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Robustness and cascading failures in interdependent systems has been an active research field
in the past decade. However, most existing works use percolation-based models where only the
largest component of each network remains functional throughout the cascade. Although suitable
for communication networks, this assumption fails to capture the dependencies in systems carrying a
flow (e.g., power systems, road transportation networks), where cascading failures are often triggered
by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of
systems A and B with initial line loads and capacities given by {LA,i, CA,i}ni=1 and {LB,i, CB,i}ni=1,
respectively. When a line fails in system A, a-fraction of its load is redistributed to alive lines in B,
while remaining (1−a)-fraction is redistributed equally among all functional lines in A; a line failure
in B is treated similarly with b giving the fraction to be redistributed to A. We give a thorough
analysis of cascading failures of this model initiated by a random attack targeting p1-fraction of
lines in A and p2-fraction in B. We show that (i) the model captures the real-world phenomenon
of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is
always first-order, but it can be preceded by a sequence of first and second-order transitions; (ii)
network robustness tightly depends on the coupling coefficients a and b, and robustness is maximized
at non-trivial a, b values in general; (iii) unlike most existing models, interdependence has a multi-
faceted impact on system robustness in that interdependency can lead to an improved robustness
for each individual network.

I. INTRODUCTION

With the development of modern technology, networks
emerge as the new form of how things work in every as-
pect of our life, from online social media to cyber-physical
systems, from intelligent highways to aerospace systems.
Soon we will expect computing and communication capa-
bilities to be embedded in all physical objects and struc-
tures and more complex networks to appear [1]. Recently,
researchers have become increasingly aware of the fact
that most systems do not live in isolation, and that they
exhibit significant inter-dependencies with each other. In
particular, it has been shown that interdependence and
coupling among networks lead to dramatic changes in
network dynamics, with studies focusing on cascading
failure and robustness [2–8], information and influence
propagation [9–13], percolation [14–18], etc.

One of the most widely studied network dynamics is
the cascade (or, spread) of failures. Due to the cou-
pling between diverse infrastructures such as water sup-
ply, transportation, fuel and power stations, interdepen-
dent networks are tend to be extremely vulnerable [19],
because the failure of a small fraction of nodes from one
network can produce an iterative cascade of failures in
several interdependent networks. Blackouts are typical
examples of cascading failures catalyzed by the depen-
dencies between networks: the September 28, 2003 black-
out in Italy resulted in a widespread failure of the railway
network, health care systems, and financial services and,
in addition, severely influenced communication networks.
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As a result, the partial failure of the communication sys-
tem in turn further impaired the power grid management
system.

Robustness of interdependent networks has been an ac-
tive research field after the seminal paper of Buldyrev et
al. [3], with the key result being interdependent networks
are more vulnerable than their isolated counterparts.
However, existing works on cascading failures in interde-
pendent networks focus extensively on percolation-based
models [3, 14, 20–23], where a node can function only if
it belongs to the largest connected (i.e., giant) compo-
nent of its own network; nodes that lose their connec-
tion to this giant core are deemed non-functional. While
such models are suitable for communication networks,
they fail to accurately capture the dynamics of cascad-
ing failures in many real-world systems that are tasked
with transporting physical commodities; e.g., power net-
works, traffic networks, etc. In such flow networks, fail-
ure of nodes (or, lines) lead to redistribution of their load
to functional nodes, potentially overloading and failing
them. As a result, the dynamics of failures is governed
primarily by load redistribution rather than the struc-
tural changes in the network. A real-world example to
this phenomenon took place on July 21, 2012, when a
heavy rain shut down a metro line and caused 100 bus
routes to detour, dump stop, or stop operation com-
pletely in Beijing [24].

In this paper, we initiate a study on robustness of in-
terdependent networks under a load redistribution based
cascading failure model. Our approach is inspired by the
fiber-bundle model that has been extensively used to in-
vestigate the fracture and breakdown of a broad class
of disordered systems; e.g., magnets driven by an ap-
plied field [25], earthquakes [26, 27], power system failure
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FIG. 1. Possible transition behaviors under the load redistri-
bution based cascade model. We see that final system collapse
is always first order, which may be preceded with one or more
first- or, second-order transitions.

[28], social phenomena [29]. This model has already been
demonstrated to exhibit rich transition behavior in a sin-
gle network setting under random attacks of varying size,
while being able to capture some key characteristics of
real-world cascades [28, 30]; e.g., see Figure 1. In partic-
ular, it was shown that the transition point where the sys-
tem has a total breakdown is always discontinuous, remi-
niscent of the real-world phenomena of unexpected large-
scale system collapses; i.e., cases where seemingly iden-
tical attacks leading to entirely different consequences.
While this breakdown can take place abruptly without
any indicators at smaller attack sizes (as in the middle
curve in Figure 1), it may also be preceded with one or
more first-order or second-order transitions (as seen in
the other two curves of Figure 1) that can be taken as
early warning signs of a catastrophic cascade.

We extend the fiber-bundle-like cascading failure
model to interdependent networks as follows. Assume
that the system consists of n coupled networks each with
a given number of transmission lines. Every line is given
an initial load L and a capacity C defined as the maxi-
mum load it can tolerate; if the load on the line exceeds
its capacity (for any reason) the line is assumed to fail.
The main ingredient of the model is the load redistribu-
tion rule: upon failure of a line in any network, the load
it was carrying before the failure will be redistributed
among all networks in the system, with the proportion
received by each network being determined by the cou-
pling coefficients across networks; see Section II for pre-
cise details. Within each network, we adopt the fiber-
bundle-like model [28, 30] and distribute this received
load equally among all functional lines.

We give a thorough analysis of cascading failures
(based on the model described above) in a system of
two interdependent networks initiated by a random at-
tack. We show that in addition to providing a more
realistic model of cascading failures for interdependent
systems (as compared to percolation-based models), the

model described above gives rise to interesting and novel
transition behavior, and challenges the widely accepted
notion that interdependence (or, coupling, or, inter-
connectivity) is always detrimental for system robust-
ness. In particular, we show that (i) the model captures
the real-world phenomenon of unexpected large scale cas-
cades: final collapse is always first-order, but it can be
preceded by a sequence of first and second-order tran-
sitions; to the best of our knowledge such behavior has
not been observed before in any model. (ii) network ro-
bustness tightly depends on the coupling coefficients and
robustness is maximized at non-trivial coupling levels in
general; (iii) unlike existing models, interdependence has
a multi-faceted impact on system robustness in that in-
terdependency can lead to an improved robustness for
each individual network.

