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We present a general classification of one-soliton solutions as well as novel families of rogue-wave
solutions for F = 1 spinor Bose-Einstein condensates (BECs). These solutions are obtained from
the inverse scattering transform for a focusing matrix nonlinear Schrödinger equation which models
condensates in the case of attractive mean field interactions and ferromagnetic spin-exchange inter-
actions. In particular, we show that, when no background is present, all one-soliton solutions are
reducible via unitary transformations to a combination of oppositely-polarized solitonic solutions of
single-component BECs. On the other hand, we show that, when a non-zero background is present,
not all matrix one-soliton solutions are reducible to a simple combination of scalar solutions. Finally,
by taking suitable limits of all the solutions on a non-zero background we also obtain three families of
rogue-wave (i.e., rational) solutions, two of which are novel to the best of our knowledge.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) have received ex-
tensive attention since their first experimental realiza-
tion [1, 2]. One of the mathematical models proposed
to describe the time evolution of the condensate wave
function in a mean field approximation is the famous
Gross-Pitaevskii (GP) equation [3, 4], which in one space
dimension and in the absence of external trapping po-
tentials is known to be completely integrable. The re-
sulting equation is the so-called nonlinear Schrödinger
(NLS) equation, and it describes the dynamics in single-
component BECs. Multi-component BECs have also been
observed experimentally [5, 6]. They can be created by
overlapping two single-component BECs with atoms in
two hyperfine states, or mixtures of two different atomic
species. Mathematically, these situations can be modeled
by coupled NLS equations with external potentials [7–9].

Spinor BEC models have also been proposed [10–12],
which correspond to multi-component BECs, with atoms
in a single hyperfine state but having internal spin de-
grees of freedom. When these spinor BECs were first ex-
perimentally created, they were shown to exhibit a much
richer phenomenology than single-component BECs. For
example, the spin degrees of freedom are liberated un-
der an optical trap, which opens up the possibility to
study spin waves in a Bose-condensed gas [13]. Other
interesting phenomena that can only be observed in
multi-component BECs include dark-bright soliton com-
plexes [14–18] and the formation of spin domains and
spin textures [19–21].

Subsequently, a completely integrable model for spin-
one (F = 1) BECs in one dimension and without exter-
nal magnetic fields was proposed [22]. In this model,
which requires a specific ratio of the scattering lengths
and hence of the coupling constants, the internal dy-

namics of the condensate are described by three com-
ponents Φj(x, t) for j = 0,±1, representing the wave
function of atoms with magnetic spin quantum number
j. The mean-field interaction in this model is attrac-
tive, and the spin-exchange interaction is ferromagnetic.
The time evolution of the three-component wave func-
tion is given by a matrix focusing NLS equation. Since
such matrix NLS equation is completely integrable, sev-
eral methods have been used to study the system and
derive explicit solutions, including the inverse scattering
transform (IST), and some solutions were presented in
Refs. [22–31]. The model was later extended to describe
BECs characterized by repulsive interatomic interactions
and antiferromagnetic spin-exchange interactions (corre-
sponding to the opposite sign for the ratio of the coupling
constants) [23–26]. In this case, the relevant model is a
defocusing matrix NLS equation, and a non-zero back-
ground is required in order for the system to admit soli-
ton solutions. The generalization to a non-zero back-
ground is particularly important for both kinds of non-
linearity (attractive/repulsive), since the non-zero back-
ground allows for the existence of so-called domain wall
solutions [20, 21], dark-bright soliton complexes [14–
18], and for the focusing scalar NLS equation it is related
to the existence of “rogue” waves.

The term rogue wave is used to refer to waves that
have unusually high amplitudes (by a factor of two or
larger) compared to the background, and that “appear
from nowhere and disappear without a trace” [32]. Be-
sides oceans (where they are also referred to as “freak
waves”) [33, 34], rogue wave phenomena are also ob-
served in the atmosphere [35], optics [36, 37] and plas-
mas [38]. Rogue waves have been studied extensively in
the context of the scalar integrable focusing NLS equa-
tion, because of its role as a model equation in deep
water waves, optical fibers and BECs [8, 9, 39, 40]. In
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particular, Peregrine solitons [41] and higher order ratio-
nal solutions [42, 43] have been proposed as a possible
mathematical description of rogue waves in various me-
dia [44], including in single component BECs [45]. Ra-
tional solutions of the coupled NLS equation and of the
three-wave interaction equations were also studied and
used to predict the existence of matter rogue waves in
BECs [46, 47].

The purpose of this work is twofold. First, we present a
complete classification of one-soliton solutions of the fo-
cusing spinor BEC equation on a non-zero background.
Second, we obtain novel families of rational solutions
which generalize those obtained in Ref. [48]. All these
soliton solutions are formulated in the context of the IST
for this model, which was recently developed in [49]. We
also discuss explicit spin polarization transformations of
all these solutions that relate solitonic and rogue waves
in spinor BECs and those in single component BECs. We
show that, in the case of zero background, all one-soliton
solutions of the spinor model are equivalent, up to uni-
tary transformations, either to a scalar soliton solution
or to a superposition of two oppositely polarized shifted
scalar solitons. On the other hand, we show that the
same statement does not apply in the presence of a non-
zero background, since in this case only some of the one-
soliton solutions or rational solutions are equivalent, up
to unitary similarity transformations, to superposition of
polarized scalar solutions.

II. SPINOR BEC MODEL AND ITS SOLITON SOLUTIONS

Atoms in F = 1 spinor BECs can be described by the
three-component macroscopic condensate vector wave
function (Φ1(x, t), Φ0(x, t), Φ−1(x, t))T, where Φj(x, t)
describes atoms with magnetic spin quantum number j.
In a mean-field approximation, Φj is shown to satisfy the
following system of partial differential equations

ih̄
∂Φ±1

∂t
+

h̄2

2m
∂2Φ±1

∂x2 = (c̄o + c̄2)(|Φ±1|2 + |Φ0|2)Φ±1

+ (c̄o − c̄2)|Φ∓1|2Φ±1 + c̄2Φ∗∓1Φ2
0 , (1a)

ih̄
∂Φ0

∂t
+

h̄2

2m
∂2Φ0

∂x2 = (c̄o + c̄2)(|Φ1|2 + |Φ−1|2)Φ0

+ c̄o|Φ0|2Φ0 + 2c̄2Φ∗0Φ1Φ−1 , (1b)

where c̄j are the coupling constants (related to the scat-
tering lengths), and asterisk denotes complex conju-
gate [22]. The above set of equations admits special re-
ductions which are integrable. The case c̄2 = 0 yields the
three-component NLS equation. The case c̄o = c̄2 = σ
yields the matrix NLS equation, with σ = ±1 correspond-
ing to the focusing/defocusing regimes. In the focusing
case, Eqs. (1) are equivalent to the following integrable
model

iΦt + Φxx + 2ΦΦ†Φ = 0 , (2a)

where the coordinates x and t have been suitably nondi-
mensionalized, subscripts x and t denote partial deriva-
tives, the dagger denotes conjugate transpose, and

Φ(x, t) =
(

φ1 φ0
φ0 φ−1

)
, (2b)

where φj(x, t) for j = 0,±1 represent the normalized
wave functions. We refer the reader to Ref. [22] for a
detailed derivation of Eq. (2) in the context of BECs. It is
important to point out the difference between the spinor
model corresponding to the matrix NLS equation (2)
and the vector NLS models. As it is evident from the
comparison of Eqs. (1) with the vector NLS (namely:
iΦt +Φxx± 2‖Φ‖2Φ = 0, Φ(x, t) being an N-component
vector), the corresponding equations describe differ-
ent physical models, with different kinds of nonlinear
terms. Explicitly, the nonlinearity in vector NLS equa-
tions only accounts for self-phase and cross-phase mod-
ulation, whereas the nonlinearity in the square matrix
model also includes four-wave mixing terms, and allows
to describe spin-exchange interaction.

II.A Non-zero background

The above focusing matrix NLS equation admits a Lax
pair, and thus can be studied via IST [27, 49–51]. In par-
ticular, in [49] we considered the initial value problem
for Eq. (2) with the boundary conditions (BC)

Φ(x, t)→ Φ± , x → ±∞ . (3)

Physically, the significance of Eq. (3) is that we consider
BECs whose spatial extent is much broader than that of
the solution structures being studied. We refer to Φ± = 0
as the case of zero background, and to Φ± 6= 0 as the
case of non-zero background. We further assumed that

Φ†
±Φ± = Φ±Φ†

± = k2
o I2 , (4)

where I2 is the 2 × 2 identity matrix and ko ≥ 0
is the amplitude of the background. The two defini-
tions (3) and (4) are consistent with those in previous
works [24, 25, 27, 28]. According to above definitions,
ko = 0 corresponds to a zero background and is referred
to here as the case of “zero BC” (ZBC); the case ko > 0,
corresponding to a non-zero background, is referred to
here as “non-zero BC” (NZBC). Of course Eq. (4) re-
stricts the class of solutions that one can describe. On
one hand, this condition is similar to the constraint that
is commonly placed when looking for solutions of focus-
ing and defocusing vector NLS equations [52–59], and
in those cases it is a necessary condition for the existence
of pure soliton solutions. On the other hand, we show
below that, even with this restriction, the system admits
a large variety of soliton solutions.

