distinct behav-

iors in two-layer coupled networks, where each layer supports

the spreading of one behavior with its own transmission path,

as described by a non-Markovian process. The synergistic

mechanism between the two behavior adoption dynamics is

that, once a node adopts a behavior in one layer, it becomes

more susceptible to adopting the other behavior that spreads in

the other network layer. We develop an edge-based compart-

mental theory to analyze and understand how the synergistic

interactions impact the simultaneous spreading dynamics of

the behaviors. We find, as suggested by intuition, that the

synergistic interactions greatly facilitate the adoption of both

behaviors. However, surprisingly, a phenomenon is that the

adoption of one behavior can lead to a characteristic change in

the adoption of the other behavior: its final adoption size ver-

sus its information rate can change from being discontinuous

to continuous, where the former corresponds to a first-order

phase transition while the latter to a second-order transition.

Remarkably, the synergistic effect can induce a two-stage con-

tagion process, in which nodes having adopted one behavior

in one layer will adopt the other behavior in the other layer.

When there is a sufficient number of seeds, i.e., when the num-

ber of nodes having adopted the other behavior in the other

layer is sufficiently large, the remaining nodes will adopt the

behavior quickly. While it is intuitively understandable that

the synergistic interactions can promote the spreading dynam-

ics of the distinct behaviors involved, our work lays a quan-

titative foundation for this phenomenon. Our model will not

only serve as a useful framework to understand the interplay

between synergy and simultaneous spreading of multiple be-

haviors or diseases, but will also provide insights into predict-

ing or even controlling the underlying dynamics. Due to the

ubiquity of synergy in different fields such as social science,

computer science, biology and biomedicine, broad relevance

of our model is warranted.

In Sec. II, we describe the network and the synergistic be-

havior spreading models. In Sec. III, we carry out a detailed

theoretical analysis. In Sec. IV, we present extensive simu-

lation results with respect to the theoretical predictions. In

Sec. V, we summarize the main results and discuss a few per-

tinent issues.

II. MODEL

There are two components in our model: multiplex net-

works and spreading dynamics of synergistic behaviors. We

first introduce the model of multiplex networks, and then

present the synergistic behavior spreading model.

A. Model of multiplex networks

In general, network layers in an interdependent networked

system have different internal structures and dynamical func-

tions. To capture the essential dynamics of simultaneous

spreading of distinct behaviors, we focus on multiplex net-

works [42–44]. Consider the simple setting of a duplex system

consisting of two layers or subnetworks. Initially, we gener-

ate two independent layers, denoted as a and b, which have

the same node set and support the spread of behaviors 1 and

2, respectively. We use the configuration model [45] to gener-

ate each subnetwork, where the degree distribution Pa(ka) of

layer a is completely independent of the distributionPb(kb) of

layer b. For large and sparse subnetworks, the configuration

model stipulates that both interlayer and intralayer degree-

degree correlations are negligible.

B. Synergistic behavior spreading model

We use a representative non-Markovian spreading model,

the susceptible-adopted-recovered (SAR) [30] model, to de-

scribe the dynamics of behavior spreading, and then introduce

the synergistic mechanism between the spreading processes of

the two behaviors.

For each behavior c ∈ {1, 2}, at any time a node will be

in one of the three states: susceptible (Sc), adopted (Ac) and

recovered (Rc). A node in state Sc has not adopted behav-

ior c but it has an interest in c. A node in the Ac state has

adopted the behavior and can transmit the information about

the behavior (denoted as information c) to its neighbors. The

node loses interest in transmitting the information when it is

in the Rc state. The evolution process of behavior c can be
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described, as follows. Initially, ρc(0) fraction of nodes are

randomly chosen as the nodes that have adopted the behav-

ior and the remaining nodes are set to be in the susceptible

state. At each time step, each node in the Ac state transmits

the information to each of its susceptible neighbors with the

transmission rate λc. Suppose a neighboring node v already

has accumulated m − 1 pieces of information c from its dis-

tinct neighbors. One more successful transmission will make

the number of information pieces to become m. We assume

non-redundant information transmission, i.e., once an adopted

node has transmitted the information to node v, the former

will not transmit the same information to latter again. If the

cumulative number m pieces of information c that the suscep-

tible node v has is equal to or larger than a threshold, the node

will adopt the behavior c and changes its state to Ac. Simul-

taneously, each Ac node will turn to the Rc state at the re-

covery rate γc. The behavior spreading process will terminate

when all the adopted nodes have recovered. More specifically,

ρ1(0) and ρ2(0) are the fractions of nodes randomly chosen as

seeds (i.e., adopted nodes) for behavior 1 and 2 on each layer,

respectively, where the remaining nodes are in the susceptible

state. Information 1 (2) diffuses in layer a (b) with transmis-

sion rate λ1 (λ2), and the recovery rates for behaviors 1 and 2
are γ1 and γ2, respectively.

In the general SAR model, each susceptible node has its

own adoption threshold for a behavior. However, for simplic-

ity in modeling the synergistic interaction between the spread-

ing of the two behaviors, we assume that all nodes have the

same adoption threshold for each behavior: we denote the

adoption threshold for behavior 1 in layer a as T1 and that for

behavior 2 in layer b as T2. As a manifestation of mutual syn-

ergy, a node having adopted one behavior will become more

susceptible to adopting the other behavior. To quantify the

synergistic effect, we assume that, once node i has adopted be-

havior 1 (2), it will generate an increase ∆T2 > 0 (∆T1 > 0)

in the number of pieces of information about behavior 2 (1).

The quantities ∆T1 and ∆T2 thus characterize the strength

of the synergistic effect, and we have ∆T1 ∈ [0, T1] and

∆T2 ∈ [0, T2]. For ∆T1 = 0, a node having adopted behavior

2 in layer b will not impact on its adoption of behavior 1 in

layer a. Similarly, the adoption of behavior 1 will have no ef-

fect on adopting behavior 2 if ∆T2 = 0. If a node has adopted

behavior 2, it will adopt behavior 1 only if ∆T1 + m≥T1,

where m represents the number of cumulative pieces of be-

havioral information 1 in layer a that this node has received

from distinct neighbors.

