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We study diffusion-controlled two-species annihilation with a finite number of particles. In this
stochastic process, particles move diffusively, and when two particles of opposite type come into
contact, the two annihilate. We focus on the behavior in three spatial dimensions and for initial
conditions where particles are confined to a compact domain. Generally, one species outnumbers
the other, and we find that the difference between the number of majority and minority species,
which is a conserved quantity, controls the behavior. When the number difference exceeds a critical
value, the minority becomes extinct and a finite number of majority particles survive, while below
this critical difference, a finite number of particles of both species survive. The critical difference
∆c grows algebraically with the total initial number of particles N , and when N ≫ 1, the critical
difference scales as ∆c ∼ N1/3. Furthermore, when the initial concentrations of the two species are
equal, the average number of surviving majority and minority particles, M+ and M−, exhibit two
distinct scaling behaviors, M+ ∼ N1/2 and M− ∼ N1/6. In contrast, when the initial populations
are equal, these two quantities are comparable M+ ∼ M− ∼ N1/3.

I. INTRODUCTION

Theoretical studies of non-equilibrium dynamics are
primarily concerned with the behavior of infinitely ex-
tended systems [1, 2]. Indeed, the statistical physics
of time-dependent phenomena such as ordering [1–3],
avalanches [4–6] and reaction processes [7–9] typically
focus on scaling laws for unbounded systems composed
of infinitely many interacting particles (or spins). In
most cases, theoretical techniques which successfully de-
scribe infinite systems, cannot be specialized to finite
ones [10, 11]. Yet, experimental [12–14] and computa-
tional [15] studies necessarily involve finite systems.
Reaction-diffusion processes (see [1, 7–9] for a review)

constitute an important class of non-equilibrium dynam-
ics [16]. Recent studies show that these processes exhibit
phenomena that are unique to finite systems [17, 18].
In particular, for reaction-controlled single-species an-
nihilation, it was recently found that a finite number
of particles may survive indefinitely. Specifically, start-
ing with a finite number of particles which are confined
to a bounded domain, a small subset of particles may
“escape” far outside the initially occupied region and
thereby avert annihilation. Here, we study two-species
annihilation and find another phenomena, a transition
from survival to extinction, together with scaling laws
that are unique to finite systems.
We investigate a random process where two distinct

species diffuse in unbounded space and additionally, the
two species annihilate each other. While we also present
results for general spatial dimensions, we focus primarily
on the most interesting case of three dimensions. When
a finite number of particles is initially localized within
a compact domain, there are two greatly different out-
comes. In the first scenario, a finite number of particles
of each species survives the annihilation process. In the
second scenario, one species vanishes and one species par-

tially survives. The initial population difference controls
this transition from survival to extinction.
Generally, one species outnumbers the other. More-

over, the difference between the number of majority par-
ticles and the number of minority particles is conserved
throughout the annihilation process. This population dif-
ference controls the outcome of the reaction process and
moreover, there is a critical difference ∆c. When the
number difference exceeds the critical difference, all mi-
nority particles eventually vanish, but in the complemen-
tary regime, some minority particles do survive.
A number of finite-size scaling laws characterize these

behaviors. First, the critical difference grows alge-
braically with the total number of particles N ,

∆c ∼ N1/3 . (1)

We investigate the total number of surviving particles
from each species, and we consider two initial condi-
tions: (i) equal populations of the two species, and (ii)
equal concentrations of the two species. For equal pop-
ulations, the behavior is very similar to that found for
single-species annihilation [17]. In this case, the average
number of surviving particles M grows algebraically with
system size,

M ∼ N1/3 . (2)

For equal concentrations, the average number of surviv-
ing majority particles, M+, is much larger than the av-
erage number of surviving minority particles, M−. In-
terestingly, these two averages exhibit different scaling
laws,

M+ ∼ N1/2, M− ∼ N1/6 . (3)

Neither one of these two scaling behaviors coincides with
Eq. (2). Our theoretical analysis combines the rate equa-
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tion approach with scaling estimates for the finite dura-
tion of the reaction process. Results of extensive numer-
ical simulations confirm the theoretical predictions.