It is worth at this stage to point out the difference be-
tween the current work and previous works on vector
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NLS equations with NZBC. First of all, as already men-
tioned above, the corresponding equations describe dif-
ferent physical models, with different kinds of nonlin-
ear terms. When a non-zero background is considered,
this crucial difference is reflected both in the formulation
of the IST and in the behavior of the solutions. From
a spectral point of view, in the formulation of the IST,
one can show that all eigenfunctions of the square ma-
trix model are analytic in specific regions of the spec-
tral plane, whereas only two eigenfunctions of the vector
model are analytic. As a result, the scattering data for
the two associated spectral problems are different, and
so are the soliton solutions. Moreover, as we show be-
low, the soliton solutions of the 2× 2 matrix NLS equa-
tion are associated with matrix norming constants, and
the matrix nature of the norming constants plays a cru-
cial role in the properties of the corresponding soliton
solutions.

In general, the boundary conditions Φ± must be time-
dependent in order to be compatible with the time evo-
lution. Time-independent BC can be achieved via a sim-
ple gauge transformation, however. Explicitly, with the
transformation Φ(x, t) 7→ Φ(x, t) e2ik2

o t, Eq. (2) can be
written as

iΦt + Φxx + 2(ΦΦ† − k2
o I2)Φ = 0 , (5)

so that the values Φ± are independent of t.
Importantly, the matrix NLS equation (2a) is invariant

under unitary transformations. Namely, if Φ(x, t) is a
solution of Eq. (2a),

Φ̃(x, t) = UΦ(x, t)V (6)

is also a solution of Eq. (2a) for arbitrary constant unitary
matrices U and V. Of course, in order for this invariance
to also apply to the full spinor BEC system (2), the uni-
tary matrices U and V must be chosen so that Φ̃(x, t)
is also symmetric. Such general unitary transformations
are then associated with spin rotations in the spinor BEC.
Thanks to this invariance, one can assume without loss
of generality that

Φ+ = ko I2 , (7)

since an arbitrary boundary condition can be reduced
to the above by an appropriate choice of U and V
in (6) [49]. Therefore, in the rest of this work we discuss
solitons and rogue waves on a non-zero background with
asymptotic behavior as in Eq. (7), since solutions with
a different asymptotic state can be reconstructed from
them by means of the above mentioned unitary trans-
formations. Note, however, that one does not have the
freedom to specify both Φ+ and Φ−. Once Φ+ has been
chosen, Φ− is determined by the specific solution con-
sidered, and is not necessarily diagonal, even when the
constraint provided by Eq. (4) is satisfied, as we discuss
later.

The Lax pair of the spinor model (5) is given by

ψx = (−ikσ3 + Φ)ψ , ψt = Vψ ,

where

V = −2ik2Φ + 2kΦ + iσ3(∂xΦ− k2
o I4 + Φ Φ†) ,

σ3 =

(
I2 0
0 −I2

)
, Φ =

(
0 Φ
−Φ† 0

)
,

I4 is the 4× 4 identity matrix and k ∈ C denotes the spec-
tral parameter. In [49], we formulated the IST for Eq. (5)
satisfying the BC (4), and we derived an expression for
general N-soliton solutions. From the formulation of
the IST for the spinor model (5), N-soliton solutions are
completely determined by N discrete eigenvalues and N
associated norming constants. The discrete eigenvalues
are scalar complex numbers, whereas the norming con-
stants are 2× 2 symmetric complex-valued matrices. In
the rest of this work we will focus on one-soliton solu-
tions, i.e. we take N = 1.

II.B One-soliton solutions

The one-soliton solution corresponding to a discrete
eigenvalue ζ (with |ζ| ≥ ko and Im ζ > 0) and a norming
constant K (which must be a 2× 2 symmetric complex-
valued matrix) is given by

Φ(x, t) = k2
o I2 − iX1e−2iθ∗K† + ik2

oX2e2iθK/ζ2 (8)

(see [49] for details), where

θ(x, t) = (ζ2 + k2
o)[ζx + (ζ2 − k2

o)t]/(2ζ2) , (9)

and X1, X2 solve the following linear system

X1D = I2− ikoX2c/ζ , X2D† = I2− iζX1c†/ko , (10)

with

c =
K

ζ∗ − ζ
e2iθ , D = I2 +

ikoK†

(ζ∗)2 + k2
o

e−2iθ∗ .

In Appendix I, we show that the behavior of the soliton
solutions crucially depends on the rank of the norming
constant, i.e., on the matrix nature of K. We do so by
calculating the total spin of the one-soliton solutions (8).
We show that: if det K = 0 the BEC has non-zero total
spin and thus is in a ferromagnetic state; if det K 6= 0 the
BEC has zero total spin and thus is in a polar state [60].

Moreover, it was also shown in [49] that, when
det K 6= 0 (i.e., for a polar solution), Φ− = e−4iαko I2,
(with α = arg ζ). Conversely, when det K = 0 (i.e., for
a ferromagnetic solution), in general Φ− is not diagonal.
Clearly, the ferromagnetic solutions (det K = 0) are gen-
uine matrix solutions, and do not admit any analogues
in other models with scalar or vector norming constants
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(e.g., scalar and vector NLS equations). Moreover, be-
cause of the different asymptotics of Φ± when det K = 0,
one expects the solutions to exhibit a kink-like behavior,
i.e., a domain wall may form. Indeed, we will show later
that in some cases Eq. (8) gives rise to topological soli-
tons.

In the limit ko → 0, Eq. (8) yields soliton solutions
of the spinor model with ZBC, i.e., with Φ(x, t) → 0 as
x → ±∞. Simple calculations from Eq. (8) show that the
one-soliton solution with ZBC is given by

Φ(x, t) = −i e−2iθ∗(I2 + c†c)−1K† , (11)

where in this case

θ(x, t) = (ζx + ζ2t)/2 , c = Ke2iθ/(ζ∗ − ζ) . (12)

Similarly to the case of NZBC, solutions are in a ferro-
magnetic state when det K = 0, and in a polar state when
det K 6= 0. The soliton solutions (11) with ZBC were first
derived in Ref. [22].

III. CLASSIFICATION OF SOLITON SOLUTIONS

In this section we present a complete classification of
the one-soliton solutions of the spinor BEC model both
with ZBC and with NZBC, given respectively by Eqs. (11)
and (8). First, in section III.A we discuss the classifica-
tion of the soliton solutions on a zero background. Then,
in section III.B we show how similar methods can be used
to classify soliton solutions with NZBC.

Recall that, if Φ(x, t) is a solution of Eqs. (2), Φ̃(x, t)
defined by Eq. (6) is also a solution provided that U and
V are two constant unitary matrices and Φ̃(x, t) is also
symmetric. We can then formulate the concept of equiv-
alence classes of solutions. That is, we say that two given
solutions Φ(x, t) and Φ̃(x, t) of the spinor BEC model (2)
are equivalent if there exist two unitary matrices U and
V such that Eq. (6) holds.

III.A Soliton solutions with ZBC

In [31] it was shown that up to a rotation of the quan-
tization axes, soliton solutions with ZBC can be written
as a “superposition of two oppositely polarized displaced
solitons” of the focusing NLS equation. We show below
how this result can be obtained using a method that can
be generalized to classify soliton solutions with NZBC.

Since the norming constant K is symmetric, Takagi’s
factorization [61] ensures that there exists a unitary con-
stant matrix U such that

UKUT = Γ , Γ = diag(γ1, γ−1) , (13)

where γj ≥ 0 and γ2
j are the eigenvalues of K†K.

(Notice that the matrix K†K is Hermitian and positive-
semidefinite, so its eigenvalues are real and non-

negative.) Therefore, one can write any norming con-
stant as

K = U†ΓU∗ . (14)

Substituting Eq. (14) into the solution (11), one has

Φ(x, t) = UTQ(x, t)U , (15)

where Q(x, t) is a diagonal matrix given by

Q(x, t) = diag(q1, q−1) = −i e−2iθ∗(I2 + c̃† c̃)−1Γ† , (16)

and c̃ = Γe2iθ/(k∗ − k). Since U and UT are unitary
matrices, and Q is diagonal and hence symmetric, we
conclude that Q is also a solution of the spinor model (2)
and Q → 0 as x → ±∞. Moreover, because Q is in the
form of Eq. (11), it is also a one-soliton solution with
the same discrete eigenvalue ζ and a diagonal norming
constant Γ.

Whenever the solution of the spinor model (2) is di-
agonal, like Q(x, t) above, its diagonal components, i.e.,
q±1(x, t), are decoupled, and each individually satisfies
the scalar focusing NLS equation:

iqt + qxx + 2|q|2q = 0 . (17)

It then follows that each qj(x, t) with j = ±1 is a one-
soliton solution of Eq. (17) with discrete eigenvalue ζ
and norming constant γj. More precisely, if we write
the discrete eigenvalue as ζ = V + iA with A > 0 and
V ∈ R, each qj will have the form of the sech-shaped
one-soliton solution of the focusing NLS equation:

qsech,j = −iA sech[A(x + 2Vt− ξ j)] ei[−Vx+(A2−V2)t] ,

where Aξ j = ln[γj/(2A)], A is the soliton amplitude and
−2V is the soliton velocity. Notice that since the norming
constant γj is real, each solution qsech,j depends on three
free parameters instead of four. (An overall phase for
each component is absorbed by the above unitary trans-
formation.)

Furthermore, from Eq. (13) we have

|det K | = γ1γ−1 .