III. THEORY

We exploit the edge-based compartmental theory [30, 46–

48] to analyze the dynamical process of behavior spreading

subject to synergistic interactions, under the assumption that

each subnetwork is large and sparse with no internal degree-

degree correlations. We also assume that the degree distribu-

tion of network a is completely independent of that of network

b, so interlayer degree-degree correlation can be neglected too.

The fraction of nodes in each state can be treated as a contin-

uous variable. For each behavior c ∈ {1, 2}, we denote Sc(t),
Ac(t) and Rc(t) as the fractions of nodes being in the suscep-

tible, adopted, and recovered state, respectively, for behavior

c in the corresponding layer at time t. During the spreading

process, the susceptible nodes adopting behavior c decreases

the value of Sc(t) but leads to an increase in Ac(t), and the

recovery of the adopted nodes for behavior c decreases Ac(t)
but increasesRc(t). Using these notations, the dynamical evo-

lution equations for behavior c can be written as

dAc(t)

dt
= −

dSc(t)

dt
− γcAc(t) (1)

and

dRc(t)

dt
= γcAc(t). (2)

For t → ∞, the states of all individuals remain unchanged

and Rc(∞) is the final adoption fraction of behavior c.

A. Edge-based compartmental theory

Despite that the spreading processes of behaviors 1 and 2

occur in different networks (a and b, respectively) and the dy-

namical parameters such as the information transmission rates

(λ1 and λ2), the recovery rates (γ1 and γ2), and the adoption

thresholds (T1 and T2), are different, the mathematical equa-

tions governing the underlying processes have identical forms.

It thus suffices to derive the equations for behavior 1 spreading

in layer a.

To solve Eqs. (1) and (2), we need to calculate the fraction

of susceptible nodes for behavior 1 at time step t. Firstly,

for nodes of degree ka in layer a, two cases can arise where

the nodes do not adopt behavior 1: (1) these nodes have not

adopted behavior 2 on layer b and the cumulative number of

received pieces of information 1 in layer a is less than T1, and

(2) these nodes have already adopted behavior 2 in layer b, but

the cumulative number of received pieces of information 1 in

layer a is less than T1−∆T1. Under the assumption that there

is no dynamical correlation between the layers, we have that

the fraction of susceptible nodes of degree ka for behavior 1
at time t is given by

S1(ka, t) = S2(t)

T1−1∑

m=0

φ1(ka,m, t)

+ [1− S2(t)]

T1−1−∆T1∑

m=0

φ1(ka,m, t). (3)

In Eq. (3), the first term on the right side is the probability that

a node of degree ka in layer a at time t does not adopt behav-

ior 1. This term contains two parts that describe the following

two situations, respectively: (1) the received cumulative num-

ber of pieces of information 1 is less than T1 with probability∑T1−1
m=0 φ1(ka,m, t), and (2) with probability S2(t), a random

node in layer b does not adopt behavior 2 at time t (i.e., a node

in layer b does not adopt behavior 2 and is still in the suscep-

tible state), where the quantity φ1(ka,m, t) is the probability
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for a node of degree ka to have received m pieces of informa-

tion 1 by time t in layer a. Combining the two parts, we find

that the first term is identical to the second term in Eq. (3).

Using the degree distribution of network a, we can express

the fraction of susceptible nodes for behavior 1 as

S1(t) =
∑

ka

Pa(ka)S1(ka, t). (4)

In Eq. (3), the quantity φ1(ka,m, t) can be expressed as

φ1(ka,m, t) = [1− ρ1(0)]Bka,m[θ1(t)], (5)

where Bk,m(w) denotes the binomial distribution Bk,m(1 −
w)mwk−m and θ1(t) is the probability that a random neigh-

bor v of node u in layer a has not transmitted the behavioral

information 1 to node u by time t. To take into account the dy-

namical correlations among the states of the adjacent nodes,

we make use of the cavity theory [30, 46–48] to analyze the

quantity θ1(t), where node u is in the cavity state so that it

cannot transmit the behavioral information to its neighbors but

it can receive the information from its neighbors.

To solve Eqs. (3) and (4), we need the value of θ1(t) [the

computation of S2(t) is the same as that of S1(t)]. Noting

that a random neighbor v of node u in layer a can be in one

of the following three states: S1, A1 and R1, we have that

θ1(t) is the sum of the probabilities that the neighbor v does

not transmit information 1 to u when v is in the S1, A1 or R1

state. We have

θ1(t) = ξS1 (t) + ξA1 (t) + ξR1 (t), (6)

where ξS1 (t) [ξA1 (t) or ξR1 (t)] denotes the susceptible (adopted

or recovered) neighbor v of u which has not transmitted infor-

mation 1 to node u up to time t in layer a.

Suppose a random neighbor v of degree k′a of node u is

susceptible initially, node u cannot transmit information 1 to

v since u is in the cavity state. Node v can only receive the

information from its other k′a − 1 neighbors. The probability

that node v has received m pieces of information 1 in layer a
by time t is then

τ1(k
′

a,m, t) = Bk′

a
−1,m[θ1(t)]. (7)

Similar to Eq. (3), we have that the probability that the neigh-

boring node v is still in the susceptible state for behavior 1 at

time t is given by

Φ1[k
′

a, θ1(t), θ2(t)] = S2(t)

T1−1∑

m=0

τ1(k
′

a,m, t) (8)

+ [1− S2(t)]

T1−1−∆T1∑

m=0

τ1(k
′

a,m, t).