II. TWO-SPECIES ANNIHILATION

In the two-species annihilation process, particles are
initially distributed randomly in space with a uniform
concentration. There are two types of particles, denoted
by A and B. Each particle moves diffusively, the diffusion
coefficient D is assumed to be the same for both species.
Particles of the same type do not interact but two par-
ticles of the opposite type annihilate upon contact, as
represented by the reaction scheme

A+B → ∅ . (4)

This stochastic process can be realized in continuous or
discrete space. Our numerical simulations implement
the discrete version where particles occupy sites of a
regular lattice. Each particle performs a random walk
as it moves from one lattice site to a randomly-chosen
neighboring site. Annihilation occurs whenever a parti-
cle lands on a site that is occupied by a particle of the
opposite type. Two-species annihilation has been used
to model bimolecular chemical reactions [7, 14], particle-
antipaticle annihilation in the early universe [19], and
particle-hole recombination in irradiated semiconductors
[12].
Two-species annihilation has been studied extensively

for unbounded systems populated by infinitely many par-
ticles, typically starting with equal concentrations of the
two species. The spatial dimension d controls the be-
havior and there are two regimes. In sufficiently low
spatial dimensions, d < 4, A-rich domains and B-rich
domains develop and since spatial correlations are sig-
nificant, the particle concentration c decays slowly with
time t, namely c ∼ t−d/4 [20–32]. In sufficiently large
dimensions, d > 4, spatial correlations do not play a sig-
nificant role, and the concentration decays more rapidly,
c ∼ t−1. In the latter case, the decay exponent is uni-
versal and further, the prefactor does not depend on the
initial concentration.
Here we study the annihilation process (4) when the

number of particles is finite. Initially, N particles are ran-
domly distributed inside a bounded domain [33], which
is embedded in infinite space. Without loss of generality,
we set the initial concentration to unity such that the
volume of the domain V equals the number of particles,
V = N . In the simulations, we used spherical domains
for the initial configuration. We reiterate that the par-
ticles are not confined to a box of finite size, and that
they can move in unbounded space. This set-up mimics
physical processes such as the recombination of vacancies
and interstitials produced in crystals by neutron, ion or
electron radiation [13].
A recent study [17] of a diffusion-controlled annihila-

tion process involving a single type of particles has shown

that starting with a finite number of particles, on av-
erage, a finite number of particles avoid annihilation as
these surviving particles “escape” far outside the initially
confining domain. Our goal is to study this escape phe-
nomena when there are two species.
While in the case of equal concentrations the popula-

tions of both species are equal on average, for a given
realization, one population is larger than the other. Let
N+ be the initial majority population and N− be the
initial minority population. The total initial population
is N = N+ + N−, and we consider the case where the
minority constitutes a finite fraction of the population
N− ∝ N . The population difference ∆ is defined as

∆ = N+ −N− . (5)

Each annihilation event decreases the number of majority
and minority particles by one and therefore, the popula-
tion difference is a conserved quantity.
We denote the average number of surviving majority

(minority) particles by M+ (M−). Conservation of the
population difference implies M+ −M− = ∆. As long as
the two initial populations are not equal, ∆ > 0, some
majority particles do survive, M+ ≥ ∆.
However, there is no guarantee that minority particles

survive, and indeed, in sufficiently small dimensions, all
minority particles are annihilated. In dimension d ≤ 2,
a random walk is recurrent as it is guaranteed to return
to its starting position [34]. Since each particle performs
a random walk, the distance between any two particles
itself performs a random walk. Hence, even if a minority
particle survives to a very late time, it is bound to eventu-
ally encounter a majority particle. This argument shows
that in spatial dimensions d ≤ 2, the minority species
becomes extinct while the number of surviving majority
particles is deterministic, M− = 0 and M+ = ∆. We
now consider the behavior in three dimensions.

