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Signal transduction networks can form highly interconnected systems within cells due to crosstalk
between constituent pathways. To better understand the evolutionary design principles underlying
such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via
gene duplication. We use a sequence based evolutionary algorithm and evolve the network based
on two physically motivated fitness functions related to information transmission. We find that one
fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our
results offer novel insights on information transmission in noisy biomolecular networks.
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An essential characteristic of living cells is their ability
to regulate their own behavior, based on environmental
signals, to ensure survival, growth, and proliferation [1].
Reliable transmission of information about the environ-
ment along cellular signaling pathways is crucial for ac-
curate regulation. Malfunctioning of signaling pathways
underlies many pathological conditions in higher organ-
isms, including cancers and Alzheimer’s disease [32–34].
However, signaling pathways are often highly intercon-
nected, creating signal transduction networks composed
of multiple pathways [5, 21]. Crosstalk between pathways
accounts for many of the complex behaviors exhibited by
signaling networks [7, 25]. How did such complex, inter-
connected networks evolve and what constraints did the
dynamics of evolution place on their architecture? Does
crosstalk between pathways necessarily lead to reduction
in the amount of information that can be reliably trans-
mitted? This paper describes a theoretical study of the
evolution of crosstalk between signaling pathways with
the aim of addressing these and related questions.

In order to understand the effect of crosstalk on the
transmission of information, we draw from Shannon’s
work on communication theory [9] and quantify infor-
mation transmission along noisy signaling pathways in
terms of the mutual information (MI) between the input
and output. However, rigorously computing the mutual
information for noisy biochemical channels is challenging
and thus often noise is assumed to be additive and Gaus-
sian [10, 11]. In this paper, we model noisy biochemical
channels using chemical stochastic Langevin equations
[12], where the strength of noise non-trivially depends
on the input. To this end, we introduce a novel method
for computing mutual information in the context of such
channels. Surprisingly, we find that crosstalk may not
lead to a reduction in total information transmitted and
that optimal information transmission need not corre-
spond to zero crosstalk. This contrasts with the case
of Gaussian channels with constant additive noise where
cros-talk necessarily leads to a reduction in information
transmission [13].

Modeling the evolution of biomolecular networks poses
an additional challenge because evolutionary processes
are governed by changes at the genotypic level, whereas
selection occurs at the phenotypic level [14] and the map-
ping between genotype and phenotype is generally poorly
understood. Currently, much of the theory related to evo-
lution of signal transduction networks focuses on changes
at the phenotypic level (e.g. direct changes to protein
interactions) [15, 16]. In this paper we adapt a sequence-
based evolutionary model due to Ali et al. [17] that al-
lows us to map from sequence space (genotype) to rate
constant space (phenotype). To our knowledge, this con-
stitutes the first theoretical sequence-based evolutionary
study of signaling networks.

In biological systems, new signaling pathways can en-
ter the genome via gene duplication and subsequent di-
vergence [18]. Therefore, for our evolutionary study, we
consider two parallel pathways that arise via gene dupli-
cation but are then allowed to diverge. We evolve our
network using two biologically motivated fitness func-
tions related to the transmission of information. For the
first fitness function, we focus on a system which may
have evolved to transmit the total information content
along the signaling network, the fitness for this scenario
is determined by the total mutual information between
inputs and outputs, denoted by MItotal. For the second
fitness function, we consider a system where inputs trans-
mitted through their cognate signaling pathways lead to
distinct responses. A natural choice of fitness function
for this scenario is the sum of the mutual informations of
individual pathways, denoted by MIsum. We find that the
two fitness functions lead to very different evolutionary
outcomes. In particular, evolution retains a high degree
of crosstalk for the case of MItotal while leading to high
specificity for MIsum.

In cells, there exist examples of both high degrees of
crosstalk and high degrees of specificity. As an exam-
ple of crosstalk, studies have shown interactions between
the IGF-I and the TGF-β pathways, where in the Hep3B
human hepatoma cell line, IGF-I and insulin were each
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shown to block TGF-β induced apoptosis, via a PI3-
kinase/Akt dependent pathway [19]. In another exam-
ple of crosstalk, cyclic AMP helps regulate cell prolifer-
ation by interacting with the mitogen-activated protein
(MAP) kinase pathway [20]. More examples can be found
in [21–24]. On the other hand, two-component signaling
systems, which form the dominant signaling modality in
bacteria, exhibit a high degree of pathway isolation and
therefore a high degree of specificity [25]. Examples of
specificity in signaling are found in [26–31]. Indeed, unde-
sirable crosstalk underlies many pathological conditions
in higher organisms [32–34].