For uncorrelated networks, the probability for a random edge

to connect a node of degree k′a is k′aP (k′a)/〈ka〉, where 〈ka〉
is the average degree of network layer a. A neighboring node

in the susceptible state cannot transmit the behavioral infor-

mation. Thus, ξS1 (t) is equal to the probability that the neigh-

boring node is in the susceptible state, which is

ξS1 (t) = [1− ρ1(0)]

∑
k′

a

k′aP (k′a)Φ1[k
′

a, θ1(t), θ2(t)]

〈ka〉
. (9)

If a random neighbor v is in the adopted state for behavior

1, success in information transmission from node v to node u
will result in a decrease in θ1(t). We thus have

dθ1(t)

dt
= −λ1ξ

A
1 (t). (10)

At the same time, once the adopted neighbor v has recovered

before it can transmit information 1 to node u, there will be an

increase in ξR1 (t). (Note that here we use the synchronous up-

dating rule, meaning that the transmission and recovery events

happen consecutively in discrete time steps.) The increase in

ξR1 (t) contains two parts that describe the following two sit-

uations, respectively: (1) with probability 1 − λ1, the neigh-

boring node v has not transmitted information 1 to u, and (2)

simultaneously, node v recovers with probability γ1. Combin-

ing these two parts, we obtain the increment of ξR1 (t) as

dξR1 (t)

dt
= γ1(1− λ1)ξ

A
1 (t). (11)

Combining Eqs. (10) and (11), we obtain an explicit expres-

sion for ξR1 (t):

ξR1 (t) =
γ1[1− θ1(t)](1 − λ1)

λ1
. (12)

Inserting Eqs. (9) and (12) into Eq. (6), we can write ξA1 (t) as

ξA1 (t) = θ1(t)−

∑′

ka
k′aP (k′a)Φ1[k

′

a, θ1(t), θ2(t)]

〈ka〉

−
γ1[1− θ1(t)](1 − λ1)

λ1
. (13)

Substituting Eq. (13) into Eq. (10), we get the time evolution

of θ1(t) as

dθ1(t)

dt
= −λ1θ1(t) + γ1[1− θ1(t)](1 − λ1)

+ λ1(1− ρ1(0))

×

∑
k′

a

k′aP (k′a)Φ1[k
′

a, θ1(t), θ2(t)]

〈ka〉
. (14)

Following a similar procedure, we can derive the expression

of θ2(t), the probability that a random neighbor v of node u
in layer b has not transmitted the behavioral information 2 to

node u by time t, and S2(kb, t). We have

dθ2(t)

dt
= −λ2θ2(t) + γ2[1− θ2(t)](1 − λ2)

+ λ2(1− ρ2(0))

×

∑
k′

b

k′bP (k′b)Φ2[k
′

b, θ1(t), θ2(t)]

〈ka〉
(15)

and

S2(kb, t) = S1(t)

T2−1∑

m=0

φ2(kb,m, t)

+ [1− S1(t)]

T2−1−∆T2∑

m=0

φ2(kb,m, t), (16)
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where the form of Φ2[k
′

b, θ1(t), θ2(t)] in Eq. (15) is similar

to Φ1[k
′

a, θ1(t), θ2(t)], and φ2(kb, t) in Eq. (16) is similar to

φ1(ka, t). It is thus not necessary to write down the expres-

sions again. Using the degree distribution of network b, we

have the fraction of susceptible nodes at time t in layer b as

S2(t) =
∑

kb

Pb(kb)S2(kb, t). (17)

Iterating Eqs. (1)-(4) and (14)-(17), we can obtain the frac-

tions of susceptible nodes at time t in both layers: S1(t)
and S2(t). In addition, we can substitute S1(t) [S2(t)] into

Eqs. (1) and (2) and calculate the fractions of the adopted

nodes and of the recovered nodes in layer a (b) at time t.
Taking the limit t → ∞, we can obtain the final fractions

of adoption of the two behaviors. Results on the final adop-

tion fractions from direct numerical simulations together with

the corresponding theoretical predictions for different param-

eter values are shown in Fig. 1. We obtain a good agreement

between theory and numerics. For example, for T1 = 2 and

T2 = 4, Fig. 1(b) shows that, without the synergistic effect

of behavior 1, i.e., ∆T2 = 0, behavior 2 will not exhibit

any outbreak. For ∆T2 = 2, behavior 2 is adopted globally.

When there are mutual synergistic effects, e.g., ∆T1 = 1 and

∆T2 = 3 or T1 = 3 and T2 = 4, the adoption of both be-

haviors is enhanced, as shown in Figs. 1(c) and 1(d), respec-

tively. Note that there are some outliers (e.g., there are one

black square in Fig. 1 (a) and two black squares in Fig. 1

(d)) around the critical transmission rate since the SAR model

is not a deterministic threshold model, which is in contrast

to the Watts threshold model. The randomness exists in the

process of simulations when the behavior information trans-

mission rate is smaller than 1. Supposing a susceptible node

with adoption threshold equal to 3, when it has three adopted

neighbors it will not adopt the behavior if one of its adopted

neighbor does not succeed in transmitting the behavior infor-

mation. As shown in the inset of Fig. 1(d), there are some

stochastic simulations that R2(∞) does not increase from a

very smaller value to a value close 1 directly.