We reiterate that although extensive, the literature
on cascading failures in interdependent networks is lim-
ited to percolation-based models that fail to capture
many real-world settings. Load redistribution models on
the other hand have mostly been constrained to single-
network settings; e.g., [31–33].

The closest work to our paper is by Brummitt et al.
[6] where a sandpile model was studied for two inter-
connected networks (each being a random regular graph).
Although a similar observation regarding the impact of
inter-connectivity was made (that it can sometimes help
improve robustness), their work is limited to cascades
triggered by increased initial load on the system (imitat-
ing the sand dropping process) instead of random failures
or attacks considered here; as such, [6] does not study the
transition behavior of the system against attacks and how
that behavior is affected by the level of inter-connectivity
[34]. To the best of our knowledge, the only other rele-
vant work is by Scala et. al.[35] who studied cascades in
coupled distribution grids, but again under a load growth
model instead of external attacks.

The rest of the paper is organized as follows: we for-
mally define the load redistribution model and analysis
tools used in Section II. Our analytic results are pre-
sented in Section III, including the solutions for steady-
state system sizes. Numerical results are given in section
IV. In Section V, we provide a detailed discussion on
the possible correlations between the type and number of
transitions a network exhibits with the distribution of its
load and free-space. In Section VI, we provide additional
simulation results under an alternative load redistribu-
tion model that is a hybrid of the network topology-based
redistribution models [31] and the global redistribution
model studied here; these indicate that the mean-field
assumption used in the paper captures the qualitative
behavior of network robustness very well. We conclude
our work in section VII.
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II. MODEL DEFINITIONS

We consider a system composed of n networks that in-
teract with each other. Let N = {1, . . . , n} denote the
set of all networks in the system. For each i ∈ N , we
assume that network i has Ni lines L1,i, . . . ,LNi,i with
initial loads L1,i, . . . , LNi,i. Each of these lines is associ-
ated with a capacity C1,i, . . . , CNi,i above which the line
will be tripped. In other words, Ck,i defines the max-
imum flow that line k in network i can sustain and is
given by

Ck,i = Lk,i + Sk,i, i ∈ N , k = 1, . . . , Ni

where Sk,i denotes the free space on line k in network i,
i.e., the maximum amount of extra load it can take. The
load-free space pairs {Lk,i, Sk,i}Nik=1 are independently
and identically distributed with

PLiSi(x, y) := P [Lk,i ≤ x, Sk,i ≤ y] , k = 1, . . . , Ni

for each i ∈ N . The corresponding joint probability den-

sity function is given by pLiSi(x, y) = ∂2

∂x∂yPLiSi(x, y). In

order to avoid trivial cases, we assume that Sk,i > 0 and
Lk,i > 0 with probability one for each i ∈ N and each
k = 1, . . . , Ni. Finally, we assume that the marginal den-
sities pLi(x) and pSi(y) are continuous on their support.

Initially, pi-fraction of lines are attacked (or failed)
randomly in network i, where pi ∈ [0, 1]. The load on
failed lines will be redistributed within the original net-
work and/or shed to other coupled networks depending
on the underlying redistribution rules governing the sys-
tem. Further failures may then take place within the ini-
tially attacked network or in the coupled ones due to lines
undertaking extra load exceeding their capacity; this in
turn leads to further redistribution in all constituent net-
work, potentially leading to a cascade of failures. The
cascade of failures taking place simultaneously within
and across networks leads to an interesting dynamical
behavior and an intricate relationship between the level
of coupling and the system’s overall robustness.

The cascade process is monotone (once failed, a line
remains so forever), and thus it will eventually stop, po-
tentially when all lines in all networks have failed. Oth-
erwise a positive fraction of lines may survive the cascade
in one or more of the constituent networks. One of our
main goals in this paper is to characterize the fraction of
alive lines in each network at that ‘steady state’; i.e., at
the point where cascades stop. To that end, we provide
a mean-field analysis of dynamical process of cascading
failures. Under this approach, it is assumed that when
a line fails, its flow will be redistributed to its own net-
work as well as to other networks with the proportion
redistributed to each network determined by coupling co-
efficients among the networks; more on this later. Each
network will then distribute its own share of the failed
load equally and globally among all of its remaining lines.

Although simple, the equal load redistribution model
is able to capture the long-range nature of failure propa-
gation in physical systems (e.g., Kirchhoff’s law for power
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FIG. 2. Illustration of a two-network system. When failures
happen in network B, b-portion of the failed loads goes to
network A and (1−b)-portion stays in B. Similarly in network
A, (1 − a)-portion stays and a-portion goes to B. Failed
loads will be redistributed equally and globally among the
remaining lines in each network.

networks), at least in the mean-field sense, as opposed to
the topological models [32, 36] where failed load is re-
distributed only locally among neighboring lines. In our
case, it also enables focusing on how coupling and inter-
dependence of two arbitrary networks affect their overall
robustness, even if individual network topologies might
be unknown.

As mentioned before, the flow of a failed line in a net-
work will not only be redistributed internally, but will
also be shed to other coupled networks. The propor-
tion of load to be shed from a failed line in network i
to network j is determined by the coupling coefficient
aij , where we have

∑
j∈N aij = 1 for all i in N ; thus,

1−
∑
j∈N−{i} aij gives the fraction of the load that will

be redistributed internally in network i. The load re-
ceived in each network is then shared equally among all
of its functional lines. Upon redistribution of flows, the
load on each alive line will be updated potentially leading
to some lines having more load than their capacity, and
thus failing. Subsequently, the load of those addition-
ally failed lines will be redistributed in the same manner,
which in turn may cause further failures, possibly lead-
ing to a cascade of failures in both the initiating networks
and their coupled networks. This phenomenon imitates
the interdependent systems in real world where the fail-
ure in one network, such as power network, can affect the
behavior of another network, such as water system and
financial systems.

