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Abstract: 

Recent studies on topological defects in conventional and active nematic liquid crystals 

have revealed their potential as sources of advanced functionality whereby the 

collective behavior of the constituent molecules or cells are controlled. On the other 

hand, the fact that they have high energies and are metastable makes their shape control 

a non-trivial issue. Here, we demonstrate stabilization of arbitrary-shaped closed 

disclination loops with 1/2 strength floating in the bulk by designing the twist angle 

distribution in a liquid crystal cell. Continuous variation of the twist angle from below 

to above π/2  allows us to unambiguously position reverse twist disclinations at will. 

We also analyze the elastic free energy and uncover the relationship between the twist 

angle pattern and shrink rate of the surface-stabilized disclination loop. 
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The orientation of the nematic liquid crystal (LC) phase exhibited by small rod-like 

molecules is described by the so-called director, a unit vector with head-tail symmetry 

orientated along the common average direction [1]. Topological defects appear in 

nematic LCs as points or lines where the continuous rotational symmetry of the director 

is broken. They have recently attracted strong interest because of their unique behavior 

distinct from LCs aligned in the bulk [1–3]. Defects mediate spin-orbit interaction of 

light, leading to spin-angular-momentum-dependent generation of optical vortices [4]. 

They also change the rheological properties of the LC [5,6], lead to novel 

photomechanical phenomena [7,8], and can act as templates to position colloidal 

materials [9–12]. More recently, it has been demonstrated that defects can localize guest 

molecules (i.e., not just colloidal particles with sizes much larger than the LC 

molecules) and promote self-association [13-16]. 

 

The reports on the various functions suggest that defects can become more than just 

imperfections in the alignment. However, to exploit their potential as sources of 

functionality, control of their shapes is necessary. Shape control of defects is 

challenging because defects have high energies and thus are in general metastable. 

There are two main approaches to stabilize defects in LCs; either to dope colloidal 
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particles [17-21] or to impose spatially designed boundary conditions [12, 22-25]. 

Colloidal inclusions generate topological defects following the Gauss-Bonnét and 

Poincaré-Hopf theorems of topology, and extremely complex defects such as those with 

linked or knotted structures have been generated. However, defects generated by 

particles are bound close to the particle surface and thus their shapes are defined almost 

exclusively by the shapes of the particles. Defect shape control through surface 

anchoring can provide larger freedom in the achievable shapes. Line defects running 

through the LC bulk have been generated by imprinting singular points in the easy axis 

distribution on the substrates, and recently, a web of defect lines has been demonstrated 

by creating orthogonal linear gradients in the easy axis of two substrates [25]. However, 

the shape control of a closed single loop had not been demonstrated. 

 

In this letter, we describe a general protocol to generate loop defects with arbitrary 

shape floating in a slab of nematic LC. The method uses a unidirectionally orientated 

substrate in combination with a substrate with patterned easy axis distribution, so that a 

position-dependent twist is induced in the bulk director. The achirality of the nematic 

LC imposes the condition that the twist sense be such that the twist angle is minimized, 

and where the twist angle exceeds π/2 , a twist reversal occurs, accompanied by the 
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generation of a twist disclination [12,25]. By continuously varying the easy axis from 

below to above π/2 , the exact position at which twist reversal should occur can be 

defined, leading to a stable closed loop. 

 

Figure 1(a) schematically illustrates the easy axis design for generating a circular defect 

loop, where the tangent of the streamlines represents the local director orientation. The 

easy axis on the patterned substrate, ( )p rϕ , is given by Eq. (1), where we have 

employed cylindrical coordinates in consideration of the symmetry of the loop. The 

origin is placed at the center of the pattern, and r  is the position from the center of the 

pattern: 

( )
0

0
p 0 0

0

0

2
0

r r a
r a r

r r a r r a
a

r r a

ϕ π

< −⎧
⎪ + −⎪= − ≤ ≤ +⎨
⎪

> +⎪⎩

 . (1) 

The easy axis rotates linearly by π  over a distance of 2a , where 0r  is the position at 

which the twist angle is π/2 . When a unidirectionally orientated substrate with 

orientation along 0radians  (Fig. 1 (b)) is used to assemble a sandwich cell, the same 

expression also describes the twist angle distribution in the cell (Fig. 1 (c)). However, 

the achirality condition of the nematic LC causes the twist angle to be wrapped to 

between -π/2  and π/2 ; the defect should appear at the phase discontinuity, which is at 
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0r r=  for this design (Fig. 1 (d)). 