A fundamental issue in spreading dynamics in complex net-

works is phase transitions [3]. As a system parameter (e.g., the

infection rate) changes through a critical point, the final size of

the infected nodes starts to increase from zero. An abrupt and

discontinuous increase in the final size signifies a first-order

phase transition, while a gradual and continuous change is in-

dicative of a second-order phase transition. An objective of

our study is then to uncover and understand the effect of syn-

ergistic interactions on the phase transitions associated with

the social behavior spreading dynamics. To analyze the phase

transition, we focus on the fixed point (root) of Eqs. (14) and

(15) associated with the final state (i.e., t → ∞). Simplifying

notation as θ1 ≡ θ1(∞) and θ2 ≡ θ2(∞), we write Eqs. (14)

and (15) as

θ1 = f1(θ1, θ2), (18)

and

θ2 = f2(θ1, θ2), (19)

respectively, where

f1(θ1, θ2) =
[1− ρ1(0)]

∑
k′

a

k′aPa(k
′

a)Φ1(k
′

a, θ1, θ2)

〈ka〉

+
γ1
λ1

[1− θ1](1− λ1), (20)

and

f2(θ1, θ2) =
[1− ρ2(0)]

∑
k′

b

k′bPb(k
′

b)Φ2(k
′

b, θ1, θ2)

〈kb〉

+
γ2
λ2

[1− θ2](1 − λ2). (21)

Because of the nonlinear functions Φ1(k
′

a, θ1, θ2) in Eq. (20)

and Φ2(k
′

a, θ1, θ2) in Eq. (21), to analyze the whole parame-

ter space is infeasible. We thus focus on some representative

or benchmark cases to gain certain analytic understanding of

the numerical results. Specifically, we consider two cases in

terms of the adoption thresholds of the two behaviors: (1) the

adoption threshold of one behavior is less than that of the other

behavior (T1 < T2 or T1 > T2), and (2) T1 = T2.

B. Solutions for T1 < T2

For T1 < T2, ∆T1 = 0 and ∆T2 > 0, indicating that the

adoption of behavior 2 has no effect on the spread of behav-

ior 1 but the adoption of the latter will enhance the spread of

former, as shown in Fig. 1. Because Eqs. (18) and (19) are

nonlinear functions of θ1 and θ2, typically there are multiple

roots. In addition, there is persistent transmission of behav-

ioral information from individuals in an adopted state (i.e.,

A1 or A2) to their neighbors, so θ1(t) and θ2(t) decrease with

time. Thus, if Eqs. (18) and (19) possess more than one stable

fixed point, only the one with the maximum value is physi-

cally meaningful [30]. Since Eq. (18) contains the parameters

λ1 and θ1 only, for a given value of λ1, we can obtain the value

of θ1. For given values of the parameters λ2 and ∆T2, with

θ1 we can solve Eq. (19) numerically. As shown in top panel

of Fig. 2, we see that Eq. (19) typically has a non-zero triv-

ial solution even for small values of λ2, indicating that, even

when the initial adopted fraction of behavior 2 is small (e.g.,

ρ2(0) = 0.05), it will always be adopted by a certain fraction

of the nodes. However, the initial fraction of seeds will have

an effect on the final adoption size [17, 30]. To better focus on

the effect of synergistic interactions on simultaneous spread-

ing of the two behaviors, we set ρ1(0) = ρ2(0) = 0.05 and

calculate the final adoption size versus the behavioral infor-

mation transmission rate with a particular eye on the possible

type of phase transitions.

For ∆T2 = 0, the number of roots (fixed points) of the

function g2(θ1, θ2) = f2(θ1, θ2) − θ2 is 1 or 3, as shown in

Fig. 2(a). Because the physically meaningful solution is the

maximum value of the stable fixed point of Eq. (19), there

is no global outbreak in behavior 2 [verified numerically, see

Fig. 4(a)]. For ∆T2 = 2, the function g2(θ1, θ2) is tangent to

the horizontal axis at θc2 for the critical value of λc
2 ≈ 0.74.

Further increasing λ2 above λc
2 removes the tangent point and
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FIG. 1. Effect of synergistic strength on behavior spreading for random regular double-layer networks (RR-RR). (a,b) For T1 = 2
and T2 = 4, the fractions R1(∞) and R2(∞) of recovered nodes in layers a and b, respectively, versus λ, where λ1 = λ2 = λ. (c,d) The

corresponding plots for a different set of threshold values: T1 = 3 and T2 = 4. The symbols are direct simulation results while the lines are the

corresponding theoretical prediction obtained by iterating Eqs. (1)-(4) and (14)-(17). The plots in the inset of (d) are results from five stochastic

simulations for the parameter settings (∆T1 = 2, ∆T2 = 2, T1 = 3 and T2 = 4). The network sizes of both layers are set as N = 5 ∗ 104,

the simulation results are average by using 20 multiplex network realizations and each multiplex network is with 103 independent dynamical

realizations. Other parameters are γ1 = γ2 = 1.

leaves g2(θ1, θ2) with only one intersection point with the hor-

izontal axis. Importantly, from the standpoint of bifurcation

analysis, we see that, at this point, the physically meaningful

fixed point θ2 decreases abruptly to a small value, signifying

a first-order phase transition. The critical value λc
2 for a given

λ1 can be obtained by using the criterion that a nontrivial so-

lution of Eq. (19) emerges, which corresponds to the point at

which the function g2(θ1, θ2) is tangent to horizontal axis at

the critical value of θc2. That is, the critical condition for this

case can be obtained by combining Eqs. (18) and (19) and the

following equation

dg2(θ1, θ2)

dθ2
|θc

2
= 0. (22)

For ∆T2 = 3 and λ1 = 0.12, Eq. (19) has a single root whose

value decreases with λ2, as shown in Fig. 2(c). This means

that R2(∞) increases with λ2 continuously.

For a given value of the transmission rate λ1 of behavior 1,

the critical condition is then that behavior 2 will be adopted

if its transmission rate λ2 is larger than λc
2. Similarly, we can

compute the minimal information transmission rate of behav-

ior 1 required for a global outbreak of behavior 2. In particu-

lar, setting λ2 to be the maximum value (i.e., λ2 = 1.0) and

substituting it into Eqs. (19) and (22), we get the critical values

of θ1 and θ2. Substitute these values into Eq. (18), we obtain

λm
1 , the minimal information transmission rate of behavior 1.