For the ease of exposition, we consider a two-network
system in the rest of the paper, although our results can
be extended trivially to arbitrary number of networks.
Consider a system composed of networks A and B that
are interdependent in the following manner [37]: when a
failure happens in network A, a fraction of the failed load
is transferred to network B, while the remaining 1 − a
fraction being redistributed internally in A. Similarly
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upon failures in network B, b fraction of the failed load
will be shed to network A; here a, b ∈ [0, 1] are system
defined constants. An illustration of the system can be
found in Figure 2. We assume that initially p1-fraction
of lines in network A and p2-fraction of lines in network
B fail randomly. The initial attacks may cause cascading
failures, and if one of the network collapses (i.e., if all of
its lines fail) during this process, the other network will
take over the rest of the load in it and function as a single
network from that point on.

With appropriate meanings of load and capacity, this
type of load oriented models can capture the dependen-
cies in a wide range of physical systems; e.g., two smart-
grid operators coupled to provide better service [38], two
banks highly correlated for collective risk shifting [39],
or two interacting transportation networks [21]. In what
follows, we provide an analytic solution for the dynamics
of cascading failures in the model described above.

III. ANALYTIC RESULTS

We now provide the mean-field analysis of cascad-
ing failures in the two-network interdependent system.
Without loss of generality, we assume that both networks
have the same number of lines, i.e., NA = NB = N .
We assume that time is divided into discrete steps, t =
1, 2, . . .. For each time stage t, and with X ∈ {A,B}, we
use the following notation:
ft,X : fraction of failed lines until t;
Ft,X : total load from lines that fail exactly at time t

within network X;
Qt,X : extra load to be redistribution at t per alive line

in X;
Nt,X : number of alive lines at t in X before redistri-

bution.
In what follows, we occasionally provide expressions

only for the quantities regarding network A, while the
corresponding expressions for network B (that are omit-
ted in the text for brevity) can be obtained similarly.

Initially, p1-fraction of lines in network A and p2-
fraction of lines in network B are attacked (or failed)
randomly. Thus, the fraction of failed lines within each
network at t = 0 is given by

f0,A = p1, f0,B = p2

, while the number of alive lines satisfy

N0,A = (1− f0,A)N = (1− p1)N

N0,B = (1− f0,B)N = (1− p2)N

Because the initially attacked lines are selected uniformly
at random, the total load from failed lines (in the mean-
field sense) satisfy

F0,A = E [LA] · f0,A ·N = E [LA] · p1 ·N
F0,B = E [LB ] · f0,B ·N = E [LB ] · p2 ·N

Based on the equal redistribution rule and the load
shedding rule between the two interdependent networks,
the extra load per alive line in network A at t = 0 is:

Q0,A =
(1− a) · F0,A + b · F0,B

(1− f0,A)N

=
(1− a) · E [LA] · p1 + b · E [LB ] · p2

1− p1

and similarly for network B:

Q0,B =
a · E [LA] · p1 + (1− b) · E [LB ] · p2

1− p2

At stage t = 1, line k in network A that survives the
initial attack will fail if and only if the updated loads
exceed its capacity, i.e., if Lk,A + Q0,A ≥ Lk,A + Sk,A,
or equivalently, if Sk,A ≤ Q0,A. Based on this condition,
the fraction of failed lines at t = 1 is given by

f1,A = f0,A + (1− f0,A) · P [SA ≤ Q0,A]

= 1− (1− f0,A)P [SA > Q0,A]

To compute the extra load per alive line in each net-
work at t = 1, we need to know the lines that fail exactly
at this stage in each network (so that their load can be
appropriately redistributed to both networks according
to the coupling coefficients). Namely, we need to find
the lines that survive the initial attack, but have smaller
free space than the redistributed load Q0,A or Q0,B from
the previous stage. Let A and B be the initial set of lines
that are attacked or failed initially in network A and B,
respectively. Then, the total load on these failed lines in
network A at t = 1 can be derived as

F1,A = E

 ∑
i/∈A,Si,A≤Q0,A

(Li,A +Q0,A)


= E

[∑
i/∈A

(Li,A +Q0,A) · 1 [Si,A ≤ Q0,A]

]
= (1− p1)NE [(LA +Q0,A) · 1 [SA ≤ Q0,A]]

where 1 [·] is the indicator function [40]; here we used
the fact that for each line i in A, Li, Si follow the same
distribution pLA,SA . Similarly for network B, we have

F1,B = E

 ∑
i/∈B,Si,B≤Q0,B

(Li,B +Q0,B)


= (1− p2)NE [(LB +Q0,B) · 1 [SB ≤ Q0,B ]]

The load of these lines failed at stage 1 will then be
redistributed internally and across network, based on the
aforementioned coupling coefficients. This leads to the
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extra load per alive line in network A at t = 1 being
given by

Q1,A

= Q0,A +
(1− a) · F1,A + b · F1,B

N(1− f1,A)

= Q0,A+

(1− a)(1− p1)E [(LA +Q0,A) · 1 [SA ≤ Q0,A]]

+ b(1− p2)E [(LB +Q0,B) · 1 [SB ≤ Q0,B ]]

1− f1,A

Q1,B can be written in a similar manner.

At t = 2, more lines will fail because of the redistri-
bution in the previous stage. The condition for a line to
fail exactly at t = 2 is: (i) it doesn’t belong to the ini-
tial attack set {A, B}; (ii) it survived the redistribution
in the previous stage t = 1; and (iii) its capacity is less
than the updated total load after redistribution at t = 2.
From this we can derive the fraction of failed lines till
t = 2 as

f2,A = 1− (1− f1,A)P [SA > Q1,A | SA > Q0,A]

f2,B = 1− (1− f1,B)P [SB > Q1,B | SB > Q0,B ]

Then, the total load from lines that fail exactly at t = 2

in network A is given by

F2,A

= E

 ∑
i/∈A,Q0,A<Si,A≤Q1,A

(Li,A +Q1,A)


= (1− p1)NE [(LA +Q1,A)1 [Q0,A < SA ≤ Q1,A]]

Similarly in network B, we have

F2,B

= E

 ∑
i/∈B,Q0,B<Si,B≤Q1,B

(Li,B +Q1,B)


= (1− p2)NE [(LB +Q1,B)1 [Q0,B < SB ≤ Q1,B ]]

With the total loads on failed lines F2,A, F2,B and the
fraction of failed lines f2,A, f2,B in each network, the
extra load per alive line in network A at stage t = 2 can
be calculated as

Q2,A

= Q1,A +
(1− a)F2,A + bF2,B

N(1− f2,A)

= Q1,A+

(1− a)(1− p1)E [(LA +Q1,A) · 1 [Q0,A < SA ≤ Q1,A]]

+ b(1− p2)E [(LB +Q1,B) · 1 [Q0,B < SB ≤ Q1,B ]]

1− f2,A

A similar expression gives Q2,B .
In light of the above derivation, the form of the re-

cursive equations is now clear: for each time stage t =
0, 1, . . . , we have

ft+1,A = 1− (1− ft,A)P [SA > Qt,A | SA > Qt−1,A]

Nt+1,A = (1− ft+1,A)N

(1)

Qt+1,A = Qt,A +

(1− a)(1− p1)E [(LA +Qt,A) · 1 [Qt−1,A < SA ≤ Qt,A]]

+ b(1− p2)E [(LB +Qt,B) · 1 [Qt−1,B < SB ≤ Qt,B ]]

1− ft+1,A
,

and similarly for network B.