III. RATE EQUATIONS

Our approach generalizes the methods previously used
to analyze the one-species annihilation process [17]. We
assume that particles are confined to a domain with vol-
ume V and that they are uniformly distributed inside
this region. Ignoring spatial correlations, the average
numbers of majority and minority particles, n+(t) and
n−(t), at time t, obey the rate equations

dn+

dt
= −n+n−

V
,

dn−

dt
= −n+n−

V
. (6)

Without loss of generality, we set the reaction rate to
unity. Equation (6) can be derived from the rate equa-
tions for the concentrations c+ and c− inside the occupied
domain with volume V : we simply substitute c+ = n+/V
into the canonical rate equation dc+/dt = −c+c− [1, 35].
By subtracting one equation in (6) from the other, we
confirm that the population difference, n+ − n−, is con-
served.
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FIG. 1: The average number of surviving particles M versus
system size N for equal populations. The inset shows the
quantity α ≡ d lnM/d lnN versus N . Fitting the data to
the powerlaw M ∼ Nα in the range for N > 104 yields the
exponent α = 0.34.

As shown in [17], there are two regimes of behavior. At
early times, particles remain inside the initially confining
region with volume V = N . At late times, particles man-
age to diffuse outside the initial domain but are confined
to an expanding region whose linear dimension grows dif-
fusively with time. Hence,

V (t) ∼
{

N t ≪ T ;

t3/2 t ≫ T.
(7)

The crossover time T can be estimated by matching the
two behaviors,

T ∼ N2/3 . (8)

The quantity T is simply the diffusion time, T ∼ L2,
that characterizes the time it takes a particle to exit the
initially occupied domain with linear size L ∼ N1/3.
For single-species annihilation, it was found that the

bulk of the reaction events occur during the early phase.
Furthermore, while rare additional annihilation events
may occur in the late phase, the number of such reactions
does not alter the scaling laws for the ultimate number
of surviving particles. It is thus possible to estimate the
final number of surviving particles by evaluating the so-
lution to Eq. (6) when V = N at time t ∼ T ∼ N2/3.
According to the above definitions, M+ = lim

t→∞

n+(t) and

similarly, M− = lim
t→∞

n−(t). We anticipate that

M+ ∼ n+(T ), M− ∼ n−(T ) . (9)

As discussed below, our numerical simulations confirm
these behaviors for a wide range of initial conditions.

IV. EQUAL POPULATIONS

We first consider the simplest case of equal popula-
tions, ∆ = 0. Since the number difference is conserved,
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FIG. 2: The scaling function F (z) defined in (13). Shown is

the scaled number of particles F ≡ n/N1/3 versus the scaled

time z ≡ t/N2/3 for the case of equal number of particles for
three different system size.

the two populations are identical n+ = n− = n/2 with
n = n+ + n− the total population. From the rate equa-
tions (6), the total population decays according to

dn

dt
= − n2

2N
, (10)

during the early phase t ≪ T . For the initial condition
n(0) = N , the population decays as the inverse of time,

n(t) ∼ N t−1 . (11)

Let M = lim
t→∞

n(t) be the average number of surviving

particles. At the crossover time, the number of particles
M ∼ n(T ) is therefore (see figure 1)

M ∼ N1/3 . (12)

Our numerical simulations, shown in figure 1, confirm
this scaling relation. As expected, the vast majority of
annihilation events occur during the early phase when
particles are inside the initially occupied region. A finite
fraction of the particles that manage to survive at time
T persists forever.
The scaling relations (8) and (12) specify the typical

time scale and the typical surviving population. These
scaling laws fully characterize the time dependent behav-
ior as the scaled population n/M is a universal function
of the scaled time t/T for large systems (figure 2)

n(t) ∼ N1/3F
(

t/N2/3
)

, (13)

where F (u) ∼ u−1 for u << 1 and F (u) ∼ u0 for u >> 1.
The average number of surviving particles (12) and

the finite-size scaling behavior (13) agree with the cor-
responding behaviors for the single-species annihilation
process. Hence, a finite and equal number of particles
from each species survive the annihilation process when
the initial populations are identical.
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function 1+x/G, which according to Eq. (19) should increase
exponentially with x.