So, if the solution Φ(x, t) describes a ferromagnetic state,
i.e., det K = 0, one of the γj must be zero. Without
loss of generality, we can take γ−1 = 0 and γ1 > 0.
[Note that the case γ1 = γ−1 = 0 is trivial, because
Eq. (11) implies Φ(x, t) ≡ 0 in this case.] On the other
hand, if the solution Φ(x, t) describes a polar state, i.e.,
det K 6= 0, then both γ1 and γ−1 are strictly positive.

As an example, Fig. 1 shows two one-soliton solutions
with ZBC obtained from the same discrete eigenvalue,
but with different norming constants, one giving rise to
a ferromagnetic state and the other one to a polar state.

Since eigenvalues are preserved by unitary transfor-
mations, from the above discussion it follows that soliton
solutions with ZBC divide into two equivalence classes:
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FIG. 1. Amplitudes of one-soliton solutions of the spinor BEC
model with ZBC, with discrete eigenvalue ζ = −1 + 2i and
unitary matrix U = − 4

5 I2 + 3
5 iσ1. Top: |φ1(x, t)|. Center:

|φ0(x, t)|. Bottom: |φ−1(x, t)|. Left: a polar state given by
Eq. (18a) with γ1 = 4 and γ−1 = 4e4. Right: a ferromagnetic
state given by Eq. (18b) with γ1 = 4.

Class A. Any one-soliton solution describing a polar
state (i.e., with a non-singular norming constant K) can
be written in the form (15) with

Q(x, t) = diag(qsech,1(x, t), qsech,−1(x, t)) , (18a)

where U is a constant unitary matrix [as determined by
Takagi’s factorization algorithm to reduce K to its diag-
onal form (14) with Γ = diag(γ1, γ−1)], qsech,j(x, t) for
j = ±1 is the classical sech-shaped soliton solution of
the scalar NLS equation with discrete eigenvalue ζ and
norming constant γj.

Class B. Any one-soliton solution describing a ferro-
magnetic state (i.e., with a rank-one norming constant
K) can be written in the form (15) with

Q(x, t) = diag(qsech,1(x, t), 0) , (18b)

where again U is a constant unitary matrix [as deter-
mined by Takagi’s factorization algorithm to reduce K
to its diagonal form (14) with Γ = diag(γ1, 0)], and
qsech,1(x, t) is the classical sech-shaped soliton solution of
the scalar NLS equation with discrete eigenvalue ζ and
norming constant γ1.

Additional remarks. Equations (18) relate one-
soliton solutions of the spinor model (2) to those of
the scalar focusing NLS equation (17) with a zero back-
ground. Any one-soliton solution of the spinor model (2)
with ZBC is reducible, i.e., is equivalent to either a sin-
gle scalar one-soliton solution or two shifted scalar one-
soliton solutions (one in each of the two oppositely polar-
ized states). Conversely, given any one-soliton solutions
of the focusing NLS equation, or any two such solutions
with the same discrete eigenvalue (with either equal or
different norming constants), one can always construct a
one-soliton solution of the spinor model (2) by using an
arbitrary unitary matrix U such that the unitary transfor-
mation (15) keeps the solution symmetric.

It is also worth to point out that the diagonal forms
in Eq. (18) are unique, in the sense that the scalar soli-
tons qsech,j(x, t) are uniquely determined by the discrete
eigenvalue ζ and the non-negative eigenvalues of K†K.
Thus, if two solutions Φ1 and Φ2 have the same diagonal
scalar solitons qsech,j, then they differ only by a constant
unitary transformation of the form (15), i.e., a spin rota-
tion.

III.B Soliton solutions with NZBC: Schur classes

We next discuss one-soliton solutions in spinor BECs
with a non-zero background. In this case the phe-
nomenology is much richer than in the case of zero back-
ground, as it crucially depends on the location of the
discrete eigenvalue in the spectral plane, as well as the
structure of the norming constant.

Similarly to the scalar focusing NLS equation with
NZBC, there exist four kinds of soliton solutions depend-
ing on the location of the discrete eigenvalue, namely (cf.
Fig. 2): 1. Traveling solitons (|ζ| > ko with Re ζ 6= 0 and
Im ζ > 0); 2. Stationary solitons (ζ = iZ with Z > ko);
3. Periodic solutions (ζ = ikoeiα with |α| < π/2); and 4.
Rational solutions (corresponding to the limit of station-
ary solitons as Z → 1, or of periodic solitons as α → 0).
For future reference we write below the general travel-
ing soliton solution (known as Tajiri-Watanabe soliton)
of the focusing NLS equation with discrete eigenvalue
ζ = ikoZeiα, Z > 1, |α| < π/2, and norming constant
γ = ξeiϕ, as given in [62]:

qtw(x, t) = koe−2iα cosh(χ + 2iα) + (c+,2Ks − ic−,2Kc) d
cosh χ + 2Ksd

,

(19)
where

Ks(x, t) = Z2 sin(s + 2α)− sin s , (20a)

Kc(x, t) = Z2 cos(s + 2α)− cos s , (20b)

χ(x, t) = koc−,1x cos α− k2
oc+,2t sin 2α + log

2co cos α

c+,1ξ
,

(20c)

s(x, t) = koc+,1x sin α + k2
oc−,2t cos 2α− ϕ , (20d)
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Classes A B C D E

Γ

[
γ1 0
0 γ−1

] [
γ 0
0 0

] [
0 γ

0 0

] [
γ1 γ0

0 0

] [
γ1 γ0

0 γ−1

]

TABLE I. The five equivalence classes for the Schur form of the
norming constant K. In Appendix II we show that any norming
constant can be reduced to one of the above classes by a trans-
formation K = UΓU†, where U is a unitary matrix. Explicit
expressions for each class of norming constant K and corre-
sponding unitary matrix U are also provided in Appendix II.

c±,n = Zn ± 1/Zn n = 1, 2 , (20e)

co = |1− e−2iαZ2| , d = cos α/(coc+,1) . (20f)

The other three kinds of solitons are special cases of
Eq. (19) when the discrete eigenvalue ζ is taken as
in Fig. 2. Note, however, that for rational solutions a
suitable limiting procedure and rescaling of the norm-
ing constant are necessary to obtain nontrivial solutions,
cf. [62] for the scalar case. The generalization of this
procedure for the spinor model is discussed in Section IV.

Another crucial difference from the case of ZBC dis-
cussed in Section III.a is that in general Takagi’s factor-
ization does not diagonalize the solution in the case of
NZBC. The reason is twofold. On one hand, in general
the transformation does not preserve the BC (7). That
is, the multiplication by U from the left and UT from the
right, which diagonalizes K, changes the BC in Eq. (7)
into Φ+ = koUUT, which is not necessarily proportional
to the identity, or even diagonal. On the other hand, the
matrix U in Takagi’s factorization for K does not diago-

FIG. 2. The four kinds of discrete eigenvalues in the spectral
plane for the spinor BEC model. 1. Eigenvalue in general po-
sition, corresponding to traveling solitons; 2. Imaginary eigen-
value, corresponding to stationary solitons; 3. Eigenvalue on
the circle, corresponding to periodic solutions; 4. Eigenvalue
on the branch point, corresponding to rational solutions. The
four kinds of solutions are the analogues of the Tajiri-Watanabe,
Kuznetsov-Ma, Akhmediev and Peregrine solitons of the scalar
focusing NLS equation, respectively.

nalize K† in general. Therefore, in general the last two
terms in Eq. (8) cannot be diagonalized simultaneously,
which means that the solution of the spinor model can-
not always be decomposed into a simple combination of
scalar solutions.

In order to study soliton solutions with NZBC we in-
stead find it more convenient to use the Schur decompo-
sition [63] to express the norming constant in the sim-
plest possible form. The Schur decomposition theorem
ensures that, for any matrix K, there exists a unitary ma-
trix U such that

K = UΓU† , (21)

where Γ is an upper triangular complex-valued matrix,
called the Schur form of the matrix K. As shown in Table I
and in Appendix II, all (in our case, symmetric) norming
constants K can be divided into five equivalence classes
(here labeled classes A–E), depending on the structure
of their Schur forms (i.e., depending on whether K is
diagonalizable or not, and whether none, one or both of
its eigenvalues are zero). Families of norming constants
and corresponding unitary transformations are shown in
Appendix II. (Similarly to our classification of solitons
with ZBC, we ignore the trivial case in which Γ is the
zero matrix.)

Note that the Schur form Γ of a matrix is not unique.
(For example, one can switch the two diagonal entries of
Γ and/or change the complex phase of the off-diagonal
entry via an additional unitary similarity transforma-
tion.) Nonetheless, the structure of Γ is unique. Indeed,
since both the trace and the determinant of a matrix
are invariant under similarity transformations by a uni-
tary matrix, and since the different Schur forms can be
uniquely distinguished in terms of the trace and deter-
minant of the matrix Γ, it follows that norming constants
belonging to different Schur classes are not related by
unitary similarity transformations.

Importantly, the above discussion implies that soli-
ton solutions obtained from norming constants in different
Schur classes are inequivalent. To see why, note that, even
though the transformation (6) that defines equivalence
classes of solutions allows for two unrelated unitary ma-
trices U and V, in order to preserve the BC (7) one must
choose V = U†. Therefore, in the case of NZBC, all
solutions in the same equivalence class are related to
each other via a similarity transformation with a unitary
matrix. Thus, soliton solutions obtained from norming
constants belonging to different Schur classes belong to
different equivalence classes. The converse is also true.
That is, if two one-soliton solutions are not in the same
equivalence class, then the two norming constants are
inequivalent as well.