In our model of a signaling pathway, we assume two
layers of proteins that represent an input-output pro-
cess. The first layer corresponds to a set of proteins
(e.g. cell surface receptors or protein kinases) that be-
come activated by an extracellular signal (e.g. a ligand);
the activated fraction of these proteins represents the in-
put. These input proteins, in their active form, can acti-
vate a second layer of proteins whose activated fraction
represents the output. To study information transmis-
sion in this system (see Fig. 1a), we employ the chemi-
cal Langevin equation, which approximately models the
stochastic dynamical behavior of a well-stirred mixture
of molecular species that chemically interact:

dO∗j /dt = Aj +Bjξj(t), (1)

where functions A and B are deterministic and stochastic
parts of the Langevin equation, respectively, defined as

Aj =
∑
i

kijIiOj − αO∗j ,

Bj =
[
(
∑
i

kijIiOj + αO∗j )/V
]1/2

. (2)

Ii is the strength of input i, O∗j is the concentration of ac-
tivated output protein j (aka the output), and Oj is the
inactive concentration, with the total concentration of
output protein held fixed i.e. Otot = Oj+O

∗
j . We assume

a background deactivation rate of α = 1 and Otot = 1,
which define our units of time and volume. V repre-
sents the volume of the system, and controls the level
of noise. The factors kij are reaction rate constants. ξj
is a stochastic variable which represents Gaussian white-
noise with zero mean, < ξj(t) >= 0, and is temporally
uncorrelated < ξi(t)ξj(t

′) >= δ(t− t′)δij .
For our evolutionary scheme, we adopt the model by

Ali et al. [17] where the rate constants are determined
by interactions between protein interfaces. We assume
that input proteins possess an out-face and output pro-
teins possess an in-face which form a pair of interaction
interfaces; as in [17], we associate a binary sequence,
~σin/out, of hydrophobic residues (1s) and hydrophilic
residues (0s) to each interface. The interaction strength
between a protein (denoted by index i) and its target (de-
noted by index j) is determined by the interaction energy

Eij = ε~σiout · ~σ
j
in between the out-face of the input pro-

tein and the in-face of the output protein. ε represents
the effective interaction energy between two hydropho-
bic residues. (All energies are expressed in units of the
thermal energy kBT .) The reaction rate is:

kij = k0/(1 + exp[−(Eij − E0)]), (3)

where E0 plays the role of a threshold energy, e.g. ac-
counting for the loss of entropy due to binding. In our cal-
culations we varied k0 between 1–20, ε between 0.2–0.6,
and V between 1–100. We set E0 = 5, and we took the
length of each sequence representing an interface to be
M = 25. This choice of parameters allowed us to vary
the resulting rate constants kij over three orders of mag-
nitude. Additionally, our range of rate constants con-
tain the biologically relevant range for functional signal-
ing pathways, as values of kij > 3 can cause the network
to become saturated, resulting in extremely low values of
mutual information between input and output, see Figs.
1b-d, whereas for kij � 1, very few output proteins can
become activated, leading once again to low mutual in-
formation.

For our evolutionary scheme, we assume a population
sufficiently small that each new mutation is either fixed
or entirely lost [36] 1. We consider only point mutations -
namely replacing a randomly chosen hydrophobic residue
(1) in the in- or out-face of one protein by a hydrophilic
residue (0), or vice versa. In this study, mutations are ac-
cepted if and only if they produce a fitness that is greater
than or equal to the current fitness. In this work, we
study two fitness functions based on the mutual informa-
tion between the inputs and outputs of our system, with
MI defined as [9]:

MI(I;O∗) =

∫∫
P (I,O∗) log

P (I,O∗)

P (I)P (O∗)
dIdO∗, (4)

where P always represents a probability distribution
function. The two fitness functions can be expressed as
MItotal = MI(I1, I2;O∗1 , O

∗
2) and MIsum = MI(I1;O∗1) +

MI(I2;O∗2). For calculating MI, we chose the input
probability distribution P (I) to be Gaussian and used
the Fokker-Planck (FP) equation corresponding to our
Langevin equation (Eq. 1) to calculate the conditional
probability distributions of the output given inputs.

