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Nonlinear classical dissipative systems present a rich phenomenology in their “route to chaos”,
including period doubling, i.e. the system evolves with a period which is twice that of the driving.
However, typically the attractor of a periodically driven quantum open system evolves with a period
which exactly matches that of the driving. Here we analyze a periodically driven manybody open
quantum system whose classical correspondent presents period doubling. We show that by studying
the dynamical correlations, it is possible to show the occurrence of period doubling in the quantum
(period-1) steady state. We also discuss that such systems are natural candidates for clean and
intrinsically robust Floquet time crystals.

PACS numbers: 03.75.Gg, 03.65.Yz, 42.50.Dv, 05.45.Mt

I. INTRODUCTION

Classical driven and dissipative systems present a var-
ied typology of dynamical behaviors. In these systems
it is possible to observe very different types of attrac-
tors: fixed points, limit cycles and chaotic attractors.
For quantum systems, if in some limit they can be reli-
ably described by classical equations of motion, it is also
possible to observe signatures of these behaviors (see for
example [1]).

An important type of driven dissipative systems are
those for which the driving is time periodic. The steady
state of such systems, when unique, has a periodicity
which is given exactly by the period of the driving, even
if the classical corresponding system presents period dou-
bling or is chaotic [2]. Hence these systems deserve fur-
ther investigations.

An important insight into quantum systems is given by
two-time correlations. For instance, current-current cor-
relations on a thermal state can be used to infer its linear
response transport properties. For the case of quantum
steady states, it was shown that the two-time correla-
tions of a dissipative engineered quantum state can be
significantly different from those of the target state [3].

Here we show that by analysing the two-time corre-
lations of periodic steady states, with a period exactly
given by the driving period, it is possible to observe a
period doubling in the evolution of the correlation. This
occurs when the corresponding classical system is in a
parameter regime for which period doubling occurs and
when the effective Planck constant is small enough that
the quantum dynamics mimics the classical dynamics for
long enough times. The presence of an underlying pe-
riod doubling classical dynamics also naturally allows to
interpret these systems as clean Floquet time crystal [4–
9]. Moreover, the two-time correlations analysis of the
periodic steady state allows to characterize it as an in-
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triniscally robust Floquet time crystal.
The paper is divided as follows: in section II we intro-

duce the model, then we describe its bifurcation map in
section III, analyze the spectrum of the periodic prop-
agator in section IV, and show the presence of period
doubling in the steady state in section V. In section VI
we discuss that the system is a natural example of a clean
Floquet time crystal and finally in section VII we draw
our conclusions.

II. MODEL, PERIODIC STEADY STATE AND
MEANFIELD EQUATIONS

We consider a double well potential with N atoms
which is periodically driven and under the influence of
dissipation. The system is described by a master equa-
tion whose time-dependent generator Lt, of Lindblad
form [10–13], is composed of two parts

˙̂ρ = Lt(ρ̂) = −i[Ĥ(t), ρ̂] +D(ρ̂). (1)

Note that we have set ~ = 1. The first part of Eq.(1) de-
scribes the Hamiltonian evolution of the system’s density
operator ρ̂, due to the Hamiltonian Ĥ(t). We consider a
double-well whose Hamiltonian is

Ĥ(t) =− J
(
b̂†1b̂2 + b̂†2b̂1

)
+
U

2

∑
j=1,2

n̂j (n̂j − 1)

+ ε(t) (n̂2 − n̂1) (2)

where b̂j (b̂†j) annihilates (creates) a boson at site j, while

n̂j = b̂†j b̂j . The Hamiltonian parameters are J , the tun-

neling amplitude, U , the interaction strength, and ε(t),
the modulation of the local potential. The modulation
ε(t) is chosen to be periodic of period T = 2π/ω, i.e.
ε(t) = ε(t + T ) = µ0 + µ1 sin(ωt), where µ0 and µ1 are,
respectively, a static and a dynamic energy offset between
the two sites. This double-well Hamiltonian has been in-
vestigated in both theoretical [14–17] and experimental
[18, 19] works.
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The second part of Lt in Eq.(1) describes the dissipa-
tive evolution due to the dissipator

D(ρ̂) = γ
(

2Γ̂ρ̂Γ̂† − {Γ̂†Γ̂, ρ̂}
)

(3)

where γ is the dissipative rate while the jump operator
is given by [20–23],

Γ̂ = (b̂†1 + b̂†2)(b̂1 − b̂2). (4)

This model has been investigated in [2, 24].
It was shown in detail in [2] that, given the periodicity

of Lt, it is possible to generate a Floquet map PF = P0,T

where Pt1,t2 = T e
∫ t2
t1
Ltdτ and T is the time-ordering

operator. The fix point of this map is the periodic steady
state of the system ρ̂s(mT ) where m is an integer number
[25]. To compute ρ̂s(t) at times t 6= mT , it is sufficient
to evolve ρ̂(0) from time 0 to t using Eq.(1).

An important insight into the dynamics of this sys-
tem is obtained, especially for large number of parti-
cles, by studying the corresponding classical meanfield
equations of motion. To compute them, it is conve-
nient to first rewrite Eq.(1) in terms of the spin oper-

ators Ŝx = 1
2N

(
b̂†1b̂2 + b̂†2b̂1

)
, Ŝy = − i

2N

(
b̂†1b̂2 − b̂

†
2b̂1

)
and Ŝz = 1

2N (n̂1 − n̂2) and study their evolution in the
Heisenberg picture [13]. The commutator between these

operators is
[
Ŝx, Ŝy

]
= i Ŝz

N and cyclic permutations.