Numerical solutions of Eq. (19) also show that, for large

values of λ1 and ∆T2 > 0, it has one fixed point only when

varying λ2, so R2(∞) increases with λ2 continuously. As a

result, there exists the critical parameter value θc1 (i.e., λc
1),

across which the dependence of R2(∞) on λ2 changes from

being discontinuous to continuous. For the special case of

T1 < T2 (e.g., T1 = 1, T2 = 4, ∆T1 = 0 and ∆T2 > 0), we

can numerically solve Eqs. (19) and (22), together with the

condition [49]

d2g2(θ1, θ2)

dθ22
|θc

2
= 0. (23)

Once θc1 is determined, we can substitute the value of θc1 into

Eq. (18) to get λc
1. In particular, R2(∞) increases with λ2 dis-

continuously for λ1 < λc
1 and the increasing pattern becomes

continuous for λ1 ≥ λc
1. Using the same approach, we can de-
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FIG. 2. Phase transitions associated with simultaneous behavioral spreading on double-layer random regular networks. The graphical

solutions of Eqs. (18), (19) and (24) are presented. The upper panels show the results for the case T1 < T2, i.e., T1 = 1 and T2 = 4, where

g2(θ1, θ2) is plotted as a function of θ2 for ∆T2 = 0 (a), ∆T2 = 2 (b) and ∆T2 = 3 (c). The fixed points of Eqs. (17) and (18) are the

intersections between the respective curves and the horizontal axis. Other parameters are ∆T1 = 0, λ1 = 0.12, and ρ1(0) = ρ2(0) = 0.05.

The lower panels show the cases of T1 = T2 for T1 = T2 = 3, ∆T1 = ∆T2 = ∆T , and λ1 = λ2 = λ, where the values of g(θ) are plotted

as a function of θ for ∆T = 0 (d), ∆T = 1 (e) and ∆T = 2 (f). The fixed points of Eq. (24) are the intersections between the respective

curves and the horizontal axis. The initial adoption fraction is ρ(0) = 0.05. The blue dots in (b), (e) and (f) denote the points of tangency.

Other parameters are γ1 = γ2 = 1.

termine the critical value of λc
2 above (below) which R2(∞)

increases with λ1 discontinuously (continuously).

C. Solutions for T1 = T2

This is the symmetric case where ∆T1 = ∆T2 = ∆T ,

λ1 = λ2 = λ, 〈ka〉 = 〈kb〉, and Pa(k) = Pb(k) = P (k). The

symmetry implies θ1(t) = θ2(t) and f1(θ1, θ2) = f2(θ1, θ2).
For simplicity, we denote θ(t) ≡ θ1(t) and f [θ(t)] ≡
f1[θ1(t), θ2(t)]. Equations (18)-(21) can be written as

θ = f(θ), (24)

where

f(θ) =
[1− ρ(0)]

∑
k kP (k)Φ(k, θ)

〈k〉
+

γ

λ
(1− θ)(1 − λ).

Similar to treating Eq. (8), we have

Φ(k, θ) = S(∞)

T−1∑

m=0

Bk−1,m(θ) (25)

+ [1− S(∞)]

T−1−∆T∑

m=0

Bk−1,m(θ).

The final fraction of the susceptible nodes of behavior 1 (2) in

layer a (b) is given by

S(∞) = [1− ρ(0)]
∑

k

P (k){S(∞)

T−1∑

m=0

Bk,m(θ)

+ [1− S(∞)]

T−1−∆T∑

m=0

Bk,m(θ)}. (26)

Using the same analysis method as for the case T1 < T2, we

find that the number of fixed points of Eq. (24) is 1 or 3, as

shown in the lower panel of Fig. 2. Whether there is a tangent

point between the function g(θ) = f(θ) − θ and the horizon

axis depends on the strength ∆T of synergistic interactions.

For ∆T = 0, there is no tangent point and only the maximum

value of the fixed point of Eq. (24) is physically meaningful,

indicating that behavior 2 is adopted by a small fraction of

nodes only. For ∆T = 1 and ∆T = 2, the function g(θ)
can be tangent to the horizon axis, as shown in Figs. 2(e) and

2(f). When λ2 is increased passing through λc
2, the tangent

point disappears and the function g(θ) has only one intersect-

ing point with the horizontal axis. In this case, the fixed point

θ changes discontinuously to a small value, signifying a first-

order phase transition.



8

FIG. 3. Time evolution of behavior spreading subject to synergistic interactions. For random regular double-layer networks, (a, d) the

fraction of recovered nodes R2(t) versus time t, (b, e) the fraction of nodes in state X in layer a and in state S in layer b versus time, (c, f) the

fraction of nodes in the S state in both layers a and b versus time. (d)-(f) are the simulation results when ∆T2 = 2 for different network sizes

N . The parameters are λ1 = 0.06, λ2 = 0.8, T1 = 1, T2 = 4, and ∆T1 = 0. The symbols are simulation results and the lines are theoretical

prediction in (a)-(c). In the theoretical analysis of the state X1S2(t), dynamical correlations between the layers are ignored. Other parameters

are γ1 = γ2 = 0.5.

IV. NUMERICAL VALIDATION

In this section, we perform extensive simulations of be-

havior spreading on different multiplex networks. We use

the notation “RR-RR” to denote the case where both layer

a and layer b host the random regular networks. The no-

tation “ER-SF” represents the setting where layer a is an

Erdös-Rényi (ER) random network [50] and layer b hosts an

scale-free (SF) network [51]. Other possible combinations

are “ER-ER”, “SF-SF” and “SF-ER”. The size of each net-

work is Na = Nb = 5 × 104 and the average degree is

〈k〉 = 10 for both networks. The initial adoption fractions

of behavior 1 in layer a and behavior 2 in layer b are set to

be ρ1(0) = ρ2(0) = 0.05. To calculate the pertinent statisti-

cal averages, we use 20 multiplex network realizations and at

least 103 independent dynamical realizations for each param-

eter setting. Unless otherwise specified, the above parameters

are adopted in the simulations. Let X1 denote the situation

where a node is in the A or R state in layer a so, for ex-

ample, the notion X1S2 means that, in layer a, a node is in

the adopted state or recovered state but it is in the susceptible

state in layer b. Similarly, A1S2 indicates that a node is in

the adopted state in layer a and is in the susceptible state in

layer b, which means that the node adopts behavior 1 but not

behavior 2.