V. THE CRITICAL DIFFERENCE

In the rest of this study, we consider situations where
the two populations differ in size, ∆ > 0. In this section,
we analyze the case where the population difference is
fixed, that is, the disparity between the two populations
is always equal to ∆.
Since the population difference is conserved, we may

consider the minority population without loss of general-
ity. By substituting n+ = n− +∆ and V = N into (6),
we see that the minority population decays according to

dn−

dt
= −n−(n− +∆)

N
. (14)

The solution of this equation subject to the initial con-
ditions n−(0) = N− can be readily obtained,

n−(t) = N−

∆

N−(et∆/N − 1) + ∆
. (15)

Hereinafter, the dependence of n−(t) on ∆ and N is left
implicit. We can recover the decay (11) from (15) in the
limit ∆ → 0.
The average number of surviving minority particles can

be estimated by evaluating the minority population (15)
at the crossover time (8),

M− ∼ N−

∆

N−(e∆/N1/3 − 1) + ∆
. (16)

According to this expression, the number of surviving
minority particles grows algebraically with system size
as in (12) when ∆ ≪ N1/3, but it decays exponentially
when ∆ ≫ N1/3. Therefore, there is a critical difference,
given by (1), and drastically different behaviors occur
above and below this threshold,

M− ∼
{

N1/3 ∆ ≪ ∆c,

∆ exp
(

−c∆/N1/3
)

∆ ≫ ∆c.
(17)
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to a power-law, M± ∼ Nβ± in the range N > 104 yields the
exponents β+ = 0.34 and β− = 0.35 respectively. The inset
shows the quantity β± ≡ d lnM±/d lnN versus N .

Here, c is a constant. For subcritical differences, a finite
number of minority particles survive and the same hold
for the majority species. Essentially, the system behaves
as if the two populations are equal. However, for super-
critical differences, extinction of the minority species is
inevitable and the number of surviving majority particles
is always equal to the initial difference. In the N → ∞
limit, we have M− → 0 and M+ → ∆. Hence, the ini-
tial disparity dictates if the minority species survives or
if it becomes extinct. Also, the final number of surviv-
ing particles fluctuates in the subcritical case but it is
deterministic in the supercritical case.
We note that in the supercritical region, ∆ ≫ ∆c,

there is an additional characteristic time scale. Initially,
the two populations are comparable and consequently,
the decay (11) holds. However, the two populations are
no longer comparable, n−(τ) ∼ ∆ at time τ ∼ N/∆. The
majority population becomes dominant, n+ ≫ n− when
t ≫ τ , and according to (6), the minority population de-
cays exponentially, dn−/dt = −∆n−/N , thereby leading
to the exponential decay in (17).
Numerically, we can confirm that the critical difference

(1) characterizes the final population M−. The scaled
number M−/N

1/3 becomes a universal function of the
scaled difference ∆/N1/3 in the large-N limit (figure 3)

M− ∼ N1/3 G
(

∆/N1/3
)

. (18)

The underlying scaling function is simply

G(x) =
x

ec x − 1
. (19)

Results of our numerical simulations support this func-
tional form as well (see inset in figure 3). The limiting
behaviors of the scaling function are

G(x) ∼
{

1 x ≪ 1

x e−c x x ≫ 1 .
(20)
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The small-x behavior shows that the problem reduces to
the equal population case in the subcritical regime. The
large-x behavior reflects the extinction in the supercriti-
cal regime.
To further verify the predictions of (16), we examined

two special cases: ∆ = N1/3 and ∆ = N1/2. In the first
case, which corresponds to the critical difference, we can
confirm that M+ ∼ M− ∼ N1/3 (figure 4). In the second
case, which is typical for equal initial concentrations, we
expect a stretched exponential decay with a rather small
characteristic exponent

M− ∼
√
N exp

(

−cN
1
6

)

. (21)

Our numerical simulations are consistent with this be-
havior, despite the fact that M− grows with system size
over the range of system sizes we probed numerically.