From (1) we can see that the cascade of failures will
stop and the steady state will be reached only when the
number of alive lines doesn’t change in both networks,
i.e., Nt+2,A = Nt+1,A, Nt+2,B = Nt+1,B . This is equiva-

lent to having

P [SA > Qt+1,A | SA > Qt,A] = 1, and

P [SB > Qt+1,B | SB > Qt,B ] = 1 (2)

In other words, whenever we have finite Qt+1,A, Qt,A,
Qt+1,B and Qt,B values that satisfy (2), cascading fail-
ures will stop and the system will reach the steady state.

The recursive expressions (1) can be simplified further
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in a way that will make computing the final system sizes
(i.e., fraction of alive lines at steady-state) much easier.
Firstly, we use the first expression in (1) repeatedly for
each t = 0, 1, . . . to get

1− ft+1,A = (1− ft,A)P [SA > Qt,A | SA > Qt−1,A]
1− ft,A = (1− ft−1,A)P [SA > Qt−1,A | SA > Qt−2,A]

...
1− f1,A = (1− f0,A)P [SA > Q0,A]

Multiplying these equations together, we obtain

1−ft+1,A = (1−f0,A)

t∏
`=0

P
[
SA > Q`,A

∣∣ SA > Q`−1,A
]
,

where we set Q−1,A = 0 for convenience. Using the fact
that Qt,A is non-decreasing in t, i.e., Qt+1,A ≥ Qt,A for
all t, we then get

1− ft+1,A

= (1− f0,A)

· P [SA > Qt,A]

P [SA > Qt−1,A]
· · · P [SA > Q1,A]

P [SA > Q0,A]
· P [SA > Q0,A]

= (1− p1)P [SA > Qt,A] (3)

as we recall that f0,A = p1.

Using the simplified result (3) in (1), we now get

ft+1,A = 1− (1− p1)P [SA > Qt,A]

Nt+1,A = (1− p1)P [SA > Qt,A]N

(4)

Qt+1,A = Qt,A +

(1− a)(1− p1)E [(LA +Qt,A) · 1 [Qt−1,A < SA ≤ Qt,A]]

+ b(1− p2)E [(LB +Qt,B) · 1 [Qt−1,B < SB ≤ Qt,B ]]

(1− p1)P [SA > Qt,A]

leading to a much more intuitive expression than before.
To see why (4) makes sense realize that for a line to
survive stage t + 1 without failing, it is necessary and
sufficient that it survives the initial attack (which hap-
pens with probability 1−p1 for line in network A) and its
free-space is greater than the total additional load Qt,A
that has been shed on it (which happens with probability
P [SA > Qt,A]. This explains the first and second expres-
sions in (4). For the last equation that computes Qt+1,A,
the extra load per alive line at the end of stage t + 1
(to be redistributed at stage t + 2), we write it as the
previous extra load Qt,A plus the extra load from lines
that fail precisely at stage t + 1. For a line in network
A, failing precisely at stage t + 1 implies that the line

was not in the initial attack (happens with probability
1 − p1) and its free space falls in (Qt−1,A, Qt,A] so that
it survived the previous load shedding stage but not the
current one. Arguing similarly for lines in network B and
recalling the redistribution rule based on coupling coeffi-
cients, we can see that the nominator in the second term
of Qt+1,A (in (4)) gives the additional new load that will
be shed on the alive lines of A. The whole expression is
now understood upon recalling that (1−p1)P [SA > Qt,A]
gives the fraction of lines from A that survive stage t+ 1
to take this extra load.

It is now easy to realize that the dynamics of cascading
failures is fully governed and understood by the recur-
sions on Qt,A, Qt,B given by

Qt+1,A = Qt,A +

(1− a)(1− p1)E [(LA +Qt,A) · 1 [Qt−1,A < SA ≤ Qt,A]]

+ b(1− p2)E [(LB +Qt,B) · 1 [Qt−1,B < SB ≤ Qt,B ]]

(1− p1)P [SA > Qt,A]
(5)

Qt+1,B = Qt,B +

a(1− p1)E [(LA +Qt,A) · 1 [Qt−1,A < SA ≤ Qt,A]]

+ (1− b)(1− p2)E [(LB +Qt,B) · 1 [Qt−1,B < SB ≤ Qt,B ]]

(1− p2)P [SB > Qt,B ]
(6)

with the conditions for reaching the steady-state still be- ing (2). Put differently, in order to find the final system
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sizes, we need to iterate (5)-(6) for each t = 0, 1, . . . until
the stop condition (2) is satisfied. Let t? be the stage
steady-state is reached and Q?A, Q

?
B be the correspond-

ing values at that point. The final system sizes n∞,A
and n∞,B , defined as the fraction of alive lines in net-
work A and B at the steady state, respectively, can then
be computed simply from (viz. (3))

n∞,A = 1− f∞,A = (1− p1)P [SA > Q?A]

n∞,B = 1− f∞,B = (1− p2)P [SB > Q?B ] .
(7)

The expressions given above for the steady-state of
cascading failures in interdependent systems constitute a
non-deterministic, nonlinear system of equations, which
often do not have to closed-form solution; contrast this
with the single network [28] case, where it is possible to
provide a closed form solution to the final system size.
Therefore, in the interdependent network case, we solve
{Q?A, Q?B} by numerically iterating over (5)-(6). The
difficulty of obtaining a closed-form expression for final
system sizes arises due to the recursive shedding of load
across the two networks. At each stage of the cascade,
both networks send a portion of the load from its failed
lines to the other network, while receiving a portion of
load from the lines failed in the coupled network. Fur-
thermore, the load a line was carrying right before failure
depends directly on the extra load per alive line (which
decide who fails in the next stage) at the time of its fail-
ure. This is why we need to keep track of the set of lines
that fail precisely at a particular stage to be able to ob-
tain an exact account of these loads [41]. As a result, the
final system size can only be obtained by running over
the iterations and identifying the first stage at which the
stop conditions (2) are satisfied.