In Section III.C we show that solutions obtained from
classes A and B are reducible, i.e., equivalent to a sim-
ple combination of scalar solitons, similarly to the case
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of ZBC, whereas those obtained from classes C–E are ir-
reducible, i.e., not representable in terms of simple com-
binations of scalar solitons.

Finally, recall that a soliton solution corresponds to
a ferromagnetic or polar state depending on whether
det K = 0 or det K 6= 0, respectively. Thus, if the solution
describes a ferromagnetic state (i.e., one of the eigen-
values of the norming constant is zero), then it belongs
to one of the equivalence classes B–D. Conversely, if the
solution describes a polar state (i.e., both eigenvalues of
the norming constant are non-zero), then the it belongs
to either class A or class E.

III.C Soliton solutions with NZBC: Core components

Substituting Eq. (21) into Eq. (8), we have

Φ(x, t) = UQ(x, t)U† , (22)

where

Q(x, t) = k2
o I2 − iX̃1e−2iθ∗Γ† + ik2

oX̃2e2iθΓ/ζ2 , (23)

and X̃j solve the following linear system

X̃1D̃ = I2 − ikoX̃2 c̃/ζ , X̃2D̃† = I2 − iζX̃1 c̃†/ko ,

with

c̃ =
Γ

ζ∗ − ζ
e2iθ , D̃ = I2 +

ikoΓ†

(ζ∗)2 + k2
o

e−2iθ∗ .

Since Φ(x, t) is obtained from Q(x, t) via the transfor-
mation (22), we refer to Q(x, t) as the core soliton com-
ponent of the solution Φ(x, t) of the spinor model. This
definition holds for all classes A–E.

Notice that for classes A and B the norming constant
K is a normal matrix (because it is diagonalizable by a
unitary similarity transformation). In these cases, since
Γ is symmetric and diagonal, Q(x, t) is also symmetric,
and thus is itself a one-soliton solution of the spinor
model (5), with norming constant Γ. Conversely, for
classes C–E the norming constant K is not a normal ma-
trix, (because it is not diagonalizable by a unitary simi-
larity transformation). In these cases, Γ is non-diagonal
and Q(x, t) is not symmetric, and thus is not a soli-
ton solution of the spinor BEC model. Nonetheless,
Φ(x, t) = UQ(x, t)U† is always symmetric, and there-
fore is a solution of the spinor BEC model.

Below we study the solutions obtained from each
Schur class in Table I separately. It will be convenient
to parametrize the Schur forms as follows:

ΓA =

(
γ1 0
0 γ−1

)
, ΓB =

(
γ 0
0 0

)
, ΓC =

(
0 γ

0 0

)
,

(24a)

ΓD =

(
γ γ tan(2η)

0 0

)
, (24b)

ΓE =

(
γ + eiβγ0 cot(2η) γ0

0 γ

)
. (24c)

Class A. Combining ΓA in Eq. (24) and
Eq. (23), simple calculations show that Q(x, t) =
diag(q1(x, t), q−1(x, t)), where, similarly to the case of
ZBC, each qj(x, t) solves the scalar NLS equation

iqt + qxx + 2(|q|2 − k2
o)q = 0 , (25)

with the NZBC |qj(x, t)| → ko as x → ±∞. More pre-
cisely, since the asymptotics as x → ∞ of Q(x, t) is fixed
by Eq. (7), it follows that qj(x, t) → ko as x → ∞. Let
qtw,j(x, t) denote the Tajiri-Watanabe (TW) soliton so-
lution (19) with discrete eigenvalue ζ = ikoZeiα, and
norming constant γ = γj = ξ je

iϕj for j = ±1. As a conse-
quence of the decoupling provided by the Schur decom-
position of the norming constant, qj(x, t) = qtw,j(x, t) for
j = ±1 are the general one-soliton solutions of the scalar
NLS equation. Thus, the core soliton component Q(x, t)
in class A is diagonal, and it is given by

Q(x, t) = diag(qtw,1(x, t), qtw,−1(x, t)) . (26)

As discussed in Appendix II, the most general form for
the unitary matrix UA that converts the norming con-
stant into its Schur form, and hence the general one-
soliton soliton into the core soliton component, in class A
is given by Eq. (A.4). Therefore, the general solution
Φ(x, t) in class A is a one-parameter family of transfor-
mations of two shifted scalar TW solitons:

φ1(x, t) = qtw,1(x, t) sin2 η + qtw,−1(x, t) cos2 η , (27a)

φ0(x, t) =
1
2
(qtw,1(x, t)− qtw,−1(x, t)) sin 2η , (27b)

φ−1(x, t) = qtw,1(x, t) cos2 η + qtw,−1(x, t) sin2 η , (27c)

where −π/2 < η < π/2. Note that Φ(x, t) is deter-
mined by a total of eight real parameters via Eq. (27). An
example of a soliton solution Φ(x, t) in class A and the
corresponding core soliton component Q(x, t) is shown
in Fig. 3. It can be seen from Fig. 3(left), that in gen-
eral, the solution (27) exhibits a one-to-one correspon-
dence between potential traps and peaks in different
spin states. In particular, the background develops holes
in the two components φ±1 corresponding to potential
traps. Such potential traps in turn create peaks in the
component φ0. The existence of pairs of holes and peaks
is reminiscent of the dark-bright soliton complexes con-
sidered in Refs. [14–18]. In this sense, the soliton solu-
tion (27) exhibits oscillatory dark-bright behavior among
the spin states. This behavior manifests itself only in
Φ(x, t), and not in the corresponding core component
Q(x, t), which is a direct result of the spin rotation U of
the core solutions Q(x, t) from Eq. (22). It is also clear
that such oscillatory dark-bright behavior travels with
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FIG. 3. Amplitudes of a one-soliton solution of the spinor
BEC model with NZBC with ko = 1, discrete eigenvalue ζ =
2ie−iπ/6 and norming constant in class A. Left: entries of
Φ(x, t) from Eq. (27) with γ1 = eiπ/3/10 and γ−1 = 50 e−iπ/3,
and η = π/8. From top to bottom: |φ1(x, t), |φ0(x, t)| and
|φ−1(x, t)|. Right: entries of the corresponding core soli-
ton component Q(x, t) from Eq. (26). From top to bottom:
|q1,1(x, t)|, |q1,2(x, t)| = |q2,1(x, t)| and |q2,2(x, t)|.

the same velocity of the TW solitons qtw,±1(x, t), and is
fully determined by the discrete eigenvalue ζ. The fre-
quency of oscillation is also the same of the TW soliton.
Since the TW solitons are well known and has been stud-
ied extensively in the past, the corresponding results can
be simply carried over to the soliton solutions in class A.

Class B. Combining ΓB in Eq. (24) with
Eq. (23), simple calculations show that Q(x, t) =
diag(q1(x, t), ko). Similarly to class A, q1(x, t) satisfies
the scalar NLS equation (25) with NZBC q1(x, t) → ko
as x → ±∞. Thus, we have q1(x, t) = qtw(x, t) from
Eq. (19). The core soliton component is given by

Q(x, t) = diag(qtw(x, t), ko) . (28)

The general one-soliton solution Φ(x, t) in class B is de-
fined by a one-parameter family of transformations that
couple a scalar TW soliton (19) and the non-zero back-
ground ko, namely

φ1(x, t) = qtw(x, t) sin2 η + ko cos2 η , (29a)

φ0(x, t) =
1
2
(qtw(x, t)− ko) sin 2η , (29b)

FIG. 4. Same as Fig. 3, but for a one-soliton solution in class B
and discrete eigenvalue ζ = 2ie−π/4. Left: the soliton solu-
tion from Eq. (29) with γ = eiπ/3 and η = π/4. Right: the
corresponding core soliton component from Eq. (28).

φ−1(x, t) = qtw(x, t) cos2 η + ko sin2 η , (29c)

where −π/2 < η < π/2. Notice the family of solutions
in Eq. (29) depend on six real parameters. An exam-
ple of a soliton solution Φ(x, t) in class B and the cor-
responding core soliton component Q(x, t) is shown in
Fig. 4. With a nontrivial parameter η, this solution forms
a domain wall. In particular, the location of the wall
coincides with the location of the TW soliton qtw, and
the velocity of the wall coincides with the soliton veloc-
ity. Hence the properties of the wall are encoded into
qtw(x, t) by means of the discrete eigenvalue ζ and the
norming constant γ.

Class C. Combining ΓC in Eq. (24) with Eq. (23), af-
ter some calculations we obtain the core soliton compo-
nent as

Q(x, t) = (qj,k(x, t))j,k=1,2 , (30)

where

q1,1(x, t) = ikoe−iα(sin α− i cos α tanh χ(x, t)) , (31a)

q1,2(x, t) = −i
ko

Z
e−i(2α+s(x,t)) cos α sechχ(x, t) , (31b)

q2,1(x, t) = −ikoZeis(x,t) cos α sechχ(x, t) , (31c)

q2,2(x, t) = q1,1(x, t) , (31d)
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with

χ(x, t) = c−,1kox cos α− k2
oc+,2t sin(2α)

+ log[(2Zko cos α)/ξ] ,

s(x, t) = c+,1kox sin α + c−,2k2
ot cos 2α− φ ,

and γ = ξ eiφ. In this case Q(x, t) has the form of a
dark-bright soliton, similar to those obtained for the vec-
tor focusing NLS equation (i.e., the so-called Manakov
system) with NZBC in [56]. The general one-soliton so-
lution Φ(x, t) of the spinor model in this case is given
by Eq. (22) with Q(x, t) given by Eq. (31) and UC given
by Eq. (A.5). The resulting solution is a superposition of
dark and bright solitons, coupled by UC, which gener-
ically produces a breather-type solution due to out-of-
phase oscillations resulting from the off-diagonal entries
of Q(x, t). For brevity, we omit the explicit expressions
for the entries of Φ(x, t).