VI. EQUAL CONCENTRATIONS

We now consider the situation where the initial con-
centrations are equal. In this case, we have N+/N → 1/2
andN−/N → 1/2 in the limit N → ∞. The disparity be-
tween the two populations is a fluctuating quantity, char-
acterized by the typical difference ∆ ∼ N1/2. Moreover,
the difference is normally-distributed and fully charac-
terized by the distribution

P (∆) =

(

1

2πN

)1/2

exp

(

−∆2

2N

)

. (22)

We are interested in the average number of surviving par-
ticles M+ and M−, where the average is performed over
all initial conditions and all realizations of the annihila-
tion process.
The scaling law for M+ in (3) follows from conserva-

tion of the number difference. As discussed in Section II,
the initial difference provides a lower bound for the final
number of majority particles, M+ ≥ ∆. For equal con-
centrations, ∆ ∼ N1/2, and according to (1) the system
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FIG. 6: The average number of surviving minority particles
M− versus N for the equal concentration case. The inset
shows the quantity β− = d lnM−/d lnN versus N .

is typically in the supercritical regime. Consequently, the
majority is dominant and M+ ∼ N1/2.

The scaling law for M− can also be obtained using
heuristic arguments. According to equation (17), the
minority population disappears when ∆ ≫ N1/3, but
some minority particles do remain when ∆ ≪ N1/3.
For equal concentrations, initial conditions of the for-
mer type occur with high probability, but initial con-
ditions of the latter type may still be realized with a
small probability. To estimate this small probability we
conveniently replace the Gaussian in (22) with a uni-
form distribution with support in the compact interval
[−N1/2 : N1/2]. The initial difference is subcritical
with probability ∼ N−1/2 × ∆c ∼ N−1/6. Therefore,
the average size of the surviving minority population is
M− ∼ N−1/6 ×N1/3 ∼ N1/6.

Thus, there are two different scaling laws for majority
and minority survivors, M+ ∼ N1/2 and M− ∼ N1/6.
Yet neither of these behaviors resembles the scaling be-
havior (2) when the populations are equal. These two
scaling relations give the survival probability of a major-
ity particle, S+ ∼ N−1/2, and that of a minority particle,
S− ∼ N−5/6. The former survival probability increases
by a factor ∼ N1/6, while the latter decreases by a simi-
lar factor when compared with the equal population case
where S+ ∼ S− ∼ N−2/3.

The surviving minority population may also
be obtained by calculating the weighted average
∫

∞

0
d∆P (∆)M− with M− given in (16). By scaling the

integration variable from ∆ to ∆/N1/3 and keeping
only the leading order terms, it is easy to see that
M− ∼ N1/6. Alternatively, we can estimate this integral
by using (17) to separate contributions corresponding to
the subcritical phase and the supercritical phase,

M− ∼
∫ N1/3

0

d∆

(

1

2πN

)1/2

N1/3 exp

(

−∆2

2N

)

(23)

+

∫

∞

N1/3

d∆

(

1

2πN

)1/2

∆ exp

(

−∆2

2N
− ∆

N1/3

)

.
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The first integral, which corresponds to the subcritical
phase, is much larger than the second one, and indeed it
gives M− ∼ N1/6 .
We performed two sets of simulations to verify the scal-

ing law M− ∼ t1/6. First, we simulated initial conditions
where each site within the initially occupied domain con-
tains a single particle, and the two concentrations are
equal. The numerical simulations show that M− ∼ Nβ−

with β− < 1/3 (fig. 6). However, the exponent β− con-
verges slowly to the asymptotic value. Next, we consid-
ered initial conditions where the number difference ∆ is
drawn from the Gaussian distribution (22). To realize
this initial state, all sites inside the initially occupied do-
main are set to contain two particles of opposite type, but
then, a number ∆ of randomly-selected minority species
are removed from the system. For this version, the quan-
tity M− converges more rapidly to the asymptotic be-
havior, and we are able to obtain some confirmation for
the theoretical prediction β− = 1/6 (fig. 7).
We stress that the algebraic behaviorM− ∼ N1/6 char-

acterizes an average over all realizations of the stochastic
process and over all initial conditions. The initial dif-
ference ∆ fluctuates from realization to realization and
it is governed by the distribution (22). Once the initial
conditions are set, the fate of the system is determined
from the initial difference ∆. There is a critical threshold
∆c ∼ N1/3. Below this threshold, ∆ ≪ ∆c, a finite num-
ber of particles from both the majority and the minority
survive ad infinitum and M− ∼ M+ ∼ N1/3. Above
this threshold, however, all minority particles are anni-
hilated and a finite number of majority particles survive:
M− → 0 and M+ → ∆.
Clearly, there are wild fluctuations from realization to

realization. In the most probable scenario, the minor-
ity species goes extinct, but there are rare cases where
the minority species survives and its population is com-
parable with that of the majority species. One way to
characterize these fluctuations is through moments of the

fluctuating number of minority survivors, n−(∞). It is
simple to generalize (23) and find a continuous spectrum
of scaling exponents that characterizes these moments