IV. NUMERICAL RESULTS

A. Final system size under different load-free space
distributions and coupling coefficients

To verify our analysis with simulations, we choose dif-
ferent load-free space distributions under various cou-
pling coefficients. Throughout, we consider three com-
monly used families of distributions: i) Uniform, ii)
Pareto, and iii) Weibull. These distributions are chosen
here because they cover a wide range of commonly used
and representative cases. In particular, uniform distribu-
tion provides an intuitive baseline. Distributions belong-
ing to the Pareto family are also known as a power-law
distributions and have been observed in many real-world
networks including the Internet, the citation network,
as well as power systems [42]. Weibull distribution is
widely used in engineering problems involving reliability
and survival analysis, and contains several classical distri-
butions as special cases; e.g., Exponential, Rayleigh, and
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FIG. 3. Final system size under different load-free space dis-
tributions and coupling coefficients. We observe interesting
transition behaviors under different load-free space distribu-
tions and coupling level, and the simulation represented in
symbol matches with the analytical results represented in
lines.

Dirac-delta. The corresponding probability density func-
tions of these distributions are given below for a generic
variable L.

• Uniform Distribution: L ∼ U(Lmin, Lmax).

pL(x) =
1

Lmax − Lmin
· 1 [Lmin ≤ x ≤ Lmax]

• Pareto Distribution: L ∼ Pareto(Lmin, β). With
Lmin > 0 and β > 0, the density is given by

pL(x) = Lβminβx
−β−11 [x ≥ Lmin] .

• Weibull Distribution: L ∼ Weibull(Lmin, λ, k).
With λ, k, Lmin > 0, the density is given by

pL(x)

=
k

λ

(
x− Lmin

λ

)k−1
e
−
(
x−Lmin

λ

)k
1 [x ≥ Lmin]

The case k = 1 corresponds to the exponential dis-
tribution, and k = 2 corresponds to Rayleigh dis-
tribution.

In all simulations, we fix the network size at N = 107,
and for each set of parameters being considered we run
20 independent experiments. The results are shown
in Fig. 3 where symbols represent the empirical value
of the final system size n∞,A of network A (obtained
by averaging over 20 independent runs for each data
point), and lines represent the analytical results com-
puted from (7). We see that theoretical results match
the simulations very well in all cases. The specific dis-
tributions used in Fig. 3 are, from left to right, (i)
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LA ∼ Pareto(10, 2), SA = 0.7LA, LB ∼ Pareto(15, 1.5),
SB = 0.4L, and initial attacks are set to p2 = p1; (ii)
LA, LB ∼Weibull(10, 100, k = 0.6), SA = 1.74LA, SB =
1.5LB , and p2 = 0; (iii) LA ∼ U [10, 30], SA ∼ U [5, 20],
LB ∼ U [20, 40], SB ∼ U [20, 75], and p1 = p2; (iv)
LA, LB ∼ Pareto(10, 2), SA = 0.7LA, SB = 0.7LB , and
p1 = p2; (v) LA, LB ∼ U [10, 30], SA, SB ∼ U [10, 65], and
p2 = 0.

The plots in Fig. 3 demonstrate the effect of the load-
free space distribution as well as coupling level on the
robustness of the resulting interdependent system. We
see that both the family that the distribution belongs to
(e.g., Uniform, Weibull, or Pareto) as well as the specific
parameters of the family affect the behavior of n∞,A(p).
For instance, the curves representing the two cases where
load and free space in both networks follow a Uniform
distribution demonstrate that both abrupt ruptures and
ruptures with a preceding divergence are possible in this
setting, depending on the parameters. Both cases on
Pareto networks give an abrupt breakdown at the final
point, and we see that Weibull distribution gives rise to
a richer set of possibilities for the transition of final sys-
tem size n∞,A(p). Namely, we see that not only we can
observe an abrupt rupture, or a rupture with preceding
divergence (i.e., a second-order transition followed by a
first-order breakdown), it is also possible that n∞,A(p)
goes through a first-order transition (that does not break-
down the system) followed by a second-order transition
that is followed by an ultimate first-order breakdown; see
the behavior of the purple circled line in Fig. 3. Thus
in the next section, we will use Weibull distribution to
explore the interesting transition behaviors observed in
interdependent systems composed of two identical net-
works.

B. Transition behavior for two identical networks

To explore the effect of coupling and interdependency
on the robustness of networks, we couple two (statisti-
cally) identical networks. Put differently, we consider
networks A and B where the load and capacity of each
of their lines are drawn independently from the same dis-
tribution. We also assume that they are coupled together
in a symmetric way, i.e., that a = b. This is a commonly
seen case of an interdependent systems where networks
of similar characteristics establish a coupling for mutual
benefit; e.g., two grid distributors or financial institutions
with similar characteristics. More importantly, this will
help us understand the affect of coupling with another
identical system on the robustness of a given system; the
seminal results of Buldyrev et al. [3] suggest that cou-
pling leads to increased vulnerability under percolation
based models.

With these motivations in mind, we let the initial
loads in both networks follow a Weibull distribution, with
shape parameter k = 0.4, scale parameter λ = 100, and
minimum initial load Lmin = 10. The free space is as-
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FIG. 4. Effect of coupling on the robustness of a single system.
We see that contrary to percolation-based models, robustness
can indeed be improved by having non-zero coupling between
the constituent networks. Inset. The critical point p? defined
as the smallest p1 at which n∞,A(p1) deviates from 1−p1. The
optimal (i.e., largest) p? is attained at a non-trivial coupling
level a = b =' 0.53.

signed proportional to the initial load on each line with
a tolerance factor α, i.e. S = αL where α = 0.6. The
network size is fixed at N = 108. We attack p-fraction of
lines randomly in network A, and observe the dynamics
of failures driven by the load redistribution across and
within the two networks. We then compute the final
(i.e., steady-state) size of network A as a function of ini-
tial attack sizes p under different values of the coupling
coefficient a. The results are depicted in Fig. 4, where
symbols represent simulation results averaged over 20 in-
dependent runs, while lines correspond to our analytical
results; in all parameter settings, we observed little to no
variance in the final system size across the 20 indepen-
dent experiments [43].