We first consider the simpler case of a one-input, one-
output system to develop tools to address multiple input-

1 The time it takes for a mutation to become fixed in a popula-
tion increases with population size N , whereas the time between
successive mutations goes as 1/N (see, for example, [37]). In the
small population limit, mutations fix much more rapidly than
they occur. This is the limit we have assumed for this paper, so
that an accepted mutation in our model corresponds to a muta-
tion that gets fixed in the population.
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output systems with crosstalk. For a one-input, one-
output system, the resulting FP equation (in the Itô for-
mulation [38]) is

∂P

∂t
= − ∂

∂O∗

{
AP
}

+
1

2

∂2

∂O∗2

{
B2P

}
, (5)

where P (O∗|I) represents the conditional output proba-
bility distribution given input. Note that Eq. 5 has the
form of a continuity equation for probability

∂P (O∗, t)

∂t
+
∂J(O∗, t)

∂O∗
= 0, (6)

where J = ∂
∂O∗ (AP− 1

2 (B2P )) can be viewed as a proba-
bility current. The steady-state solution of the FP equa-
tion corresponds to a constant value of J . Imposing the
boundary conditions J = 0 at O∗ = 0 and at O∗ = 1
then implies that J = 0 everywhere. The solution of
the steady-state FP equation for zero-probability-current
boundary conditions can be written as [13]

P (O∗|I, k11) = Ne
−2VO∗(Ik11+α)

α−Ik11

[
1 + (α−Ik11)O∗)

Ik11Otot

] 4Ik11OtotαV

(α−Ik11)2
−1
,

(7)
where N is a normalization constant. Note that this
conditional output probability distribution is peaked for
V = 2 or higher. Additionally, it might appear that the
RHS of Eq. 7 approaches ∞ as α → Ik11; however set-
ting δ = α−Ik11 and Taylor expanding around δ = 0, we
find that the divergent terms cancel [13]. We determine
the output probability P (O∗) by numerically integrating
the conditional output probability over the input distri-
bution, and thereby obtain the mutual information as a
function of k11, as shown in Fig. 1b. The mutual in-
formation is nearly zero both at very small values of k11
because of low activation and at very large values of k11
because of saturated output.

We now extend the one-input, one-output system to
two inputs and two outputs, and allow for crosstalk. The
resulting FP equation for the joint probability distribu-
tion P (O∗1 , O

∗
2 , t) is [39, 40]:

∂P

∂t
= −

∑
i

∂

∂O∗i

{
AiP

}
+

1

2

∑
ij

∂2

∂O∗i ∂O
∗
j

{[
BiBj

]
P
}
.

(8)
The steady-state solution that satisfies the zero-
probability-current boundary conditions for Eq. 8 is [13]

P (O∗i |I1, I2) = Ne
[−2V O∗

i

αR∗
i+1

αR∗
i
−1

]
[1 +

(αR∗
i−1)O

∗
i

RiR∗
i

]
4VRiR

∗
i
2α

(αR∗
i
−1)2

−1
.

(9)
For notational convenience we have introduced modified
ratesRj ≡ Otot,j(

∑
i kijIi) andR∗j ≡ O∗j (

∑
i kijIi). Hav-

ing obtained the conditional probabilities, we now obtain
the two fitness functions numerically. For V = 3, if we set
k11 = k22 = 1 (i.e. corresponding to values of these rate
constants close to the optimum of MI for a single path-
way, as seen in Fig. 1b), then we can depict the density
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FIG. 1: (a) Signaling network showing direct and crosstalk
pathways along with their associated reaction rate constants.
(b) Mutual Information versus k11 shown for several values of
system volume V . The input probability distribution, P (I),
is chosen to be a Gaussian (mean µ = 0.5 and standard de-
viation σ = 0.1). (c) MItotal and (d) MIsum versus crosstalk
rate constants k21 and k12, with k11 = k22 = 1, for V = 3.

plots of fitness versus. crosstalk, as in Figs. 1c and 1d,
and observe that both fitness landscapes look similar and
both have a fitness maximum at zero crosstalk (larger vol-
umes yield qualitatively similar landscapes, see [13] for a
calculation with V = 10). However, Figs. 1c and 1d pro-
vide only a slice through parameter space. How might an
evolving system explore the full space? To answer this
question we take an evolutionary approach.