〈n−(∞)m〉 ∼ N
2m−1

6 . (24)

The decaying zeroth moment reflects that initial condi-
tions with ∆ ∼ N1/3 are realized with probabilityN−1/6.
The behavior of large moments is controlled by the scal-
ing law (2) for equal populations.

VII. MONTE CARLO ALGORITHMS

Numerical simulations of two-species annihilation with
a finite, yet large, number of particles are challenging for
multiple reasons. First, the system is three dimensional.
Even sophisticated Monte Carlo algorithms [36], devel-
oped recently, have not been able to produce numerical
verification of the decay c ∼ t−3/4 in unbounded sys-
tems because the convergence to the ultimate asymptotic
behavior is extremely slow [37]. Second, large memory
is required because particles may escape far outside the
initially occupied domain. Third, the computing time is
large because the very last annihilation event is unknown
apriori and it fluctuates greatly from one realization to
another. Knowledge of the time scale (8) is helpful with
respect to this third challenge, and we run our simulation
to time tf much larger than this scale, tf ∝ 104 ×N2/3.
In our numerical simulations, N sites that fall within a

fixed distance from the origin are occupied initially, but
all remaining lattice sites are vacant. In each elementary
simulation step, one randomly-selected particle moves to
a randomly-selected nearest neighbor. If the target site
contains a particle of the opposite type, the two parti-
cle are removed from the system. Time is augmented
by the inverse number of remaining particles after each
such elementary simulation step. We used two different
algorithms to simulate this process. The two implemen-
tations differ in one respect only: in the first algorithm
we do allow multiple occupancy, but in the second, we
restrict occupancy to one particle per site. In the first
implementation each of the N sites are occupied by one
majority particle and one minority particle but then ∆
randomly-selected minority particles are removed from
the system. In the second implementation each of the
N sites are occupied by a single particle. These two im-
plementations yield very similar results which become
essentially indistinguishable for large systems. As men-
tioned in the preceding section, we have generally found
that the convergence to the asymptotic behavior is faster
under the first implementation.
Our first simulation method is a brute force algorithm

in which a one-dimensional array is used to keep track
of each particle’s location. The advantage of this algo-
rithm is that the memory required scales linearly with
the initial number of particles. However, the number of
operations per unit time grows quadratically with the to-
tal number of active particles. This algorithm performs
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FIG. 8: The reaction rate −dn/dt versus time t for the case
N = 7, 153.

surprisingly well because most reaction events occur in
the early phase [17]. We used this straightforward algo-
rithm to produce the results shown in figures 1-5 and in
figures 7-8.
Our second algorithm is more sophisticated in that

it is efficient in both computation time and mem-
ory. To optimize the number of operations, we im-
plement the standard approach for simulating diffusion-
controlled reaction processes. Particles occupy an actual
three-dimensional lattice and each lattice site contains a
“pointer” to the particle occupying it such that one does
not need to search through all particles in each move.
With this approach, the number of operations per unit
time scales linearly with the number of active particles.
To optimize memory use, we take advantage of the fact
the system becomes sparse with time. We thus map every
lattice site in our very large array to a much smaller array
using a hash function [38, 39]. This approach allows us
to simulate a large system with much less memory than
would be needed if we stored the entire original lattice,
and yields a speed up of up to a factor 10 for N ≈ 107.
Results of this simulation algorithm are shown in Fig. 6.
Our basic assumption, stated in equation (9), is that

the number of surviving particles at time T ∼ N2/3

yields the correct scaling behavior for the surviving pop-
ulations. To further test this assertion, we examined
the reaction rate at late times. According to the rate
equation (6) and the confining volume in (7), we ex-
pect dn+/dt ∼ n+n−/t

3/2. Our simulations confirm
this behavior for both equal populations and equal con-
centrations. Hence, the residual correction to the ulti-
mate number of surviving particles decays algebraically,
n(t) − M ∼ t−1/2, and from this behavior it is simple
to show that the total number of reaction events in the
late-time regime t ≫ N2/3 is small enough so that (9)
holds.