A soliton solution Φ(x, t) in class C and the corre-
sponding core soliton component Q(x, t) are shown in
Fig. 5. We reiterate that, unlike Φ(x, t), Q(x, t) is not
symmetric in this case, hence it is not itself a solution of

FIG. 5. Amplitudes of a one-soliton solution of the spinor
BEC model with NZBC with ko = 1, discrete eigenvalue ζ =
2ie−iπ/6 and γ = 1 in class C. Left: the solution Φ(x, t) with UC
defined in Eq. (A.5) and parameters β1 = −π/2, β2 = π and
n = 0. From top to bottom: |φ1(x, t), |φ0(x, t)| and |φ−1(x, t)|.
Right: the corresponding core soliton component Q(x, t) from
Eq. (31), with |q1,1(x, t)| = |q2,2(x, t)| (top), |q1,2(x, t)| (center)
and |q2,1(x, t)| (bottom).

FIG. 6. Similarly to Fig. 5(left), but for two one-soliton solu-
tions in classes D (left) and E (right) with ζ = 2ie−iπ/4. The
unitary matrix UD is given by Eq. (A.6) with γ = 1, η = π/8
and β2 = π/2. The unitary matrix UE is given by Eq. (A.7)
with γ−1 = 1, γ0 = 2i, β = π/2 and η = π/32.

the spinor BEC model.
Class D. Combining ΓD in Eq. (24) with Eq. (23), the

core soliton component is still given by a full 2× 2 ma-
trix Q(x, t) as in Eq. (30), but where now the individual
entries are given explicitly in Eq. (A.8) in Appendix II for
brevity. As for class C, the core soliton component Q(x, t)
is not a solution of the spinor BEC model (5), because
it is not symmetric. The general one-soliton solution
Φ(x, t) is given by Eq. (22) as usual. A three-parameter
family of unitary matrices UD that convert the norming
constant into its Schur form, and hence the core soliton
component into the general one-soliton soliton, is given
by Eq. (A.6). One example of a soliton solution with
norming constant in class D is shown in Fig. 6(left). The
entries of the corresponding core soliton component are
shown in Fig. 7(left).

The solution in class D also exhibits a domain wall be-
havior. One can still see a small asymptotic amplitude
difference in φ0 as x → ±∞ in Fig. 6(left). Analytically,
this is consistent with Ref. [49], where the asymptotics
of one soliton solutions as x → ±∞ shows that Φ(x, t)
has different asymptotic amplitudes in each spin state as
x → ±∞ when det K = 0.
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FIG. 7. Entries of the core soliton component Q(x, t) for the so-
lutions in class D (left) and class E (right) shown in Fig. 6. From
top to bottom: |q1,1(x, t), |q1,2(x, t)|, |q2,1(x, t)| and |q2,2(x, t)|.

Class E. By combining ΓE in Eq. (24) with the gen-
eral solution formula (23), one obtains the core soliton
component Q(x, t) in class E. One example of a soliton
solution with norming constant in class E is shown in
Fig. 6(right). The entries of the corresponding core soli-
ton component are shown in Fig. 7(right). Unlike the
previous classes, in this case we were unable to write
Q(x, t) in compact form: the entries of the core soliton
component do not seem to be reducible to simple su-
perposition of scalar solutions, and are not simpler than
the solution Φ(x, t) itself, as one can see by comparing
Fig. 6(right) and Fig. 7(right). Similarly to class A, the
locations of peaks in φ±1 and holes in φ0 are clearly in
one-to-one correspondence. Thus this solution also ex-
hibits a dark-bright behavior.

Additional remarks. The results of this section can
be summarized in Table II (which labels the different
types of solution) and Table III (identifying which solu-
tion type is obtained for various classes of norming con-
stants and kinds of discrete eigenvalues). At this stage it
is also worth highlighting some of the common features
of the soliton solutions derived above.

(i) We reiterate that traveling solitons, stationary soli-
tons and periodic solutions in each equivalence class
share the same expressions for the core soliton compo-
nents, and the only difference between them is the dif-
ferent kind of discrete eigenvalue.

(ii) Solitons obtained from eigenvalues of the first
three kinds (cf. Fig. 2) are localized along a line

c−,1kox cos α− k2
oc+,2t sin 2α = const .

The left-hand side of the above expression is determined
solely by the discrete eigenvalue ζ, yielding the soliton
velocity as

V = 2koc+,2 sin α/c−,1 . (32)

This velocity also characterizes the domain walls in
classes B and D. For a discrete eigenvalue in a generic
position in the complex plane (i.e., an eigenvalue of the
first kind, cf. Fig. 2), the soliton travels with V 6= 0, thus
it is a genuine traveling soliton. For a purely imaginary
discrete eigenvalue ζ = ikoZ, (i.e., α = 0 corresponding
to an eigenvalue of the second kind) the soliton velocity
is zero, i.e., the soliton is stationary. Moreover, if Z = 1
with α 6= 0 (i.e., for an eigenvalue of the third kind), the
soliton velocity becomes infinite. The soliton is localized
in time and the solution becomes a periodic in space. Fi-
nally, as we show in the next section, the limit Z → 1
with α = 0, corresponding to an eigenvalue of the fourth
kind in Fig. 2, may give rise to rational solutions.

(iii) Unlike the soliton velocities, the specific location
and phase of an individual soliton are determined by the
Schur form of the norming constant and by the unitary
transformation that reduces the norming constant to its
Schur form. The explicit expressions for these quantities
in general are different for the five classes.

(iv) Finally, we reiterate that solutions in equivalence
classes A and E represent polar states, for which the total
spin of the condensate is zero, and the asymptotic state
Φ− is also equals ko times the identity matrix up to a
phase. Conversely, solutions in equivalence classes B, C
and D describe ferromagnetic states, for which the total
spin of the condensate is non-zero and the corresponding
asymptotic state Φ− is not diagonal in general. Since the
asymptotics Φ± in a polar state are diagonal with only
an overall phase difference [49], each φj has the same
asymptotic amplitudes as x → ±∞. Therefore, domain
walls cannot form in a polar state. On the other hand,
in a ferromagnetic state Φ− is not diagonal while Φ+

is, implying that each φj has different asymptotic ampli-
tudes as x → ±∞. One then expects kink-like behavior
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Type I Reducible, two (shifted) scalar soliton solutions
Type II Reducible, one scalar soliton solution
Type III Irreducible, dark-bright soliton solution
Type IV General irreducible solution
Type V Constant solution

TABLE II. The various types of core soliton components.

Schur class Eigenvalues 1–3 Eigenvalue 4

ΓA Type I, Eq. (26) Type I, Eq. (37)

ΓB Type II, Eq. (28) Type II, Eq. (39)

ΓC Type III, Eq. (31) Type V, Eq. (40)

ΓD Type IV, Eq. (A.8) Type IV, Eq. (41)

ΓE Type IV, Eq. (23) Type IV, Eq. (41)

TABLE III. Summary of the various types of core soliton com-
ponents (cf. Table II) obtained according to the Schur form of
the norming constant (classes A–E, cf. Table I) and the loca-
tion of the discrete eigenvalue ζ (eigenvalues of kinds 1–2 yield
standard soliton solutions; eigenvalues of the third kind yield
periodic solutions and an eigenvalue of the fourth kind yields
rational solutions, cf. Fig. 2).

in some solutions corresponding to domain walls. This
can clearly be seen from Fig. 4. Thus, polar states and
ferromagnetic states in general have different topologi-
cal properties.

IV. ROGUE-WAVE SOLUTIONS

Next we derive rogue-wave (i.e., rational) solutions
of the spinor BEC model by taking suitable limits of the
stationary soliton solutions for each equivalence class of
norming constants. For simplicity, and without loss of
generality, in this section we take ko = 1, using the
scaling invariance of Eq. (2): if Φ(x, t) is a solution of
Eq. (2), cΦ(cx, c2t) is also a solution for any real con-
stant c.

Recall that the scalar NLS equation (25) admits a ra-
tional solution known as the Peregrine soliton:

qp(x, t) = 1− 4 f (x, t) , (33a)

f (x, t) =
4it + 1

4x2 + 16t2 + 1
, (33b)

which, for instance, can be derived by taking the limit
of a stationary (Kuznetsov-Ma) soliton solution [64, 65],
i.e., the TW solution (19) with ζ = iZ, as the discrete
eigenvalue approaches the branch point i, i.e., as Z → 1,
with a suitable rescaling of the norming constant, namely
letting γ = γp, with

γp = 2iZ(Z2 − 1)/(Z2 + 1) . (34)

The existence of branch points in the spectral plane is
a result of the NZBC in the formulation of the IST. The

solution (33) is centered at the origin. However, one can
easily derive a Peregrine soliton centered at an arbitrary
point (xo, to) using a different rescaling for the norming
constant. Indeed, taking

γ = γp ec−,1xo+ic−,2to , (35)

where c−,j is defined in Eq. (19), the limit Z → 1 leads to
a displaced Peregrine soliton qp(x − xo, t− to) centered
at (xo, to).