A number of interesting observations can be made from
Fig. 4. First, we see that coupling level can lead to signif-
icant changes in the robustness against random attacks.
In particular, the inset in Fig. 4 plots the critical attack
size p? at which the final network size deviates from the
1 − p line; given attack size p, the final system size can
be at most 1− p, which happens when the initial attack
does not lead to any further failures. The network can be
deemed to be more robust when p? is larger. An interest-
ing observation is that unlike the traditional percolation-
based models, here coupling with another network might
lead to a network to become more robust against failures.
To the best of our knowledge, the only other model where
coupling can improve robustness is studied by Brummitt
et al. [6], which constitutes an extension of the sand-
pile model. Perhaps more interestingly, we also see that
the optimal robustness (i.e., largest p?) is attained at a
non-trivial coupling level a =' 0.53. This suggests that
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coupling has a multi-faceted impact on robustness and
that systems are most robust when they are coupled in a
specific, non-trivial way; in Section IV C we provide some
concrete ways to identify such optimum coupling levels.

In addition to affecting the system robustness in non-
trivial ways, we see from Figure 4 that changing the cou-
pling level can also give rise to different (and, sometimes
very interesting) transition behaviors. In particular, we
see that network A can go through any one of the tran-
sitions demonstrated in previous work [28, 30] for single
networks (see Figure 1) depending on its coupling level
with network B. More interestingly, when coupled to
network B at a specific level, i.e., with a = b = 0.37, it is
seen to go through a type of transitions that was not seen
in the case when it operates as an isolated network. This
behavior can be described as a sequence of first, second,
first, second, and first order transitions, and to the best
of our knowledge was not seen before in any model [44].
In this case, the network stabilizes twice after a sudden
drop in the network size during the cascading process,
before going through an abrupt final breakdown.

To further explore the transition behavior during the
cascading failure process, we plot the number of iter-
ations (i.e., the number of load redistribution steps)
needed for the system to reach steady-state. The di-
vergence of the number of iterations is considered to be
a good indicator of the onset of large failures, and often
suggested as a marker of transition points in simulations;
e.g., see [29, 45]. We see that this is indeed the case for
our model as well. In Fig. 5, we plot the final system
size together with the number of iterations taken to reach
that final size. The solid lines represent final system size
under different coupling coefficients, and the symbols rep-
resent the number of iterations needed (divided by the
maximum iterations number, 1000) in each case. We see
that the number of iterations needed is piece-wise stable
with discontinuous jumps corresponding to the transi-
tion points, and it diverges near the final breakdown of
the network. In Section V, we provide a more detailed
discussion on the possible correlations between the type
and number of transitions a network exhibits with the
distribution of its load and free-space.

For a clearer explanation, let us focus on the case when
a = 0.37 (purple asterisks). We see that both discontin-
uous drops in the final system size coincide with a dis-
continuous increase in the number of iterations. As the
attack size p1 increases further from that second jump,
we see a continuous increase in the number of iterations
coinciding with the continuous decrease in final system
size. This eventually leads to the number of iterations
diverging, and as would be expected coincides with the
system breaking down entirely.

In Fig. 6, the final system size of network A and B
are depicted together (for the case a = 0.37), showing
clearly the effect of interdependence on transition behav-
iors. Up until p1 = 0.0287, there are no failed lines in
network B although network A already experiences cas-
cading failures; this indicates that all lines in B are able
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FIG. 5. Number of steps needed to reach steady state for
identical networks (a = b), for various a values. For the case
when a = 0.37, we observe a novel, unforeseen transition be-
havior.

take the extra load from network A even though A loses
a significant fraction of its lines at p1 = 0.0271. When
some lines start failing in network B at p1 = 0.0287,
a large cascade of failures take place causing a signifi-
cant number of lines fail from both networks marked by
discontinuous drop in the final size of both networks. Af-
ter this point, the remaining system is able to sustain
higher initial attacks (because the lines that survive un-
til this point tend to have larger free-space than average).
However, when we reach p1 = 0.0314, another large cas-
cade takes place that collapses both networks. This final
breakdown is observed almost simultaneously in networks
A and B, primarily because once a network collapses, the
other network will need to take over all the load in the
system, and in most cases will not be able survive on its
own.

C. Optimizing the robustness of an interdependent
system

Final breakdown point and critical deviation size are
good indicators of robustness, but only when we focus on
a single network or a specific network in an interdepen-
dent system. We now discuss how the robustness of an
entire interdependent system can be quantified, with an
eye towards identifying optimal coupling levels that max-
imize system robustness. Assume that initially p1 frac-
tion of lines from A and p2 fraction of lines from B are
attacked randomly. The p1, p2 ∈ [0, 1] plane is naturally
divided into four survival regions [35]. where i) S12 rep-
resents the initial attack pair (p1, p2) under which both
networks survive, i.e., have positive fraction of functional
lines when steady state is reached; ii) S1 represents the
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respectively) get larger, while regions where only one network
survives (S1 and S2) shrink significantly.

case where only network A survives; iii) S2 represents
the case where only network B survives; and iv) S0 rep-
resents the region where no network survives, i.e., the
entire system fails with no alive lines. It is then tempt-
ing to study the affect of network coupling on these four
regions.

To provide a concrete example, let network A have
LA ∼ U [10, 30], SA ∼ U [40, 100], and network B have
LB ∼ U [20, 40], SB ∼ U [30, 85], with U denoting uni-
form distribution. The initial load distribution and free
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FIG. 8. Color map of the critical attack size under different
coupling coefficients a and b. Darker colors indicate larger
p?sys values, meaning that the interdependent system is more
robust.

space distribution are assumed to be independent in each
network. We see from Fig. 7 that when there is no cou-
pling (a = b = 0), both networks operate in isolation and
the survival of A and B are independent from each other;
as we would expect, the two dashed lines (in red color)
mark the critical attack sizes for A and B when they
are in isolation [28]. When we introduce coupling to the
system, e.g., with a = 0.33 and b = 0.37, we see an in-
teresting phenomenon indicating a multi-faceted impact
of coupling on system robustness. The region S12 where
both networks survives enlarges, while S1, S2 where only
one network survives shrink dramatically. Meanwhile, S0

where both networks collapse also enlarges. In a nutshell,
when coupled together, the two networks are able to help
each other to survive larger attack sizes as compared to
the case when they are isolated; however, this comes at
the expense of also failing together at smaller attack sizes
than before.