A. RR-RR multiplex networks

We first perform direct numerical simulations of behavioral

spreading dynamics on double layer networked systems con-

sisting of two random regular networks to provide support for

our theoretical predictions.

Our theoretical analysis in Sec. III B gives that, for T1 <
T2, synergistic interactions can promote behavior adoption

and spreading. To be concrete, we set T1 = 1 and T2 = 4.

Figure 3(a) shows the time evolution of the fraction R2(t) of

the recovered nodes in layer b for different values of the syn-

ergistic interaction strength ∆T2. We see that behavior 2 will

not outbreak if ∆T2 = 0. For ∆T2 = 2 and ∆T2 = 3,

R2(t) exhibits a two-stage contagion process, where nodes

having adopted behavior 1 in layer a will first adopt behavior

2, until when there is a sufficient number of seeds (i.e., nodes

having adopted behavior 2) in layer b to stimulate the remain-

ing nodes. When this happens, behavior 2 will be adopted

quickly in layer b. This phenomenon can be explained by not-

ing that, for a small fraction of the initial seeds for behavior

2 [i.e., ρ2(0) = 0.05], if the synergistic effect of adoption of

behavior 1 is absent [i.e., ∆T2 = 0], behavior 2 will not be

adopted globally and only the recovery of the seeds can lead

to an increase in the value of R2(t). Note that the number

of X1S2(t) nodes increases with the adoption of behavior 1
in layer a [Fig. 3(b)] since the S1 nodes will change to X1
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nodes and there is no decrease in the number of S2 nodes in

the network. For ∆T2 = 2, nodes that have adopted behavior

1 are more likely to adopt behavior 2 as compared with those

that have not adopted behavior 1. Nodes having adopted be-

havior 1 in layer a will first adopt behavior 2 in layer b, as

indicated by the decrease in the number of the X1S1(t) nodes

in Fig. 3(c). Before most of the X1S2 nodes have adopted

behavior 2, the seeds (i.e., adopted nodes for behavior 2) in

layer b are sufficient to stimulate the remaining nodes to adopt

behavior 2, inducing a two-stage contagion process. A simi-

lar phenomenon occurs for ∆T2 = 3. When the simulation

results are compared with the theoretical predictions, we find

the former matches well with the latter for ∆T2 = 0. While

the deviation emerges when ∆T2 = 2, which are derived from

the finite-size effects of the networks and the dynamical cor-

relation between layers. From the bottom panels of Fig. 3, we

will find the deviation is decreased when increasing the net-

work size, but the deviation will still exist since the interlayer

dynamical correlations are ignored in the theoretical method.

Figure 4(a) shows, for T1 = 1, T2 = 4 and λ1 = 0.12,

R2(∞) versus λ2 for different values of ∆T2, where the frac-

tion of the X1S2 nodes in the system is about 0.393. As

the synergistic interaction strength ∆T2 is increased, behav-

ior 2 is adopted more readily since the number of information

pieces about it is decreased. A remarkable phenomenon is the

characteristic change in the dependence of R2(∞) on λ2. In

particular, for ∆T2 = 2, R2(∞) increases with λ2 discon-

tinuously but the increasing pattern becomes continuous for

∆T2 = 3. The reason for the characteristic change is that, for

∆T2 = 2, the nodes having adopted behavior 1 still need to

receive additional two (i.e., T2 −∆T2) pieces of information

to adopt behavior 2. The system will accumulate a relatively

large number of nodes in the subcritical state when the be-

havioral information transmission rate approaches the critical

point, as shown in the inset of Fig. 4(a). Therein, the sub-

critical state is defined as the node in such state will adopt the

behavior if it receives one additional piece of behavior infor-

mation [30]. A slight increase in λ2 will cause a node in this

state to receive an additional piece of information and thus

adopts behavior 2. The node can then transmit the informa-

tion to its neighbors, which will cause its subcritical neigh-

bors to adopt behavior 2 accordingly, and so on, leading to an

avalanche of behavior adoption for the X1S2 nodes. When

most of the X1S2 nodes have adopted behavior 2 in an abrupt

fashion, there is a sufficient number of A2 nodes in layer b
to stimulate the remaining S1S2 nodes to adopt behavior 2.

As a result, increasing λ2 slightly can lead to a discontinuous

change in the value of R2(∞). However, for ∆T2 = 3, only

one additional piece of information about behavior 2 is needed

for the X1S2 nodes to adopt this behavior. As the value of λ2

is increased from zero, some X1S2 nodes may receive one

piece of information about behavior 2 and adopt it, leading to

a continuous decrease in the number of nodes in the subcriti-

cal state, as shown in the inset of Fig. 4 (b). This is equivalent

to the dynamical process in the susceptible-infected-recovered

(SIR) model, in contrast to the cascading process in, for ex-

ample, the Watts threshold model. As a result, the value of

R2(∞) first increases with λ2 continuously. When most of
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FIG. 4. Asymptotic and stable adoption of behavior 2. For random

regular double-layer networks, the final adoption size of behavior 2

versus the information transmission rates: (a) R2(∞) versus λ2 for

different values of the synergistic strength ∆T2, where the transmis-

sion rate for behavior 1 is λ1 = 0.12 and the corresponding fraction

of the nodes adopting behavior 1 is R1(∞) ≈ 0.393, (b) R2(∞)
versus λ1 for different values of λ2. The inset in (a) shows the final

fraction Φ of nodes in the subcritical state for behavior 2. The sub-

critical state is defined as the state for a node that it will adopt the

behavior when it receives one additional piece of information. The

inset in (b) shows the final adoption fraction of behavior 1 in layer a

versus λ1, where ∆T2 = 3. The symbols are simulation results and

the lines (i.e., dotted, dotted dashed and solid lines) are theoretical

prediction. Other parameters are T1 = 1, T2 = 4, ∆T1 = 0, and

γ1 = γ2 = 1.