 

A sandwich cell is experimentally fabricated to confirm the generation of loop defects. 

The uniform planar substrate is prepared by coating a planar-orientation agent (JSR, 

AL1254) and rubbing it unidirectionally. The patterned planar substrate is prepared by 

coating a photo-alignment agent (DIC, LIA-03). The substrates were first assembled 

into a sandwich cell with a cell gap of approximately 6μm , and then the easy axis 

distribution was imprinted on the patterned substrate using a maskless photoalignment 

setup [26]. A LC display projector was used as an electronic mask to control the spatial 

pattern of light, and the light was irradiated sequentially on the sample after controlling 

the polarization. The system has a resolution of 1024 768× pixels with an approximate 

pixel size on the sample of 21.3 1.3μm× . The easy axis pattern was imprinted on the 

substrate at an interval of 1degree , with light dosage of 45μJ per pixel . 

 

For observation, a nematic LC (5CB, Merck) was filled into the cell in the isotropic 

phase and slowly cooled down to the nematic phase. As the LC entered the nematic 

phase, a disclination appeared close to the patterned region, and relaxed to form a loop. 

Figure 2 shows polarizing optical microscope (POM) images of the sample with design 
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parameters 0 6  μm6r a= = . The transmittance of the cell between crossed polarizers is 

highest at approximately 0r r=  and is symmetric about this position, implying that the 

twist angle distribution is symmetric. The disclination loop is observed as a thin dark 

line floating in the bright background near 0r , and is observable also when the analyzer 

is removed because of light scattering (Fig. 2(b)). Insertion of a retardation plate 

( 530nm, inserted at 45degrees  to the crossed polarizers) confirms that the twist sense 

is in fact reversed at this disclination to reduce the twist angle. Judging from the 

interference colors in Fig. 2(c), the twist angle sense is right (left)-handed inside 

(outside) the loop, corresponding to the design of Fig. 1. 

 

Disclination loops similar to the one in Fig. 2 can also appear randomly at the isotropic 

– nematic phase transition in a twisted nematic cell with twist angle of π/2 . However, 

the high energy of the disclination exerts a tension on the loop and makes it metastable 

to shrink typically within seconds [1,27]. The disclination generated here also 

experiences a tension, but is stabilized by the anchoring conditions imposed on the 

substrates [12,25]. This means that in contrast to disclinations in uniform cells, the loop 

reappears and settles at the same position when the material is heated to above the 

clearing point and then cooled back down.  
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The existence of a tension can be observed by measuring the deviation of its length 

from the designed length. The expected length of the loop in Fig. 2 was 

( )0415μm 2πr=   whereas the observed length was 342μm . To investigate the 

relationship between the easy axis pattern and shrink rate of the loop defect, various 

patterns were created as functions of the pattern width ( a ) and twist reversal position 

( 0r ), and compared with the designed loop length. 

 

Figure 3 shows the measured and designed lengths of disclinations for various design 

parameters. The experiments were carried out in three-independent samples, and the 

average lengths are plotted. In Fig. 3(a), the change in pattern width does not affect the 

designed loop length; however, the loop length approaches the designed length as the 

pattern width becomes narrower. From Fig. 3(b), the loop length approaches the 

designed length as the twist reversal position becomes larger. 

 

To gain physical understanding of the phenomenon, we theoretically analyze the free 

energy of the system. As mentioned earlier, the disclination experiences a line tension 

because of the high energy, and there is always a tendency to reduce its length. As the 
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defects shrinks, however, the director deviates from the most stable state imposed by the 

surface anchoring conditions and increases in elastic energy. The equilibrium position of 

the loop should be where these two competing forces are balanced. 