VIII. GENERAL SPATIAL DIMENSIONS

We now briefly discuss the behavior in general spatial
dimensions; we restrict our attention to the equal concen-

tration case and dimensions d > 2 where the final state
is nontrivial. It is straightforward to generalize the main
results (1) and (3) to arbitrary dimension by replacing
the characteristic time scale in (8) with T ∼ N2/d. The
critical difference grows algebraically with the number of
particles,

∆c ∼ N δ with δ =
d− 2

d
, (25)

when d > 2. The surviving majority population exhibits
two regimes of behavior

M+ ∼ Nβ+ , β+ =

{

1

2
d ≤ 4

d−2

d 4 ≤ d .
(26)

The behavior agrees with (3) below the critical dimen-
sion, and the behavior coincides with that of single-
species annihilation above the critical dimension. Finally,
the surviving minority population exhibits three regimes
of behavior

M− ∼ Nβ− , β− =











0 d ≤ 8

3
,

3d−8

2d
8

3
≤ d ≤ 4,

d−2

d 4 ≤ d .

(27)

Interestingly, the quantityM− does not grow with system
size below the lower critical dimension d < 8/3 [40]. How-
ever, the two surviving populations are comparable, and
both are much larger than the initial difference ∆ ∼ N1/2

above the upper critical dimension, d > 4.

IX. CONCLUSIONS

To summarize, we studied diffusion-controlled two-
species annihilation in an unbounded space with a fi-
nite number of particles. Specifically, we addressed initial
conditions where a finite number of particles is confined
to a compact domain. We found that the disparity be-
tween the two populations controls the behavior. When
the disparity is small enough, the two populations remain
comparable throughout the reaction process, and a finite
number survives the annihilation process. These particles
manage to escape far outside the initial domain. How-
ever, when the initial disparity is large enough, the mi-
nority population becomes extinct while a finite number
of majority particles survives. We used the rate equation
approach to obtain a number of scaling laws for equal
initial populations and for equal initial concentrations.
Our numerical simulations support the theoretical pre-
dictions.
Our study focused on the most interesting case of three

dimensions which is below the critical dimension dc =
4 for a homogeneous infinite-particle systems [1]. For
such systems, spatial correlations spontaneously develop
and the result is a mosaic of A-rich and B-rich domains.
These correlations play a crucial role and consequently,
predictions based on the mean-field rate equations do
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not hold in three dimensions. The qualitative behavior
is quite different when the number of particles is finite.
No matter how large the initial number of particles is,
the system remains well-mixed and spatial correlations
are not strong enough to affect the scaling behavior. Our
results show that spatial correlations are transient as they
do not affect the scaling behavior. Consequently, the rate
equation predictions hold for finite systems [11].
Survival occurs only when d > 2 and in some sense this

escape phenomena is counter to the behavior when the
number of particles is infinite. In an infinite system, the
reaction rate is smaller in low dimensions whereas in a fi-
nite system, the total number of reaction events is smaller
in high dimensions. Hence, the system size and di-
mensionality generally compete in reaction-diffusion pro-
cesses as both affect the survival probability.
Our study highlights the serious challenge of develop-

ing theoretical tools for describing strongly interacting
particle systems such as reaction-diffusion processes in-

volving a large but finite number of particles. Exist-
ing theoretical methods are inadequate to handle such
problems. As a rather straightforward extension of our
work one may investigate two-species annihilation with
unequal initial concentrations where according to (17),
the survival probability of minority particles decays as a
stretched exponential, S− ∼ exp(−const. × N2/d). Fi-
nally, we mention that it would be interesting to inves-
tigate another basic reaction-diffusion process, Brownian
coagulation [35, 41], for initial conditions with a finite
number of clusters.
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