X1S2 nodes have adopted behavior 2, the fraction of adopted

nodes in layer b is sufficient to stimulate the remaining S1S2

nodes to adopt behavior 2. Since the fraction of adopted nodes

is relatively large [e.g., X1(∞) ≈ 0.393], the value of R2(∞)
increases with λ2 continuously [30] at a faster rate, as shown

in Fig. 4(a). The same process occurs for ∆T2 = 4. These nu-

merical results agree well with our bifurcation analysis based

theoretical prediction.

Figure 4(b) shows the dependence of R2(∞) on λ1 for dif-

ferent values of λ2. For a relatively small value of λ2 (e.g.,

λ2 = 0.5), R2(∞) increases with λ1 continuously, which can

be understood by noting that, in this case, a global adoption

of behavior 2 requires more seeds in layer b, and the spread

of this behavior depends strongly on the spread of behavior
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FIG. 5. Dependence of final adoption size of behavior 2 on the

transmission rates. For random regular networks, color coded val-

ues of R2(∞) in the parameter plane (λ1, λ2) of the two information

transmission rates: (a) numerical results and (b) theoretical predic-

tion based on solutions of Eqs. (1)-(4) and (16)-(19). The plane is

divided into three regions by the two vertical lines, where the dotted

vertical line (λ1 = λm

1 ) is from Eqs. (18), (19) and (22) for λ2 = 1,

and the dashed vertical line (λ1 = λc

1) is determined by Eqs. (18),

(19), (22) and (23). In region I, only a small fraction of the nodes

is exposed to adopting behavior 2. In regions II and III, there are

a discontinuous (first-order) and a continuous (second-order) phase

transition, respectively. The green circles and the red line in region

II, respectively, indicate the numerically obtained critical informa-

tion transmission rate of behavior 2 and the theoretical prediction

from Eqs. (17), (19) and (22) for a given value of λ1. The inset in (b)

shows the final adoption fraction of behavior 1 versus the informa-

tion transmission rate of this behavior. Other parameters are T1 = 1,

∆T1 = 0, T2 = 4, ∆T2 = 3, and γ1 = γ2 = 1.

1. However, for relatively large values of λ2 (e.g., λ2 = 0.7
and λ2 = 0.8), R2(∞) versus λ1 can exhibit an abrupt or

discontinuous increase. In this case, a slight increase in the

fraction of seeds for behavior 2 is sufficient for it to spread

globally by its own dynamics. Both the continuous growth for

small values of λ2 and the discontinuous increase for larger

values of λ2 are predicted by our bifurcation analysis based

on Eqs. (18), (19), (22) and (23) by replacing θ2 with θ1 in

Eqs. (22) and (23). There is a good agreement between nu-

merics and theory.

Our analysis and numerical computations indicate that,

with synergistic interactions between the spreading dynamics
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FIG. 6. Behavioral adoption dynamics under symmetrical syner-

gistic interactions. For random regular double-layer networks, (a)

the fraction of recovered nodes R(∞) [i.e., R1(∞) = R2(∞) ≡

R(∞)] versus λ, where λ1 = λ2 ≡ λ. The symbols are simulation

results and the solid lines are the theoretical prediction obtained by

iterating Eqs. (24) and (26). (b) The simulation results of R(∞) ver-

sus λ when T = 3 and ∆T = 2 for different network sizes N . Other

parameters are γ1 = γ2 = 1.

of two behaviors, both λ1 and λ2 can affectR2(∞) and the as-

sociated phase transition characteristically. To further demon-

strate the role of the synergistic interactions, we show in Fig. 5

color coded values of R2(∞) in the parameter plane (λ1, λ2)

for T1 = 1, T2 = 4, ∆T1 = 0, and ∆T2 = 3. There are

three regions in the parameter plane, determined by the two

vertical lines at λm
1 and λc

1, respectively, which are associated

with characteristically distinct behavioral adoption dynamics.

In region I (λ1 < λm
1 ), only a small fraction of the nodes in

layer b adopt behavior 2. In region II (λm
1 < λ1 ≤ λc

1), there

is a discontinuous phase transition, where a larger fraction of

nodes adopt behavior 2 for λ2 > λc
2 (white solid line). In

region III (λ1 > λc
1), there is a continuous phase transition.

The distinct types of phase transition are predicted through

our bifurcation analysis in Sec. III.

To gain further insights into the effects of synergistic inter-

actions in behavioral adoption dynamics, we study the special

case where the two types of behaviors are completely sym-

metric to each other. Fig. 6 (a) shows, for T1 = T2 = T ,

∆T1 = ∆T2 ≡ ∆T , and λ1 = λ2 ≡ λ, the dependence

of R(∞) on λ for different values of ∆T . In the absence of
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FIG. 7. Synergistic behavior spreading on a multiplex networked

system with heterogeneous network layers. For T1 < T2, (a)

R2(∞) versus λ2, where T1 = 1, T2 = 4, ∆T1 = 0, and ∆T2 = 2.