To further quantify the effect of coupling on system
robustness, we consider the setting above while varying
the coupling coefficients a and b. For both networks,
we deploy the same initial attack, i.e., p1 = p2 = p, and
define the critical system attack size p?sys as the minimum
p that collapses at least one network in the system when
cascading failures stop; i.e., p?sys marks the intersection
of the p1 = p2 line and the boundary of the S12 region in
Figure 7.

The metric p?sys proposed here provides a simple and
useful way to quantify the robustness of the overall sys-
tem. For example, aside from being the smallest attack
size needed to be launched on both networks to fail at
least one of them completely, it gives a good indication of
the area of the S12 region where both networks are func-
tional at steady-state. In Fig. 8 we show the value of p?sys
for different coupling coefficients (a, b) using a color map;
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the darker the graph, the larger is the p?sys value. Using
this, one can design an interdependent system to have
the optimum coupling levels (a, b) so that robustness of
the overall system is maximized (in the sense of maximiz-
ing p?sys). We see that the optimum (a, b) is not unique,

but instead contain in a certain strip of the [0, 1]2 plane.
This indicates that the robustness of the interdependent
system can be optimized even under certain application-
specific constraints on the coupling levels a and b; e.g.,
one might need to have a = b for fairness to both net-
works, or a+b = 1 to bound the total load transfer across
networks, etc.

V. EXPLANATION ON MULTIPLE
CONTINUOUS/DISCONTINUOUS

TRANSITIONS

In this Section, we will explore in more details the un-
derlying reasons for a network to undergo multiple con-
tinuous/discontinuous transitions under the flow redistri-
bution model studied in this paper. First of all, we note
that whether a line survives or fails a particular stage
of cascading failure depends on the the extra load per
alive line at that iteration, i.e., Qt,A or Qt,B . With this
in mind, in Figure 9(b) we plot Qt,A as a function of
the iteration step t under the setting of Figure 6 (i.e.,
when network A experiences multiple transitions). In all
cases, we vary attack size p1 over a range with small in-
crements, so that a single curve in Figure 9(b) represents
the change of Qt,A vs. t under a specific attack size p1.

We observe that each p1 value leads to a variation
of Qt,A that belongs to one of the four clusters, distin-
guished by different colors in Figure 9(b). For example,
as p1 increases from 0.0250 to 0.0271, the corresponding
Qt,A curves move up smoothly forming the blue cluster.
At p1 = 0.0272, Qt,A experiences a jump, but as p1 in-
creases further, Qt,A curves move up continuously until
p1 = 0.0287, forming the red cluster. The jump between
the blue and red clusters at p1 = 0.0271 coincides with
the first jump in the transition in Figure 9(a). Similarly,
at p1 = 0.0287 we observe a second jump in Qt,A curves
between the red and black clusters, which corresponds
to the second jump in Figure 9(a). When attack size p1
further increases, Qt,A curves keep moving up smoothly
until p1 = 0.0314 after which Qt,A goes to infinity as
t → ∞, meaning that network A collapses completely
without any alive lines; the corresponding Qt,A curves
for p1 ≥ 0.0315 form the fourth cluster show by dotted
green lines. Not surprisingly, p1 = 0.0314 corresponds to
the final breakdown point observed in Figure 9(a).

Another way to read these figures is that after the ex-
tra load per non-failed line Qt,A (resp. Qt,B) reaches a
certain value, the network A (resp. B) goes through a
sequence of failures after which it either stabilizes with
a large fraction of failed lines, or it can not stabilize and
goes through a complete breakdown. These critical val-
ues of Qt,A, Qt,B and their connection to the emergence
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FIG. 9. Extra load per alive line Qt,A is shown (at differ-
ent attack sizes p1 on Network A) as a function of cascade
step t = 0, 1, . . ., for the setting considered in Figure 6. The
jumps in the transitions divide the final system curve into four
regions (marked with circled numbers), which correspond to
four clusters in the Qt,A plots (distinguished by four colors).

of multiple transitions can be understood better in the
case of a single network. In [28], we have provided a de-
tailed analysis of the global redistribution model in single
networks and demonstrated that the critical transition
values are determined by the inequality:

g(x) := P[S > x](x+E[L | S > x]) ≥ E[L]

1− p
, x ∈ (0,∞)

(8)
With x? denoting the smallest solution of (8), the final
system size is given by

n∞(p) = (1− p)P [S > x?] . (9)

Here x represents candidate values for the extra load per
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alive line at the steady-state; i.e., it represents potential
solutions to Q∞. To see this better, we can rewrite the
inequality (8) as

x ≥ pE [L] + (1− p)E [L1 [S ≤ x]]

(1− p)P[S > x]
. (10)

We can now realize that for any p and x for which this
inequality holds, the alternative attack that kills i) p-
fraction of the lines randomly; and ii) all remaining lines
whose free-space is less than x (i.e., that satisfy S ≤ x),
is a stable one that does not lead to any single additional
line failure. To see this, note that the term (1−p)P[S > x]
in (10) gives the fraction of lines that survive the alter-
native attack, where each surviving line having at least x
amount of free-space, while pE [L] + (1− p)E [L1 [S ≤ x]]
gives the total load failed initially as a result of the al-
ternative attack. Thus, for a given attack size p, the
smallest x satisfying inequality (8) or (10) will give us
the steady-state extra load per alive line Q∞.

With these in mind, we now explore the underlying
reasons for the final system size n∞(p) to exhibit (poten-
tially multiple) discontinuous transitions. From Figure 9
and the discussion that follows, we expect discontinuous
transitions in n∞(p) to appear simultaneously with dis-
continuous jumps in the behavior of Qt as p varies. We
now show that our results given at (8)-(9) confirm this
intuition. To visualize the implications of (8)-(9) bet-
ter, we should plot g(x) as a function of x, and find the
leftmost intersection of this curve and the horizontal line
drawn at E[L]

1−p . Let this leftmost intersection be denoted

by x?(p) (with the notation making the dependence of
x? on the attack size p explicit). The final system size is
given from (9) as n∞(p) = (1− p)P [S > x?(p)]. Assum-
ing that the tail of the distribution of S is continuous,
we see that n∞(p) will exhibit a discontinuous jump if
(and only at the points where) x?(p), which is analogous
to the steady-state extra-load per alive line Q∞, exhibits
a discontinuous jump. This confirms the intuition stated
above.