 

We first calculate the gain in elastic free energy due to loop shrinkage. Considering the 

symmetry of the loop and twist angle distribution, we model the system using 

cylindrical coordinates. By definition of the twist disclination, the twist sense reverses 

only at the disclination; however, from Fig. 2(c), the director twist appears to be 

continuous up to the disclination line, even when the loop has shrunk from its designed 

position. This implies that when loop shrinkage occurs, the director no longer reverses 

its twist sense at twist angles of π/2± , but at angles ( )π/2 δ−  and ( )π/2 δ− + , where 

the deviation angle, δ , is defined by the boundary conditions at the position of twist 

reversal. From Fig. 2(c) and the fact that the two substrates have sufficiently small 

pretilt angles (1.4  and 0.1°  for the rubbing and photoalignment cells, respectively 

[28]), we further assume that there is no tilt induced (i.e., the director always lies 

parallel to the substrates), and express the director distribution, n , as 

( ) ( )( )cos , ,sin , ,0r z r zϕ ϕ=n , where ( ),r zϕ  is given by the following expression,  
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Here, d  is the cell-gap where we have assumed the two substrate surfaces to exist at 

0z =  (planar substrate) and d  (patterned substrate), and ( )0 1α α≤ ≤  is the shrink 

rate of the loop. Note that ( ) ( )p,r d rϕ ϕ= . 

 

The elastic free energy of LCs is related to three different deformation modes of the 

director with different elastic constants ( 11K  for splay, 22K for twist, and 33K  for 

bend deformations, respectively). For analytical understanding of the system, we 

employ the one-constant approximation where the three elastic constants are assumed to 

be equal ( )11 22 33K K K K= = = , and obtain an analytical expression for the free energy:  

( ) ( ) ( )

2 2

EL 2

2 3
3 23 3 3 2 20 0

0 0 0 02
0

1 1
2

π π 2 11 1 π ln
6 2 3 3

F K dV
r z r

K r d r aK r a r a r w r a K d
a da r a

ϕ ϕ

α α

⎧ ⎫∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞= + +⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
+⎧ ⎫= + − − − + + +⎨ ⎬ −⎩ ⎭

∫
. (3) 

The change in free energy as the loop shrinks from the designed position is given by Eq. 

(4), which is always positive for 0 1α≤ ≤ . 

3 3
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EL EL EL 0

π 21
2 3

K rF F F
daα α α

=

⎛ ⎞Δ = − = −⎜ ⎟
⎝ ⎠

.(4) 
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The free energy of the disclination core is expressed as a combination of the core and 

interfacial energies, following the treatment by Wang et al. [29]:  

( ) ( )2
D 0 c c c ccore

surface

2 1 π 2π 1
2
wF r r rπ α ε σ

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= − + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
. (5)    

Here, cr  is the radius of defect core, cε  is the free energy density of defect core, cσ  

is the isotropic-nematic interfacial tension, and w  is the surface anchoring energy 

coefficient [2,6,31]. Note that we have omitted the elastic energy of director 

deformation in the vicinity of the defect because we have defined the orientation 

through the boundary conditions. As the loop shrinks, the energy of the disclination 

decreases as follows: 

3 3
20

EL EL EL 0

π 21
2 3

K rF F F
daα α α

=

⎛ ⎞Δ = − = −⎜ ⎟
⎝ ⎠

. (6) 

The equilibrium shrink rate of the loop is found by placing EL DF FΔ = Δ : 

2
c c c c2

0

3 9 6 2 1
4 16 π 2

da wr r
K r

α ε σ⎧ ⎫⎛ ⎞= − − + +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (7) 

Eq. (7) explicitly describes the relationship between the loop radius and design 

parameters. In Fig. 3, the theoretical loop lengths are plotted as blue dashed curves, 

using the following parameters: 6.26pNK = , c 14 nmr = , 4 3
c 5 10 J/mε = × , 

5 2
c 10 J/mσ −= , 210w −= , and 5.5μmd =  and 0 66μmr =  for (a), and 5.81μmd =  

and 39.6μma =   for (b). Although many of the parameters concerning the defect core 
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are difficult to evaluate experimentally, good agreement is observed between 

experiment and theory using values close to those reported in the literature [30]. 

Importantly, the same material parameters reproduce the experimental results for the 

two independent experiments in Fig. 3.  

