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We introduce a guided network growth model, which we call the degree product rule process,
that uses solely local information when adding new edges. For small numbers of candidate edges
our process gives rise to a second-order phase transition, but becomes first-order in the limit of
global choice. We provide the set of critical exponents required to characterize the nature of this
percolation transition. Such a process permits interventions which can delay the onset of percolation
while tempering the explosiveness caused by cluster product rule processes.

Introduction.–Network based approaches continue to
see growing applications in a wide array of fields, from
epidemiology [1, 2] to finance [3, 4], neuroscience [5, 6],
and machine learning [7]. As we increasingly rely on
networks, understanding how they form out of complex
conditions becomes all the more consequential [8–12].
Many the networks we entrust to support our modernized
society–transportation, financial, social, etc.–are formed
with some amount of agency, meaning that potential new
members have control over how they connect and interact
with the network. This agency can lead to markedly dif-
ferent behavior compared to the classical case of purely
random network growth [13]. In particular, networks
subject to competitive edge addition break time-reversal
symmetry, as there is no well-defined method for running
the process in reverse that achieves a statistically iden-
tical growth curve [14]. Furthermore, edge competition
can be used as a means of control over cluster growth
and connectivity within a growing network. Depending
on the desired outcome (delayed connectivity for conta-
gion spreading, increased connectivity for communication
networks, etc.), intervening on growing networks can help
produce more specialized and responsive networks.

Pioneering work by Erdős and Rényi [15] character-
ized the most straightforward process of random network
growth: edges are added to the network uniformly at ran-
dom until connectivity percolates through the entire net-
work. The Achlioptas growth process (AP) [16] adds a
layer of competition to the classical percolation process,
whereby edges are ranked based on the sizes of the clus-
ters they join and then added to the network in such a
way as to suppress large cluster growth. This competition
results in a significant delay in the onset of percolation,
but comes at the cost of a much more abrupt transition–it
produces what is commonly referred to as “powder keg”
conditions [17, 18], where clusters in a narrow band of
size become widespread and primed for sudden connec-
tivity. The powder keg formation can be mitigated by
continuously adding new nodes to the network [19, 20],
inducing an infinite-order transition, however in many
real-world cases such an intervention is impractical.

Variations in competitive edge addition, such as the

minimal cluster rule [17], the triangle rule [21], and a
handful of others covered in the review article in refer-
ence [22], achieve results similar to the AP. Together,
these growth processes are referred to as explosive perco-
lation due to the abruptness with which the largest clus-
ter grows from microscopic to system-spanning. Each of
these processes shares a common thread: edge competi-
tion involves comparing the sizes of the clusters to which
each edge belongs, which necessitates gathering informa-
tion about the connectivity of a large portion of the net-
work as it nears the percolation threshold. Though gener-
ally second-order [14], under certain circumstances these
transitions can become first-order [23], typically when ei-
ther the number of edges competing for addition at each
timestep grows quickly enough with system size [24], or
the competition process is designed to build up smaller
clusters that eventually merge together and overtake the
largest component [25]. Approaches focused on local
measures of connectivity [26, 27] have reproduced some
aspects of explosive percolation, yet remain relatively un-
explored compared to global product rules. Additional
novel phenomena that have been observed in explosive
percolation including crackling noise and “fractional per-
colation” [28], unexpected double-peaked distributions of
the order parameter in small systems [29], and finite-size
hysteresis [30].

Here, we introduce and characterize the behavior of a
third type of random growth process, the degree product
rule (DPR) process. Mechanistically, the DPR is analo-
gous to the Achlioptas process, the difference being that
the criteria used to evaluate edges is the product of node
degrees (the number of edges attached to a node) rather
than cluster sizes. The impetus for studying such a sub-
tle but fundamental modification is twofold. First, the
degree of a node is local information in the sense that
for any given node, determining its degree requires only
knowledge of its set of nearest neighbors. Unlike average
cluster size, information about the average degree of each
node does not become extensive within the system near
the percolation threshold. Second, the problem of classi-
cal percolation has long involved using a stable probabil-
ity distribution to choose an edge at each timestep. Ex-
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plosive percolation upended this notion by allowing the
distribution to shift unpredictably depending on which
edge is chosen, a characteristic potentially more in line
with how certain types of real networks take shape [31].
The DPR similarly produces unpredictable changes when
updating edge selection probabilities, but does so under
a set of local rules, broadening our understanding of how
networks coalesce under various formational pressures.