We implement our evolutionary scheme as described
earlier with the initial state of the system corresponding
to duplicated pathways, where all the rate constants kij
are equal (e.g. for all strings initialized to zero and ε =
0.2). Fig. 2a shows some sample runs of the evolutionary
algorithm for a few different choices of initial conditions;
each solid curve represents the average fitness for one
hundred runs for a specific set of initial strings, while
the shaded regions indicate the 25-75 fitness percentiles
at that particular number of accepted mutations over all
trajectories. Fig. 2a shows results for MItotal, however
the results for MIsum are qualitatively similar. We can see
that the final values of the rate constants do not depend
critically on our choice of initial strings.

Surprisingly, evolving MItotal leaves the optimized net-
work with a high degree of crosstalk, contrary to our ex-
pectations based on Fig. 1. For example, for ε = 0.2, if
we start with low values of all kij , we typically find that
all the rate constants increase simultaneously, as shown
in Fig. 2b, implying high crosstalk. Strikingly, for larger
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FIG. 2: (a) Fitness versus accepted mutations with four
different initial conditions (labelled ‘IC’ on the legend) [13];
solid curves represent fitness averaged over 100 simulations
while shaded curves represent 25-75 percentiles from each of
the simulations at every accepted mutation. (b) Evolution
under MItotal; Log(kij) versus accepted mutations. (c) Bifur-
cations in pairs of rate constants for ε = 0.6. (d) Probability
distribution of rate constants showing high degree of crosstalk
for ε = 0.2. kd represents the direct rate constants, kc repre-
sents the crosstalk rate constants. (e) Evolution under MIsum
and the probability distribution of kij ; rate constants versus
accepted mutations. (f) Probability distribution of rate of
constants showing suppression of crosstalk for ε = 0.2; con-
structed from 10,000 simulations. k0 = 20, E0 = 5, V = 3.

ε, the majority of runs exhibit bifurcations in rate con-
stants, but still leave the optimized network with a high
degree of crosstalk (see Fig. 2c). In a typical bifurca-
tion, k11 and k12 might dominate while k21 and k22 are
suppressed, whereas k21 and k22 might dominate in a
different run. These bifurcations yield examples of sig-
nal “fan-out” (single input, multiple outputs ) and signal
“fan-in” (multiple inputs, single output), found in biolog-
ical systems [41]. Fig. 2d shows a probability distribution
of rate constants after rate constants have stopped chang-
ing under MItotal evolution; the peaks of the histogram
occur at similarly high values of the crosstalk and direct
rate constants, implying a high degree of crosstalk as an
evolutionary outcome for MItotal.

On the other hand, evolution under the fitness func-

tion MIsum leads to low crosstalk and thus isolated path-
ways. Fig. 2e shows a typical run of greedy evolution
under MIsum. Note that in this typical run, the di-
rect rate constant values grow (e.g. k11, k22 ∼ 1 in
the evolved network, corresponding to the optimal val-
ues in the single-input single-output case, as in Fig. 1b),
whereas the crosstalk rate constants stay low (e.g. k12,
k21 ∼ 0.1). Fig. 2f shows a histogram exhibiting sepa-
ration of crosstalk and direct rate constants, with high
values of direct rate constants and low values of crosstalk
rate constants.