 

Here, analytical treatment of the free energies have been made possible by ignoring the 

elastic anisotropy and using a symmetric pattern. In standard nematics, typically 

11 33 222K K K≈ ≈ ; however, the agreement of our simplified theory with experiment 

implies that the effect of elastic anisotropy is not significant to cause a drastic deviation 

in the theoretical loop length in the lengths of several hundred micrometers studied here. 

This is also supported from the small temperature dependence of the loop length, as 

shown in Fig. 3(c). 

 

As the pattern deviates from that for the circular loop, it will become necessary to 

perform numerical simulations to predict the degree of shrinkage. However, the 

proposed principle can be applied as a general guide to stabilize disclination loops of 

arbitrary shapes; a sufficiently narrow, linearly modulated easy axis pattern around the 

desired position of the disclination should surface-stabilize the loop. As an example, Fig. 
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4 shows double disclination loops forming the Osaka University logo. To demonstrate 

the difference in disclination shrinkage depending on pattern, two kinds of easy axis 

patterns are prepared: one with a smooth distribution, obtained by solving Laplace’s 

equation as a boundary problem in each region bounded by the disclination loop 

(assuming values of π/2±  at each side of the boundaries and at the center of the logo, 

Fig. 4(a)); and another distribution creating an outline with a width of 13μmaround 

each line composing the logo and varying the angle from 0  to π  (Fig. 4(b)). Fig. 

4(c–f) show POM images of double disclination loops. The disclination lines generated 

by the pattern of Fig. 4(a) shows large shrinkage such that the disclinations almost 

become circular (Fig. 4(c,e)). On the other hand, disclinations generated from the 

pattern of Fig. 4(b) maintain the designed shapes (Fig. 4(d,f)), with shrinkage only seen 

at the corners. The proposed principle thus enables disclinations to be manipulated to 

resemble meaningful symbols. 

 

In conclusion, we have experimentally demonstrated stabilization of disclination loops 

floating in a nematic LC by designing the twist angle distribution between two 

substrates. The line tension of the disclination can be counter-balanced by creating a 

continuous variation in the left and right-handed twist angles in the vicinity of the 
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disclination. A narrower distribution effectively increases the elasticity of the bulk LC, 

suppressing shrinkage. So far, we have only been able to stabilize simple loops with no 

knots or links with this method; however, the addition of chirality in the nematic may 

lead to stabilization of defects with more complex topologies [31]. While a growing 

number of studies is reporting novel functions in LC defects, the study on defects is 

inherently difficult due to their metastable characteristics. The development of defect 

stabilization methods such as the one proposed here will enable in-depth studies of their 

properties such as dynamics [32] and interactions with matter, potentially leading to 

applications in optics, materials, and biology. 
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Figure 1. Schematic illustrations of the orientational easy axis distributions on (a) 

patterned and (b) planar substrates to generate a loop defect. (c) Twist angle distribution 

of the LC director between the substrates. (d) Twist angle distribution considering twist 

reversal in the bulk. Scale bars in the figure indicates 100μm  when the design 

parameters are 0 66r a= =  μm . Note that when 0a r< , a circular region with 

unidirectional orientation appears at the center. 
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Figure 2. POM images of loop defects observed (a) between crossed polarizers, (b) 

without analyzer, and (c) with a 530nmretardation plate inserted in the optical path 

( X’  and Z’  indicates the fast and slow axes of the plate, respectively). Arrow labels 

P  and A  indicate the directions of polarizer and analyzer, respectively. Scale bars: 

100μm. 

  



21 
 

 

Figure 3. Experimental, theoretical and designed loop lengths as a function of (a) 

pattern width a  and (b) twist reversal position 0r . Measurements were made for three 

independent samples. (c) Temperature dependence of the loop length in sample with 

design parameters 0 66μmr =  and 26.4μma = . 
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Figure 4. Twist angle distributions to generate disclination loops resembling the Osaka 

University logo obtained by (a) solving Laplace’s equation as a boundary problem in 

each region boundary, and (b) creating an outline with a width of 13μm and varying 

the angle from 0  to π . (c,e) POM images of the disclination lines generated by 

pattern (a), and (d,f) POM images of the disclination lines generated by pattern (b). 

Scale bars: 200μm . 