Recall that x?(p) is the leftmost intersection of g(x)
and E [L] /(1− p), and assume that E [L | S > x] is con-
tinuous, so that g(x) is continuous. Then, x?(p) (and
thus the final system size n∞(p)) will exhibit one discon-
tinuous jump for every local and the global maxima of
g(x). This last statement explains why certain L, S dis-
tributions lead only to a single discontinuous jump (since
the corresponding g(x) has a single maxima) while oth-
ers give two (or, potentially more) discontinuous transi-
tions. An example for the latter case is given in Figure
10. We see that the corresponding function g(x) (Figure
10(b)) exhibits a local maxima at x = 17.4. As a result,
when we search for the leftmost intersection of g(x) and
E [L] /(1− p) as p varies from zero to one, we see that at
a certain p value, the leftmost solution x?(p) jumps from
x = 17.4 to x = 29.3, creating a first-order transition in
the final system size n∞(p) = (1− p)P [S > x?(p)]. After
this point, as p increases further, the (leftmost) intersec-
tion points increase smoothly, leading to the continuous
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FIG. 10. Multiple transitions in a single network and the
corresponding function g(x) (defined at (8)) is plotted when
L follows Weibull distribution with k = 0.4, λ = 100, Lmin =
10, and S = αL where α = 1.74. The Inset zooms in to the
region where g(x) has a local maximum.

transition seen in Figure 10(a), until the global maxima
of g(x) is reached. At that p value, the leftmost intersec-
tion of g(x) and E [L] /(1−p) jumps from a finite value to
infinity (indicating that there is no x satisfying inequal-
ity (8)), and the system goes through a discontinuous
transition leading to its complete break down.

VI. SIMULATION RESULTS UNDER
GLOBAL-LOCAL COMBINED
REDISTRIBUTION MODEL

The main problem considered in this paper, concern-
ing the cascade of failures in two interdependent flow
networks, would be expected to depend on the network
connectivity patterns in practical scenarios. However,
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the approach used in this paper offers physical insight by
proposing a mean field approach on the setup presented.
In fact, the abstraction used in this paper is equivalent
in spirit to the determination of percolation properties
based on degree distributions, mean-field, heterogeneous
mean-field, and generating function approaches, etc. In
addition, merely topology-based models where the failed
load is redistributed solely in the local neighborhood of
the failed line (e.g., as in [31–33]) suffers from two main
issues. First of all, it is often not possible to obtain com-
plete analytic results under topology-based redistribution
models, even within the single network framework. Thus,
unlike the detailed analytical results given in this paper
for interdependent networks, one would most likely be
constrained to simulation results if a topology-based re-
distribution model was used. Secondly, models where the
failed flow gets redistributed only locally according to a
topology cannot capture the long-range behavior of fail-
ures that are observed in most real-world cascades [35].

With these in mind, we believe our paper exercises a
reasonable trade-off of capturing key aspects of real-world
cascades while being able to obtain complete analytic re-
sults. Nevertheless, we find it useful to complement our
analytical results with simulations that demonstrate how
network topology affects the robustness properties of in-
terdependent networks. To this end, we consider a model
that combines the global redistribution model described
in Section II and the local redistribution model used in
[31]. In particular, assume that upon failures in a net-
work, a γ-fraction of the failed flow is redistributed solely
in the local neighborhood of the failed line, while the rest
gets redistributed among all functional lines. In the case
of interdependent networks studied here, we only focus
on the intra-topology of networks A and B and still cou-
ple them through parameters a and b; i.e., when a line
in A fails, a-fraction of the failed flow gets redistributed
equally among all functional lines of B, while (1 − a)γ-
fraction gets redistributed locally in A among the neigh-
bors of the failed line, and the remaining (1− a)(1− γ)-
fraction gets redistributed among all functional lines of
A.

With this approach, we recover the model analyzed
in our paper when γ = 0, while setting γ = 1 gives a
merely topology-based model. We now present a simu-
lation result that shows the robustness of an interdepen-
dent system under different γ values. For convenience, we
consider the same set-up used in Fig. 6, i.e. the two net-
works are statistically identical with coupling coefficient
a = b = 0.36, and their loads follow a Weibull distribu-
tion with k = 0.4, λ = 100, Lmin = 10, and S = 0.6L.
For simplicity, we assume that the topologies of both net-
works are generated by the Erdős-Rényi model with 9000
nodes and link probability 0.2, leading to a mean number
N of links around 8.1× 106.

The results are depicted in Figure 11. As would be ex-
pected, as γ decreases from one (purely topology-based
model) to zero (the model analyzed in our paper), the
robustness of network A increases. In other words, the
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FIG. 11. Effect of parameter γ, which controls the fraction of
failed load that will be redistributed locally according to net-
work topology, on the robustness of interdependent systems.

more fraction of failed flow gets shared globally instead
of locally, the more robust the network becomes. This
is intuitive since when failed flow is shared globally, the
additional load per functional line decreases, leading to a
lower chance of triggering cascading failures. Neverthe-
less, the qualitative behavior of the robustness of network
A as the attack size p1 increases remains relatively un-
changed at different γ values; e.g., in all cases, we observe
multiple discontinuous transitions, with continuous tran-
sitions in between. This suggests that the mean-field ap-
proach used in our analysis (i.e., the case with (γ = 0)) is
able to capture very well the qualitative behavior of final
system size for all γ values.

VII. CONCLUSION

In this paper, we studied the robustness of interdepen-
dent systems under a flow-redistribution based model. In
contrast to percolation-based models that most existing
works are based on, our model is suitable for systems
carrying a flow (e.g., power systems, road transporta-
tion networks), where cascading failures are often trig-
gered by redistribution of flows leading to overloading of
lines. We give a thorough analysis of cascading failures
in a system of two interdependent networks initiated by
a random attack. We show that (i) the model captures
the real-world phenomenon of unexpected large scale cas-
cades: final collapse is always first-order, but it can be
preceded by a sequence of several first and second-order
transitions; (ii) network robustness tightly depends on
the coupling coefficients, and robustness is maximized at
non-trivial coupling levels in general; (iii) unlike existing
models, interdependence has a multi-faceted impact on
system robustness in that interdependency can lead to
an improved robustness for each individual network.
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