How can we understand this striking difference in evo-
lutionary outcomes for the two fitness functions given
that the maximum fitness depicted in Fig. 1 occurred
at zero crosstalk for both functions? Although the two
landscapes appeared similar, it is important to recall that
the phase space of the fitness landscapes is really four di-
mensional and the landscapes in Fig. 1 correspond to a
particular two-dimensional slice. We are then faced with
the question of how to construct a lower dimensional slice
of the fitness landscapes that could help us understand
the difference in evolutionary outcomes. The crucial dif-
ference between evolutionary outcomes pertained to the
typical ratio between direct and crosstalk rate constants;
we therefore want to distinguish between the fitness de-
pendence on the direct rate constants and crosstalk rate
constants. Thus, we set k11 = k22, corresponding to the
direct rate constant, and k12 = k21, corresponding to the
crosstalk rate constant, and construct a two-dimensional
slice where one axis represents the direct rate constant
and the other the crosstalk rate constant. As shown in
Fig. 3, the resulting fitness landscapes reveal a striking
difference between the two fitness functions. In particu-
lar, we note that while MIsum is peaked at zero crosstalk
(albeit with some spread to finite crosstalk), MItotal is
optimal over an entire band corresponding to a range
of direct and crosstalk rate constants, see Figs 3a and
3b (Fig. 3c shows a calculation for MItotal for V = 10,
displaying similar qualitative behavior). The existence
of a single peak near zero crosstalk in the fitness land-
scape of MIsum and no such single peak in the landscape
of MItotal helps explain why evolution under MIsum leads
to low crosstalk while MItotal can result in high crosstalk.
Lastly, to understand the bifurcations shown in Fig. 2c,
we construct another two-dimensional slice of the fitness
landscape where we set k11 = k12 and k22 = k21 and plot
the resulting MItotal in Fig. 3d. We note that while the
gradient of MItotal along the diagonal is positive, it can
be smaller than the gradient along either axis so that
MItotal could increase in the transverse direction away
from the diagonal. For larger ε, the change in the rate
constants due a mutation could be larger, which increases
the likelihood for the system to take a larger step away
from the diagonal and to subsequently move towards ei-
ther axis, leading to a bifurcation in the magnitudes of
the rate constants.
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(a) (b)
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FIG. 3: Fitness landscapes plotted for k21 = k12 and k11 =
k22 for (a) MItotal and (b) MIsum. MItotal does not have a
single global maximum associated with zero crosstalk whereas
MIsum does. (c) MItotal for k21 = k12 and k11 = k22 for V =
10 displays similar behavior qualitatively. (d) MItotal plotted
as a function of rates k11 = k12 and k22 = k21 for V = 3.

We have adapted a sequence based protein-protein in-
teraction model to study the evolution of crosstalk in
multiple-input, multiple-output signaling networks. Evo-
lution is driven by random mutations in sequence space
whereas selection occurs in the space of phenotypes. Us-
ing our evolutionary scheme we have shown that MItotal
retains a high degree of crosstalk (contrary to our ini-
tial expectations based on Fig. 1) whereas MIsum leads
to insulated pathways with lowered crosstalk. We re-
lated the evolutionary outcomes to the fitness landscapes
and showed that that while MIsum is optimized for zero
crosstalk, MItotal is optimal over an entire band corre-
sponding to a range of direct and crosstalk rate constants
(see, e.g., Fig. 3a). Our results pertaining to dependence
of MItotal on crosstalk are unique to biochemical chan-
nels where the strength of the noise depends on input;
these results are different from Gaussian channels with
constant additive noise where crosstalk always leads to
reduction in total mutual information [13].

Our work focuses on stochasticity inherent to biochem-
ical reactions (intrinsic noise) rather than variability in
cellular states (extrinsic noise) [42]. While generally both
intrinsic and extrinsic noise degrade information trans-
mitted through signaling networks, experiments show
that signaling networks can mitigate, and potentially
eliminate, extrinsic-noise-induced information loss [43].
Furthermore, the impact of extrinsic noise decreases with
increasing network complexity [44], which justifies our
focus on intrinsic noise (note however that owing to its

simplicity, our framework can easily be generalized to in-
corporate extrinsic noise [45]). Our results are also robust
to parameter choices. We varied our model parameters
k0, ε, and V such that the resulting rate constants kij
spanned three orders of magnitude and observed similar
outcomes in our simulations.

In order to appreciate the biological significance of our
results, we note that systems for which inputs have to
be integrated in order to produce output, such as quo-
rum sensing [46], MItotal would be the appropriate fit-
ness function. In such cases, our results indicate that
evolution is likely to lead to high degrees of crosstalk
or to fanning-in or fanning-out from inputs to outputs.
In cases where distinct inputs require distinct responses
from the system, we expect MIsum to be the suitable
quantity for fitness, in which case our results suggest an
evolutionary drive to eliminate crosstalk. An example for
the latter is the high osmolarity response in yeast where
the pathways respond to the appropriate environmental
cues in very distinct and highly precise ways [47].

In this paper we assumed completely uncorrelated in-
put distributions for our system; in the future, it would
be interesting to explore how correlated inputs might af-
fect evolution of crosstalk. Moreover, we focused here on
two-layer signaling processes, but these can readily be ex-
tended to include multilayer cascades. Future work could
also address the effects of adding feedback, a higher num-
ber of pathways, and proteins such as histidine kinases
that act both as activators and deactivators [25].
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