The degree product rule model.–We begin with a fully
disconnected set of N nodes and successively add edges
one at a time, such that at time t the network contains
exactly t edges, with a resulting edge density p = t/N .
The growth process is as follows: 1) A specified number
of candidate edges m are chosen uniformly at random.
2) The weight of each candidate edge is calculated as the
product of the degrees d of the two nodes to be connected
by that edge as (d1 + 1)(d2 + 1), where one is added to
the degree of each node in order to avoid the degenerate
case of zero-degree nodes. 3) The edge with the smallest
weight is added to the network or, in the case of a tie, an
edge is chosen at random from the set of edges with the
smallest weight. The remaining edges are discarded back
into the pool of unfilled edges. The process is illustrated
diagrammatically in the inset of Figure 1.

During any random growth process clusters will form,
grow, and eventually merge together. The relative size
of the largest cluster C/N is computed at every timestep
and serves as the order parameter of the percolation tran-
sition. The order parameter begins vanishingly small,
then becomes macroscopic as the system crosses the crit-
ical point pc, the precise value of which is determined by
the details of the growth process. Figure 1 shows the
ensemble-averaged evolution of the order parameter for
the Erdős-Rényi, Achlioptas, and DPR processes, with
m = 2 for the latter two. In principle, the critical point of
each transition can be predicted by analyzing the combi-
natorics of the system, however in practice this becomes
prohibitively difficult when the underlying distribution
used to add edges changes unpredictably as in the AP
and DPR. Thus, numerical simulations are necessary to
tackle the details of these systems and obtain precise ap-
proximations of their critical behavior.

The percolation transitions presented in Figure 1 are
notably different in both the location of the critical point
and abruptness of each transition. To better quantify the
abruptness of the DPR transition, we measure the size
of the largest jump in the order parameter ∆Cmax/N
during each realization, then average over many realiza-
tions. This type of convergence criteria is common among
explosive percolation studies [32–35] as it gives insight
into how the transition behaves in the thermodynamic
limit and indicates whether the transition is first-order
or second-order. For increasing system size, the largest
jump will decay as a power law when the transition is
second-order, ∆Cmax/N ∼ N

−ω, whereas if there is a dis-
continuity that survives in the thermodynamic limit then
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FIG. 1: Relative size of the largest cluster, C/N , at scaled
time p = t/N . Ensemble averages for Erdős-Rényi (dashed
red), DPR process (solid blue), and AP (dotted green) at
N = 3.6 × 105 nodes and m = 2 choices for the DPR process
and AP. Inset: Example of the DPR selection scheme for
m = 2 choices. E1 and E2 compete for addition. The
selection criteria A = (d1 + 1)(d2 + 1) is computed for each
edge. Since AE1 = 9 and AE2 = 4, E2 is added to the
network.

∆Cmax/N will asymptote to a constant value, signaling
that the transition is first-order. The decay exponent ω
communicates the level of the abruptness in second-order
transitions, with smaller values indicating a sharper tran-
sition. In the AP, the decay exponent is unusually small:
ω = 0.065 for m = 2 choices. The DPR, however, pro-
duces decay exponents similar to Erdős-Rényi, as shown
in Figure 2. In fact, despite the appearance of a faster
transition, the DPR is actually seen to have a decay ex-
ponent only slightly larger than Erdős-Rényi, recorded in
Table I. In addition, finite-size effects show up at small
system sizes for the DPR between N = 102 up to N = 104

in Figure 2, depending on the number of choices, whereas
in both Erdős-Rényi and explosive percolation no such
effects appear at comparable system sizes.