Following a similar procedure, we next consider the
limit of the solutions obtained from a purely imaginary
discrete eigenvalue ζ = iZ with Z > 1 for all five equiv-
alence classes discussed in Section III.B, and we derive
corresponding families of rational solutions with suitable
rescalings of the norming constants.

Class A. Recall first that in this case the core compo-
nent (26) has two independent scalar TW solitons. Sim-
ilarly to the rescaling (35), we rewrite the Schur form of
the norming constant as

ΓA = γp diag(ec−,1x1+ic−,2t1 , ec−,1x−1+ic−,2t−1) ,

where x±1 and t±1 are four real constants determined
by the eigenvalues γ±1 of the norming constant K. By
changing γ±1, one can change the values of x±1 and t±1.
In the limit Z → 1, the core soliton component (26) with
discrete eigenvalue ζ = iZ becomes

Qp(x, t) = diag
(
qp,1(x, t), qp,−1(x, t)

)
, (36)

where qp,±1(x, t) = qp(x − x±1, t − t±1). If x1 = x−1
and t1 = t−1 (corresponding to a norming constant
with γ1 = γ−1), the centers of the two Peregrine soli-
tons coincide. Using the general unitary matrix UA from
Eq. (A.4), we then obtain the general family of rational
solutions in class A as

φ1(x, t) = qp,1(x, t) sin2 η + qp,−1(x, t) cos2 η , (37a)

φ0(x, t) =
1
2
(qp,1(x, t)− qp,−1(x, t)) sin 2η , (37b)

φ−1(x, t) = qp,1(x, t) cos2 η + qp,−1(x, t) sin2 η , (37c)

where −π/2 < η < π/2. An example of a rational
solution Φ(x, t) in class A and the corresponding core
component Q(x, t) are shown in Fig. 8.

The spinor BEC model (5) possesses a translation in-
variance, namely, if Φ(x, t) is a solution, then Φ(x −
xo, t − to) is also a solution. Using this invariance, one
can eliminate two of the parameters without loss of gen-
erality, for example x−1 and t−1. However, the relative
position of the two peaks in the (x, t)-plane cannot be
changed using this invariance. Hence, Eq. (37) defines
a three-parameter family of rational solutions. The pa-
rameter η characterizes the spin rotation of this solution.
The other two parameters describe the relative position
of the two peaks.
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FIG. 8. Amplitudes of a rational solution of the spinor
BEC model in class A with ko = 1. Left: entries of Φ(x, t)
from Eq. (37) with η = π/3, (x1, t1) = (−1,−1) and
(x−1, t−1) = (1, 1). From top to bottom: |φ1(x, t), |φ0(x, t)|
and |φ−1(x, t)|. Right: entries of the corresponding core soli-
ton component Q(x, t) from Eq. (36). From top to bottom:
|q1,1(x, t)|, |q1,2(x, t)| = |q2,1(x, t)| and |q2,2(x, t)|.

Clearly from Fig. 8(left), the potential traps in φ±1 pair
with peaks in φ0. Again, the mixed dark-bright behavior
is observed in this rogue-wave solution. However, unlike
the soliton solutions in class A, this dark-bright behavior
does not oscillate.

Class B. In this case Q(x, t) is given by Eq. (28). As
Z → 1 with ζ = iZ and γ as in Eq. (35), one obtains

Qp(x, t) = diag(qp(x− xo, t− to), 1) , (38)

which has a peak at (xo, to). Of course, the general ratio-
nal solution is obtained from Eq. (22), with the general
unitary matrix U = UB = UA in Eq. (A.4), i.e.

φ1(x, t) = qp(x− xo, t− to) sin2 η + cos2 η , (39a)

φ0(x, t) = [qp(x− xo, t− to)− 1] sin(2η)/2 , (39b)

φ−1(x, t) = qp(x− xo, t− to) cos2 η + sin2 η , (39c)

where again −π/2 < η < π/2. Since one can shift the
position of the peak by using the translation invariance
of the spinor model, there is only one genuine parame-
ter η in Eq. (39), which characterizes the spin rotation.

We point out that, when η = π/4, the solution (39)
coincides with the one obtained by direct methods in
Ref. [48]. An example of a rational solution Φ(x, t) in
class B and the corresponding core component Q(x, t)
are shown in Fig. 9. With a generic parameter η, the
peak in φ0 corresponds to the potential traps in both
φ±1. The essential difference between rational solutions
in classes A and B is obviously the number of Peregrine
solitons in the core component, which determines the
number of peaks in the component φ0.

Class C. Substituting ζ = iZ with α = 0 into the
expression for Q(x, t) from Eq. (31), we have

q1,1(x, t) = q2,2(x, t) = tanh χ(x) ,

q1,2(x, t) = −i
1
Z

e−is(t)sechχ(x) ,

q2,1(x, t) = −iZ eis(t)sechχ(x) ,

where now

χ(x) = c−,1x + log(2Z/ξ) , s(t) = c−,2t− φ ,

and γ = ξeiφ as before. Then it is easy to show that
Q(x, t) tends to a trivial constant matrix regardless of

FIG. 9. Same as Fig. 8, but for rational solutions in class B
with (xo, to) = (0, 0). Left: the rational solution from Eq. (39)
with η = π/4. Right: the corresponding core component from
Eq. (38).
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the norming constant as Z → 1, namely

Qp(x, t) =
1

ξ2 + 4

(
4− ξ2 −4iξeiφ

−4iξe−iφ 4− ξ2

)
. (40)

Thus, no nontrivial rational solutions are obtained as lim-
its of soliton solutions in class C.

Class D. Taking the limit Z → 1 of Q(x, t) from
Eq. (A.8) with

γ =
2iZ(Z2 − 1)| cos(2η)|√

Z4 + 2Z2 cos(4η) + 1
ec−,1xo+ic−,2to ,

we have

q1,1(x, t) = 1− 2
8i(t− to) + sec2(2η) + 1

∆(x− xo, t− to)
, (41a)

q1,2(x, t) = −2 tan(2η)
4i(t− to)− 2(x− xo) + 1

∆(x− xo, t− to)
,

(41b)

q2,1(x, t) = −2 tan(2η)
4i(t− to) + 2(x− xo) + 1

∆(x− xo, t− to)
,

(41c)

q2,2(x, t) = 1− 2 tan2(2η)

∆(x− xo, t− to)
, (41d)

where

∆(x, t) = 16t2 + 4x2 + sec2(2η) . (42)

The corresponding solution Φ(x, t) is obtained by com-
posing Eq. (41) with the unitary matrix in Eq. (A.6).
This yields a two-parameter family of rational solutions,
whose explicit expression is omitted for brevity. An ex-
ample of a rational solution Φ(x, t) in class D and the
corresponding core component Q(x, t) from Eq. (41) are
shown in Fig. 10. The one-to-one correspondence be-
tween potential traps and peaks is observed again among
the spin states.

Class E. In this case there are two possible ap-
proaches to obtain a rational solution. One can show that
in order to obtain a nontrivial limit Z → 1 with ζ = iZ,
one needs det ΓE → 0, but the two diagonal entries of ΓE
cannot both tend to zero. Thus, we consider two cases
separately. First, we let the (1, 1)-component of ΓE tend
to zero, i.e., we parametrize the Schur form ΓE as

ΓE =

(
γ γ0

0 γ− eiβγ0 cot(2η)

)
,

with γ = γP and γP given by Eq. (34) as before. Then
the entries of the core component as Z → 1 are

q1,1(x, t) = 1− 2[8it + 1 + sec2(2η)]/∆(x, t) ,

q1,2(x, t) = −2e−iβ tan(2η)[4it− 2x + 1]/∆(x, t) ,

q2,1(x, t) = −2eiβ tan(2η)[4it + 2x + 1]/∆(x, t) ,

FIG. 10. Similarly to Fig. 8, but for rational solutions in class D
centered at the origin with η = π/8. Left: the rational solution
from Eq. (22) with UD defined in Eq. (A.6) and β2 = π/3 .
Right: the core component from Eq. (41) with |q1,1(x, t)| (top),
|q1,2(x, t)| = |q2,1(−x, t)| (center) and |q2,2(x, t)| (bottom).

q2,2(x, t) = 1− 2 tan2(2η)/∆(x, t) ,

with ∆(x, t) given by Eq. (42). Using the same matrix UE
from Eq. (A.7), we have

φ1(x, t) = 1− 4 cos2 η sec(2η)[4it + sec(2η)]/∆(x, t) ,
φ0(x, t) = 4i tan(2η)x/∆(x, t) ,

φ−1(x, t) = 1 + 4 sin2 η sec(2η)[4it− sec(2η)]/∆(x, t) .

One can show that the above solution Φ(x, t) coincides
with the one from class D centered at the origin, obtained
by using Q(x, t) from Eq. (41) and the unitary matrix UD
from Eq. (A.6) with β2 = π/2. Thus, this kind of rational
solutions obtained from class E are equivalent to those
from class D.

Alternatively, one can let the (2, 2)-component of ΓE
tend to zero. i.e., take ΓE as

γE =

(
γ− eiβγ0 cot(2η) γ0

0 γ

)
,

with γ as above. Note however that the resulting solu-
tion is equivalent to the one obtained above. The rea-
son why this is the case is that the two parametriza-
tions above for the norming constant can be obtained
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from each other by simply switching the diagonal entries,
which can be done by a unitary similarity transformation.
Therefore the corresponding solutions are in the same
equivalence class. Thus, all rational solutions obtained
from class E are equivalent to those from class D.