(b) The fraction of recovered nodes R(∞) versus λ. The parame-

ters are T1 = T2 = 3, ∆T1 = ∆T2 = ∆T , λ1 = λ2 = λ and

R1(∞) = R2(∞) = R(∞). The symbols are simulation results

and the solid lines are theoretical prediction. Other parameters are

γ1 = γ2 = 1.

synergistic interactions, i.e., when the adoptions of behaviors

1 and 2 have no effect on each other, neither behavior can

spread globally and either behavior can only be adopted by a

small fraction of the nodes in the network. For ∆T > 0 (i.e.,

∆T = 1, 2), the nodes that have adopted behavior 1 (2) only

need additional T − ∆T pieces of information to adopt be-

havior 2 (1). As a result, the mutually cooperative spreading

of behaviors 1 and 2 leads to a wide adoption of both behav-

iors. Increasing the synergistic interaction strength makes the

dynamical correlation between the two layers stronger. The

discontinuous phase is more clear when the network size is

enlarged. However, the improvement in decreasing the devi-

ation of the critical threshold is less, as shown in Fig. 6 (b).

In this regime, the deviation is mainly because the theoreti-

cal method can not capture the strong dynamical correlation

between layers.

B. General multiplex networks

We consider more general network topology for the net-

work layers in the multiplex system, such as ER-ER, SF-

SF, ER-SF and SF-ER. We use the standard configuration

model [45] to construct SF networks with the degree distri-

bution P (k) = Γk−γ , where γ = 3 is the degree exponent

and the coefficient is Γ = 1/
∑kmax

kmin
k−γ with the minimum

degree kmin = 3 and maximum degree kmax∼N1/(γ−1). The

average degrees of SF and ER networks are set as 〈k〉 = 10,

and the network size is N = 5 × 104. For T1 < T2, e.g.,

T1 = 1 and T2 = 4, we fix the final adoption size of behavior

1 and vary the type of network in layer a.

To facilitate comparison, we set λ1 = 0.12 when layer a
is an ER network and λ1 = 0.113 if network a is SF, so that

the final adoption sizes of behavior 1 for both cases are ap-

proximately 0.44. As shown in Fig. 7(a), the network type in

layer a over which behavior 1 spreads has little effect on the

spread of behavior 2. For the symmetric case T1 = T2, the

dependence of R(∞) on λ changes from being discontinuous

to continuous as the network becomes more heterogeneous

(i.e., SF) [30], as a strong heterogeneity makes it harder for

nodes in the subcritical state to adopt a behavior simultane-

ously. Regardless of the network type, in general synergistic

interactions can facilitate adoption of both behaviors and alter

the nature of the associated phase transition.

V. DISCUSSION

To understand social contagions in the human society at

a quantitative level is of great importance in the modern

time. While the spread of a single contagion can be analyzed

through the traditional models of network spreading dynam-

ics, the simultaneous presence and spreading of two or more

contagions poses a challenge due to the mutual interplay be-

tween the underlying dynamical processes. As an initial ef-

fort to address this problem, we articulate a spreading model

of multiple social behaviors on multiplex networks subject to

synergistic interactions. For simplicity, we consider two-layer

coupled networks and limit the number of distinct behaviors

to two: one on each layer. The manifestation of the synergis-

tic mechanism is that the adoption of the behavior by a node

in one layer will increase the chance for the node that is si-

multaneously present in the other layer to adopt the behavior

that spreads in that layer. The concrete setting enables us to

develop an edge-based compartmental theory and a bifurca-

tion analysis to uncover and explain how the synergistic in-

teractions affects the spreading dynamics in terms of the final

adoption size and the distinct phase transitions.

There are two types of synergistic interactions: asymmetric

and symmetric. In the asymmetric case, the adoption thresh-

old of one behavior in one network layer is less than that of

the other behavior in the other layer. In this case, the adoption

of the behavior with the higher threshold has no effect on the

adoption of the other behavior. However, synergistic interac-

tions can promote the adoption of both behaviors. In fact, the
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interaction strength and the information transmission rate of

the behavior with the smaller threshold value can affect the

nature of the phase transition of the behavior with the larger

threshold: a small (large) value of the transmission rate of the

former can lead to a discontinuous (continuous), first-(second-

) order phase transition in the latter. In addition, a two stage

spreading process arises: nodes adopting the small threshold

behavior in one layer are more likely to adopt the large thresh-

old behavior in the other layer, which stimulates the remaining

nodes in this layer to quickly adopt the behavior. In the case of

symmetric synergistic interactions, the adoption processes in

both layers can affect each other on an equal footing. In this

case, the interactions will greatly enhance the spreading of

both behaviors in their respective layers through a first-order

phase transition.

Many issues remain, such as the effect of heterogeneity in

the synergistic strengths of the individual nodes on behavioral

spreading and the impacts of degree correlation between the

network layers. In general, there are two kinds of dynamical

correlation: intralayer and interlayer. In each layer, the cor-

relation can be described by the edge-based compartmental

theory. To make a theoretical analysis feasible, we have ne-

glected interlayer correlation, i.e., the dynamical correlation

among nodes in distinct layers. However, in real situations,

dynamical correlation may exist between the same node in

different layers, depending on the strength of the synergis-

tic interaction. If the interaction strength is not too large, in-

terlayer dynamical correlation is weak. In this case, there is

a good agreement between the theoretical prediction and the

simulation results (e.g., Figs. 1 and 4). For relatively strong

synergistic interaction (e.g., Fig. 6 for ∆T = 2), the simula-

tion results deviate from the theoretical prediction. Increasing

the size of network will not help reduce the deviation, as in-

terlayer correlation can no longer be regarded as insignificant.

A more accurate theory incorporating interlayer correlation is

thus needed for synergistic affected information spreading in

the strong interaction regime [52].
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[24] O. Yağan and V. Gligor, Phys. Rev. E 86, 036103 (2012).

[25] E. Cozzo, R. A. Banos, S. Meloni, and Y. Moreno, Phys. Rev.

E 88, 050801 (2013).

[26] P. S. Dodds and D. J. Watts, Phys. Rev. Lett. 92, 218701 (2004).

[27] P. L. Krapivsky, S. Redner, and D. Volovik, J. Stat. Mech. Theo.

Exp. 2011, P12003 (2011).
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