Increasing the number of choices does not appear to
change the decay exponent in the DPR process, unlike in
the AP [32], which suggests that the locality of the infor-
mation used in the DPR suppresses its ability to achieve
the buildup of multiple large clusters that inevitably
leads to bigger jumps in the order parameter. This is even
more striking given that the value of the critical point
increases from pc ≈ 0.76 for m = 2 choices to pc ≈ 0.93
for m = 10 choices and pc ≈ 0.97 for m = 50 choices,
eventually asymptoting to pc ≈ 1 for global choice, im-
plying that increasing the number of choices works to
suppress the transition without actually building up the
so-called “powder keg” conditions necessary to achieve
explosiveness. Rather, the DPR works to constrict the
degree distribution, as shown in Figure 3, which leads to
something of a powder keg in the node degrees instead
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FIG. 2: The average maximum jump in the order parameter
as a function of system size for the DPR process with two
choices (blue upward triangles), ten choices (red squares),
fifty choices (green downward triangles), and global choice
(black circles). Erdős-Rényi (lower dashed line), as well as
the AP with two choices (lower dotted line) and global
choice (upper dotted line) are shown for comparison. Fits to
the data (gray lines) for the three non-global DPR processes
have decay exponents of ω = 0.316, ω = 0.328, and ω = 0.319,
respectively.

of cluster sizes. However, in contrast to explosive perco-
lation, this degree-oriented powder keg does not “ignite”
near the critical point.

Despite the lack of a “powder keg,” global choice in the
DPR process nevertheless produces a first-order phase
transition. We simulated global choice using the follow-
ing process, as increasing the number of choices becomes
computationally intensive at large system sizes. Initially,
every node is randomly paired with another unpaired
node, at which point the node pairs begin to join together
and form chains. Only the two ends of each chain are can-
didates for edge addition, as they have degree d = 1 while
internal nodes in the chain have degree d = 2. Eventually
these chains will tend to form large, closed loops when-
ever the two ends of a single chain are randomly chosen
to join together. The loops then merge together very
close to p = 1, shortly after every node has degree d = 2,
resulting in a critical point of pc ≈ 1 since the largest
jump in the order parameter will tend to occur when two
large loops merge. The result is a first-order phase tran-
sition with exclusively short-range information dictating
its development. Similar to the AP with global choice,
the largest jump for the DPR with global choice remains
constant, with an approximate value of ∆Cmax/N = 0.33
for all N , shown in Figure 2. However, in the DPR pro-
cess, the crossover from second-order to first-order ap-
pears to happen via the extension of a shoulder at in-
creasing system sizes as the number of choices increases,
rather than the typical rise in the slope of the power law
seen in explosive percolation. Essentially, what appears
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FIG. 3: The degree distributions at p = 5 for Erdős-Rényi
(dashed red), degree product rule process (solid blue), and
Achlioptas process (dotted green) at N = 1.7 × 104 nodes and
m = 2 choices for the DPR process and AP.

to be finite-size effects observed with increasing number
of choices could in fact be a signifier of a slow crossover
to a discontinuous transition.
Criticality and universality.–Second-order phase tran-

sitions are characterized by critical behavior which per-
mits the use of scaling theory in determining universal
behavior near the critical point [36, 37]. These functional
forms are a result of the fact that all state variables as-
sociated with the phase transition behave as power laws
near the critical point due to scale independence within
the system. Using this process, one finds a rescaling of
the order parameter for system size that has the following
general form:

C = N−β/νF [(p − pc)N
1/ν

] (1)

The value of β is associated with the behavior of the
order parameter with system size, while ν scales the cor-
relation length (mean distance between nodes in a clus-
ter) with the distance to the critical point. The function
F is a universal function that allows collapse onto a single
master curve. The average cluster size S should rescale
in a similar manner, though with a different critical ex-
ponent affecting the system size and a separate universal
function H:

S = Nγ/νH[(p − pc)N
1/ν

] (2)

Here, the exponent γ scales the average cluster size
(excluding the giant component) with system size N . To-
gether, equations (1) and (2) contain the set of critical ex-
ponents and scaling functions required to characterize the
DPR phase transition and allow universal collapse onto
master curves. Measuring the critical exponents necessi-
tates finding both the largest cluster size and the average
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TABLE I: Critical point pc, and summary of critical
exponents for the three growth processes discussed in this
paper with m = 2 for the AP and DPR processes.