Inequivalence of rational solution families. Even
though soliton solutions in different Schur classes are in-
equivalent, this might not be the case for the correspond-
ing rational solutions. In other words, since the limit
Z → 1 is a singular limit for the norming constants, and
inequivalent Schur forms might reduce to the same ones
in the limit, it is not obvious a priori that the rational
solutions obtained from different Schur classes would be
inequivalent. As a matter of fact, we have already seen
that the rational solutions obtained from classes D and E
are equivalent. On the other hand, we next show that
the rational solutions obtained from classes A, B and D
are indeed inequivalent.

Recall that the trace and the determinant of a matrix
are invariant under similarity transformations. Thus, the
equality of their trace and their determinant is a neces-
sary condition for two solutions Φ1(x, t) and Φ2(x, t) to
be equivalent. That is, if two solutions have different
trace or different determinant, they are inequivalent. In
light of this observation, we compute the traces of ratio-
nal solutions in classes A, B and D, obtaining:

tr ΦA(x, t)
= 2− 4[ f (x− x1, t− t1) + f (x− x−1, t− t−1)] ,

tr ΦB(x, t) = 2− 4 f (x− xo, t− to) ,
tr ΦD(x, t)

= 2− 4[4i(t− to)− sec2(2η)]/∆(x− xo, t− to) ,

where f (x, t) and ∆(x, t) are given by Eq. (33) and
Eq. (42), respectively. If η = 0, one has tr ΦD(x, t) =
tr ΦB(x, t) up to a spatial and temporal shift. Note how-
ever that, in the classification of the norming constants,
η 6= 0 in class D, because when η = 0, class D reduces
to class B. So, all three traces are distinct. Consequently,
the three classes of rational solutions are all inequivalent,
and therefore represent three distinct families of rational
solutions of the spinor BEC model.

As mentioned before, the rational solutions in class B
are equivalent, up to unitary transformations, to one of
the solutions derived in Ref. [48]. The other two families
of solutions however are new to the best of our knowl-
edge. Moreover, while the rational solutions in classes A
and B are reducible, in the sense that they are equivalent
to scalar rational solutions (i.e., Peregrine solitons of the
scalar NLS equation), the rational solutions in class D
cannot be reduced to scalar rational solutions.

Finally, we would like to comment on the singular
nature of the limit Z → 1. We have shown that this
limit can give rise to rational solutions. On the other
hand, it is evident from Table I that some of the Schur

forms are special reductions of others. (For example,
ΓA with γ−1 = 0 reduces to ΓB.) The soliton solutions
with eigenvalues of kinds 1–3 inherit the reductions of
the Schur forms. (For example, one can easily check
that the soliton solution (27) in class A reduces to the
one (29) in class B, when γ−1 = 0, in which case the TW
soliton qtw,−1(x, t) reduces to the trivial non-zero back-
ground ko.) However, in order to obtain the rational so-
lution (39) in class B from the solution (37) in class A
one must consider either of the singular limit x−1 → ∞
or t−1 → ∞.

Spin state. Direct calculations show that all three
classes of rational solutions have a zero spin F = (0, 0, 0)
(cf. Appendix I for definition), regardless of all other
parameters. Thus all three classes of spinor BECs rogue
waves correspond to the polar states. One should note
that the rational solutions in classes B and D are derived
from a ferromagnetic state, which confirms the singu-
lar nature of the limit. Moreover, because the spin of
these rogue waves is zero, when they interact with other
waves, they will not affect their spin state.

VI. CONCLUDING REMARKS

We have presented a classification of one-soliton solu-
tions of spinor BECs with ZBC and NZBC, and we have
derived novel families of rogue-wave solutions of spinor
BECs. We have shown that one-soliton solutions with
ZBC are always reducible, in the sense that there always
exists a unitary transformation that relates them to so-
lutions of single-component BECs. On the other hand,
we have also shown that solutions with NZBC are di-
vided into reducible and irreducible classes. Moreover,
we showed that there exist two inequivalent classes of
one-soliton solutions with ZBC (corresponding to ferro-
magnetic versus polar states), five inequivalent classes
of one-soliton solutions with NZBC, and three inequiva-
lent classes of rational solutions. The classification of all
inequivalent solitons and rational solutions is of course
important in order to single out the fundamental prop-
erties of the solutions, and peel off the complications in-
troduced by simple rotations of the quantization axes.
In particular, in this work we also used the classification
to prove the inequivalence of the three families of ratio-
nal solutions presented, and hence the novelty of the two
families obtained as limits of soliton solutions in classes B
and D.

We also discussed the physical properties of solitons
and rational solutions. We showed that some solutions
exhibit oscillating pairs of potential traps and peaks, that
resemble the behavior of dark-bright soliton complexes
in the focusing vector NLS. Other solutions, on the other
hand, are topological solitons and form domain walls.
The domain walls can be analyzed through the core so-
lutions. In particular, the velocity in Eq. (32) also corre-
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sponds to the velocity of the wall. From a physical point
of view, all soliton solutions with NZBC can be catego-
rized into either polar or ferromagnetic state depending
on their total spin being zero or not, and this corresponds
to having topological or non-topological solitons.

We emphasize that the classification introduced in this
work also applies to the full matrix NLS equation, ei-
ther with ZBC or NZBC, namely Eq. (2a), but where now
Φ(x, t) is not necessarily a symmetric matrix, i.e., when
the constraint (2b) does not apply. The only differences
from the analysis of this work are that, for the full ma-
trix NLS equation, the core soliton components are them-
selves always solutions of the matrix system, and differ-
ent solutions can be combined via arbitrary (i.e., uncon-
strained) unitary matrices.

Another open question is whether even more general
soliton solutions can be obtained which do not satisfy the
constraint (4). It should be noted that this is also an open
problem in the case of the vector NLS equation.

While matter-wave solitons in one- and two-
component systems have been extensively studied and
observed experimentally, an extension to three compo-
nents (and hence to spinor systems) had not been at-
tempted in experiments until most recently: in Ref. [18]
the existence of robust dark-bright-bright and dark-dark-
bright solitons in a defocusing spinor F = 1 condensate
has been reported. Although in general, the systems
considered in the experiments are non-integrable (see,
for instance Refs. [18, 66–69]), one can get useful in-
sight into their behavior using perturbation techniques
of related integrable systems. For instance, the model
equation in Ref. [18] can be considered a small pertur-
bation of a 3-component vector NLS equation. In this re-
spect, the theoretical predictions for the soliton solutions
in the integrable case can be an extremely valuable tool
for the investigation of the non-integrable solitary waves
in regimes that are not too far from the integrable one.
While to date there is not yet an experimental realization
of the exact focusing system on a non-zero background
that we considered in our work, we note that the polar
and ferromagnetic solitons analyzed in Ref. [70] for the
F = 1 spinor system were found to be structurally stable,
i.e., robust under random changes of the relevant nonlin-
ear coefficients in time. This suggests that the solitons,
and possibly the rogue waves derived in our work, could
be soon observed experimentally, in models that may be
at least perturbatively close to ours.
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APPENDIX I: TOTAL SPIN AND SPIN STATES

As shown in Ref. [60], the spin-1 BECs are either in a
polar state or in a ferromagnetic state, depending on a
conserved quantity—total spin—in the ground state. In
particular, a polar state corresponds to a zero total spin,
whereas a ferromagnetic state corresponds to a nonzero
total spin. We next investigate the total spin of the one-
soliton solutions (8) explicitly.

The spin density f = ( f−1, f0, f1) is defined by

f = tr(Φ†σΦ) , σ = (σ1, σ2, σ3) ,

where σj for j = 1, 2, 3 are the Pauli matrices, Φ = Φ(x, t)
is given by Eq. (8), so the spin is F =

∫
f dx, and the total

spin is ‖F‖ [22]. We first rewrite the spin F as

F = tr(σ
∫

R
ΦΦ†dx) = tr(σ

∫
R
(ΦΦ† − k2

o I2)dx) .

It is then evident that one only needs to compute the
following integral

I =
∫

R
(ΦΦ† − k2

o I2)dx , (A.1)

in order to determine the spin F corresponding to the
solution Φ. In other words, the spin F is the projection
of I onto the Pauli matrices. Note that the term k2

o I2 must
be added so that this integral is convergent on the line.
It is worth mentioning that in this work the total spin is
used to characterize the polar state, whereas in [60] the
spin state is defined by the local spin, i.e., the polar state
satisfies f = 0, instead of F = 0.

The integral in Eq. (A.1) is difficult to compute di-
rectly from the solution (8). However, it is well known
that the IST provides an easier way to get conserved
quantities in terms of asymptotics of eigenfunctions and
scattering data. In particular, one can derive for the
asymptotic behavior of one of the eigenfunctions as the
following expression:

Y = I2 −
i
2

∞∫
x
(ΦΦ† − k2

o I2)dx′ + O(1/z2) , z→ ∞ ,

(A.2)
where z is the spectral parameter [49]. (Note that
Y(x, t, z) = N̄up(x, t, z) in the notation of Ref. [48]) Re-
lating the integral I in Eq. (A.1) to the asymptotics (A.2),
we have

I = −i lim
x→−∞

lim
z→∞

z(I2 −Y) .

The eigenfunction Y can be reconstructed from the in-
verse problem of the IST. Specifically,, Y is given by a
linear system and can be computed explicitly in the case
of pure soliton solutions. Omitting the details, the fol-
lowing reconstruction formula for I holds,

I = lim
x→−∞

(
ko

ζ
e2iθX2K +

ko

ζ∗
e−2iθ∗X1K†

)
, (A.3)
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where ζ is the discrete eigenvalue, K is the norming con-
stant, θ is given by Eq. (9) and Xj with j = 1, 2 are given
by the same linear system (10). We refer the reader to
the recent IST formulation presented in Ref. [49] for de-
tails.

Solving the linear system (10), we have

X1 = [I2 − iko(D†)−1c/ζ][D + c†(D†)−1c]−1 ,

X2 = (I2 − iζD−1c†/ko)(D† + cD−1c†)−1 .

In order to further simplify the expression for Xj, we
need to consider the two cases det K = 0 and det K 6= 0
separately. Also, one should notice that for all t as
x → −∞,

O(e2iθ) = O(e−2iθ∗)→ ∞ , O(e−2iθ) = O(e2iθ∗)→ 0 .

Below we use the above formulas to compute the total
spin of the soliton solutions.

Full rank norming constant K. If the norming con-
stant K is such that det K 6= 0, after some tedious calcu-
lations, we have the following asymptotics as x → −∞,

X1 = −i
ko(ζ − ζ∗)((ζ∗)2

+k2
o)

ζ(k2
o + |ζ|2)

e2iθ∗(K†)−1 + O(e−4iθ) ,

X2 = i
ζ(ζ − ζ∗)(ζ2 + k2

o)

ko(k2
o + |ζ|2)

e−2iθK−1 + O(e−4iθ) .

Substituting the above asymptotics into Eq. (A.3), we
have

I =
ζ − ζ∗

k2
o + |ζ|2

{
k2

o
|ζ|2 [(ζ

∗)2 + k2
o]− ζ2 − k2

o

}
I2 .

Notice that as we expected, I is independent of t. More-
over, I is diagonal implying that

f j = tr(σj+2 I) = 0 , j = −1, 0, 1 .

Thus, we conclude that the total spin ‖F‖ = 0 and hence
the BEC is in a polar state.

Rank one norming constant K. We next consider
the case where det K = 0 and K 6= 0, which implies that
K cannot be diagonal. Similarly to the previous case,
we can calculate asymptotics of all needed quantities.
However, because det K = 0, these asymptotics are more
complicated than before. Without showing the details,
we give the final result

I =
2i Re[do(trK)∗K/ζ] + c∗o K†K + k2

ocoKK†/|ζ|2
|do|2trK trK† + |co|2tr(K†K)

,

where

co = (ζ∗ − ζ)−1 , do = iko/[(ζ∗)2 + k2
o] .

Notice that I contains three matrices K, K†K and KK†.
Recall that K is not diagonal in this situation, so K†K,

KK† and I cannot be diagonal. Moreover, the two nondi-
agonal matrices K†K and KK† are Hermitian. Their pro-
jections on the Pauli matrices cannot be identically zero.
This implies that F 6= (0, 0, 0). In other words, the total
spin is nonzero and the BEC is in a ferromagnetic state.

One can then obtain the corresponding results for one-
soliton solutions (11) with ZBCs, by simply taking the
limit ko → 0. One shows that the BECs are in a polar
state when det K 6= 0, and are in a ferromagnetic state
when det K = 0.

APPENDIX II: EQUIVALENCE CLASSES, NORMING CON-
STANTS AND UNITARY TRANSFORMATIONS

Recall the Schur decomposition (21). We next discuss
the equivalence classes of norming constants K according
to their Schur form Γ, and we identify the corresponding
families of unitary similarity transformations allowed in
each class. Recall that the diagonal entries of Γ are sim-
ply the eigenvalues of K. As discussed earlier, there are
five different equivalence classes. Note that any unitary
matrix can be parametrized by four independent real pa-
rameters in general, but at least one parameter is fixed
by the requirement that K = UΓU† be symmetric. Con-
sequently, unitary matrices defining similarity transfor-
mations of solutions of the spinor BECs contain at most
three independent real parameters.

A. If K is diagonalizable by a unitary matrix and has
two nonzero eigenvalues, its Schur form is given by ΓA
in Eq. (24), where γ±1 are the nonzero complex eigen-
values of K. The most general parameterization of the
unitary matrix in this case is U = UA, with

UA = eiβ1

(
sin η eiβ2 cos η

cos η −eiβ2 sin η

)
, (A.4)

with 0 ≤ β1 < 2π, 0 ≤ β2 < π and 0 ≤ η < 2π. As
a result, the most general form for the norming constant
in class A is given by

KA =
1
2

(
K1,1 K1,2

K1,2 K2,2

)
.

with K1,1 = 2γ1 sin2 η + 2γ−1 cos2 η, K1,2 = (γ1 −
γ−1) sin(2η) and K2,2 = 2γ1 cos2 η + 2γ−1 sin2 η.

B. If K is diagonalizable by a unitary matrix and has
one zero eigenvalue, its Schur form is given by ΓB in
Eq. (24). Note that one could interchange the two diag-
onal entries by letting Γ̃B = σ1ΓBσ1, with

σ1 =

(
0 1
1 0

)
.

Thus, one can use the Schur form ΓB without loss of gen-
erality. We have UB = UA from Eq. (A.4). As a result,
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any norming constant in this class has the form

KB =
γ

2

(
1− cos(2η) sin(2η)

sin(2η) cos(2η) + 1

)
.

C. If K is non-diagonalizable by a unitary matrix and
has two zero eigenvalues, its Schur form is given by ΓC
in Eq. (24), where γ is an arbitrary non-zero complex
number. The most general parametrizations of norming
constants and unitary matrices are

KC = −i
γ

2
ei(β1−β2)

(
i (−1)n

(−1)n −i

)
, (A.5a)

UC =

√
2

2

(
i(−1)neiβ1 −i(−1)neiβ2

eiβ1 eiβ2

)
, (A.5b)

where n = 0, 1, and 0 ≤ β j < 2π with j = 1, 2. Note
that, unlike classes A and B, UC contains only two inde-
pendent real parameters.

D. If K is non-diagonalizable by a unitary matrix and
has one zero eigenvalue, its Schur form is given by ΓD
in Eq. (24), where γ is the complex non-zero eigenvalue
and η ∈ (−π/4, 0) ∪ (0, π/4). As before, one could in-
terchange the two diagonal entries by a unitary transfor-
mation, and thus choose the (1, 1)-component of Γ to be
the non-zero eigenvalue without loss of generality. Also,
without loss of generality we can take the entries in the
first row to have the same complex phase. The most gen-
eral unitary matrix in this case is given by

UD = eiβ1

(
U1,1 U1,2

U2,1 U2,2

)
, (A.6a)

where 0 ≤ β1 < 2π, β2 ∈ [−π/2,−2|η|) ∪ (2|η|, π/2],
β3 = arccos(1− 2 csc2 β2 sin2(2η))/4, and

U1,1 = cos β3 , U2,1 = eiβ2 sin β3 ,

U1,2 =
1
2
[cos(2β3) + i cot β2] sec β3 tan(2η) ,

U2,2 = − i
2

eiβ2 [cot β2 − i cos(2β3)] csc β3 tan(2η) .

Thus, the most general norming constant in this class is

KD = γ

(
K1,1 K1,2

K1,2 K2,2

)
, (A.6b)

where

K1,1 = (e2iβ2 tan2 β3 + 1)−1 ,

K1,2 =
1
2
(cos β2 csc(2β3)− i sin β2 cot(2β3))

−1 ,

K2,2 = 1− (e2iβ2 tan2 β3 + 1)−1 .

E. If K is non-diagonalizable by a unitary matrix and
has two non-zero eigenvalues, its Schur form is given by
ΓE in Eq. (24), where γ and γ0 are two complex num-
bers, 0 ≤ β < 2π and 0 < η ≤ π/4. As a special case,
if η = π/4 the two discrete eigenvalues coincide. The
most general norming constant and unitary matrix for
this class are given by

KE = γ I2 +
γ0

2
eiβ

(
cot η i

i − tan η

)
, (A.7a)

UE = eiβ1

(
cos η e−iβ sin η

i sin η −ie−iβ cos η

)
, (A.7b)

where 0 ≤ β1 < 2π.

Core soliton component in class D. Finally, for com-
pleteness, here we give explicitly the entries of the core
soliton component Q(x, t) in class D:

q1,1(x, t) = koe−2iα[|co|c2
1Z sec α cosh(χ + 2iα)− |co|3e−χ−iαZ tan2(2η)− ic1e−is(co − c∗o e2isZ4)]/(Z∆C) , (A.8a)

q1,2(x, t) = c∗o koe−3iα tan(2η)(|co|c+,1e−χZ2 − ic1coeiα−is)/(Z∆C) , (A.8b)

q2,1(x, t) = −koZ|co| tan 2η(i|co|c1eis + coc+,1e−χ−iα)/∆C , q2,2(x, t) = ko − [|co|3koe−χ−iα tan2(2η)]/∆C , (A.8c)

where γ = ξeiφ, for brevity we suppressed the x and t
dependence of all quantities in the right-hand side, and

χ(x, t) = koc−,1x cos α− k2
oc+,2t sin 2α + log

2Zko|co| cos α

c1ξ
,

s(x, t) = c+,1kox sin α + c−,2k2
ot cos 2α− φ ,

∆C(x, t) = c1(|co|c1 sec α cosh χ + 2ZKs) ,

Ks(x, t) = Z2 sin(s + 2α)− sin s ,

co = 1− e−2iαZ2 , c1 =
√

c2
+,1Z2 + |co|2 tan2(2η) .
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