Growth process pc β/ν γ/ν τ ω
Erdős-Rényi 0.5 0.33 0.34 2.5 0.3
DPR 0.763 0.33 0.37 2.45 0.32
Achlioptas 0.888 0.02 0.48 2.08 0.065
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FIG. 4: Finite-size scaling for the critical exponents β/ν and
γ/ν of the DPR process. (a) Mean cluster size S is plotted
versus system size N . The fit at p = pc = 0.763 (red squares)
gives the value γ/ν = 0.37. (b) Relative size of the largest
cluster C/N is plotted versus system size N . The fit at
p = pc = 0.763 (red squares) gives the value β/ν = 0.33.
Breakdown of the power law scaling away from the critical
point is shown in both (a) and (b) for p = 0.75 (blue upward
triangles) and p = 0.77 (green downward triangles).

size of clusters (excluding the largest) at the critical point
for varying system sizes. The critical point serves as a
separatrix for the largest cluster size–at the critical point
it will follow a power law with growing system size, while
above and below the critical point it will increasingly
curve away from the separating line due to the excess (or
deficit) of edges interrupting the scale-free nature of the
system. The average size of the remaining clusters, how-
ever, will decay with growing system size both above and
below the critical point due to the largest cluster absorb-
ing an increasing portion of the nodes above the critical
point. Figure 4 illustrates this behavior, which provides
an additional check on the approximate value of the criti-
cal point, pc = 0.763. The fits in Figure 4a and 4b provide
values of β/ν = 0.33 and γ/ν = 0.37, respectively, for the
scaling exponents of the DPR process. Again, these val-
ues draw comparisons to the classical Erdős-Rényi pro-
cess despite the fundamental differences in reversibility
and information loss between the two growth processes.

Along with the set of critical exponents, the Fisher ex-
ponent τ , which describes the power law decay of the
cluster size distribution at the critical point, completes
the picture of how the network percolates. By revealing
the structure of cluster sizes beyond the largest compo-
nent, the Fisher exponent provides details about how sus-
ceptible the network is to forming larger clusters near the
critical point. Shown in Figure 5, the cluster size distri-
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FIG. 5: Cumulative distribution of cluster sizes at the
critical point (solid blue) and at points above (green dotted)
and below (red dot-dashed) the critical point for
N = 1.3 × 105 nodes. Thicker lines are nearer to the critical
point. The solid black line is a guide for Erdős-Rényi
(τ = 2.5). The Fisher exponent, τ = 2.45, is found by fitting
a power law to the distribution at the critical point. Red
dot-dashed curves are for p = 0.38,0.46,0.54,0.62, green
dotted curves are for p = 0.92,1,1.08,1.15.

bution at the critical point follows the form G(s) ∼ s1−τ .
The decay in cluster size for the DPR process is well-fit
by a power law with τ = 2.45, which may be consistent
with Erdős-Rényi (τ = 2.5). The cluster size distributions
of the DPR process above the critical point show a mix-
ture of explosive and classical behavior–plateaus form as
in explosive percolation, however the distributions above
the critical point remain entirely below the distribution
at the critical point, as is the case in Erdős-Rényi growth
[14]. This seems to suggest that the DPR process prefer-
entially builds a few large clusters after the critical point,
though it substantially delays building up the remaining
smaller clusters as compared to explosive percolation. A
comparison of the three growth processes considered in
this paper is presented in Table 1.

Conclusions.–Prescriptive processes for network
growth, such as the one we presented, that tune perco-
lation while circumventing the formation of a powder
keg are useful in cases where connectivity is a liability.
Here, we have described a way in which networks can be
designed and grown that delays the onset of percolation
without the risk of sudden connectivity, allowing for
more manageable failure modes in cases where connec-
tivity is undesirable. This growth scheme provides a
new set of tools for researchers in a wide array of fields
to use when intervening on growing networks, requiring
a great deal less information when making decisions
about how to guide networks towards more desirable
topologies. In cases where acting quickly on a developing
network is crucial, the DPR can be enacted with ease
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whereas enacting cluster-oriented growth schemes may
be impractical.

Our work establishes the fact that in order to turn
a percolation transition from second-order to first-order
one need not necessarily have access to global informa-
tion, as in explosive percolation. In addition, the use
of local information extends the lower bound for explo-
sive percolation to even lower critical connectivities than
previously accessible with global information.

The selection criteria in DPR grown networks could
be further altered in order to use the product of degrees
of second-nearest, or third-nearest neighbors, etc., me-
thodically extending the distance with which informa-
tion about connectivity is communicated within a net-
work. Such a tool could allow for improved modeling of
networks where interactions extend to a finite distance.
Degree rule processes may also be of interest within the
context of core percolation [38], as they naturally pro-
duce networks with larger cores due to the narrow width
of the degree distribution compared to traditional and
explosive percolation.
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