This implies that as N → ∞, these spin operators com-
mute, resulting in classical equations of motion (see [2]
for more details).

Since 〈Ŝ2〉 = 〈Ŝ2
z 〉 + 〈Ŝ2

x〉 + 〈Ŝ2
y〉 is a con-

stant of motion (we have used the notation 〈Ô〉 =

tr[ρ̂Ô] for the expectation value of the operator

Ô), it is possible to write the meanfield equations
of motion of the system in terms of two angle
variables θ and φ defined by (〈Sx〉 , 〈Sy〉 , 〈Sz〉) =
1
2 [cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ)]. We thus get the
equations of motion [2]

ϑ̇ = 2J sin(ϕ) + 4γN cos(ϕ) cos(ϑ) (5)

ϕ̇ = 2J
cos(ϑ)

sin(ϑ)
cos(ϕ)− 2ε(t) + UN cos(ϑ)− 4γN

sin(ϕ)

sin(ϑ)
.

III. BIFURCATION MAP

For a more complete and self-contained analysis, we
now study the quantum and classical bifurcation map
for this system in Fig.1 [26]. More precisely, for the clas-
sical map we evolve Eq.(5) for different initial conditions
uniformly distributed over ϑ ∈ [−π, π] and φ ∈ [0, 2π]
for t = 800T . We then record stroboscopically at times
which are integer multiples of the driving period, t = mT ,
the value of ϑ (and hence of 〈Ŝz〉 = 1/2 cos(ϑ)) for
the next 200 (or more) periods and represent them in
the Fig.1(a). For a different interacting model [27], a
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〈Ŝ
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FIG. 1: (color online) Bifurcation maps for (a) classical mean-
field equations (5), (b-c) quantum system with repectively
N = 25 and N = 100. The other parameters are µ0 = J ,
µ1 = 3.4J and γN = 0.1J .

quantum bifurcation map was produced using the tra-
jectory method for the evolution of the density matrix
[28]. In Fig.1(b-c) we show the quantum bifurcation map
from another approach. For any given value of the in-
teraction we compute the steady state ρ̂s(0) and then

we project it over the eigenstates of Ŝz and take the
trace. More precisely we can write Ŝz =

∑
n Ŝ

z
n where

Ŝzn = (n/N − 1/2)|n,N − n〉〈n,N − n| and the state
|n,N − n〉 has n particles in site 1 and N − n in site

2. We thus compute 〈Ŝzn〉s = tr
(
Ŝznρ̂s(0)

)
and produce

an intensity plot as a function of both 〈Ŝzn〉s and the
interaction strength U/J . We have used the notation
〈. . . 〉s to remind the reader that the trace is taken over
the steady state. In Fig.1(b,c) we show the bifurcation
map respectively for N = 25 and N = 100 atoms. For
the larger number of particles it is possible to see more
clearly the underlying structure related to the meanfield
classical corresponding equations.
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FIG. 2: (color online) Real and imaginary parts of the spec-
trum of the Floquet rapidities for (a) N = 10, (b) N = 25,
(c) N = 50 and (d) N = 100. The red dots in (c) and (d)
represent the slowest decaying state. The other parameters
are µ0 = J , µ1 = 3.4J , UN = 0.2J and γN = 0.1J .

IV. SPECTRUM OF THE FLOQUET MAP

A signature of the presence of a bifurcation in the
classical corresponding system leaves signatures in the
spectrum of the Floquet map PF . We thus compute the
eigenvalues of PF , which we refer to as ‘Floquet rapidi-
ties’ λj [29], for different particle numbers and we plot
them in a complex plane in Fig.2. In particular Figs.2(a-
d) correspond respectively to N = 10, 25, 50 and 100.
Since the periodic steady state is unique, one Floquet-
rapidity has exactly the value 1. We note that as the
number of particles increases, there is a Floquet-rapidity
which approaches, but does not reach, the value −1 on
the real axis (we highlight this point in red). The pres-
ence of such a slow decaying state with Floquet rapidity
≈ −1 indicates that dynamical properties can show an
oscillatory behavior with a period which is twice that of
the driving.

V. TWO-TIME CORRELATIONS AND PERIOD
DOUBLING

As stated before, the steady state is the fix point of
the map PF , which implies that ρ̂s(mT ) = ρ̂s(0) for any
integer m. As a consequence, any static (i.e. single time)
observable, computed on the steady state is exactly peri-
odic with the period of the steady state. More precisely,
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FIG. 3: (color online) Two-time correlation 〈Ŝz(nT )Ŝz(0)〉s
versus time for a total particle number N = 5, green circles,
N = 25, red triangles, and N = 100, blue squares. Other
parameters are UN = 0.2J , µ0 = J µ1 = 3.4J and γN =
0.1J .

given an operator Ô we have that

〈Ô(mT )〉s = tr
(
Ôρs(mT )

)
= tr

(
Ôρs(m

′T )
)

= 〈Ô(m′T )〉s. (6)

with m′ 6= m. It is very important to stress that this
result is independent of the underlying dynamics of the
classical corresponding system, and whether the classi-
cal attractor is regular, with or without bifurcation, or
chaotic.

In Sec.III we have also shown the quantum and clas-
sical corresponding bifurcation map of this system. This
shows that at each period there is multi-modal probabil-
ity distribution for the distribution of particles between
the two wells. However since this is a static observable of
the steady state, it exactly repeats itself at each period,
i.e. this is not an evidence of period doubling.

In order to reveal the presence of period doubling, we
need instead to study dynamic correlations on the steady
state. In particular we study the two-time correlation

〈Ŝz(mT )Ŝz(0)〉s = tr(Ŝz (PF )
m
Ŝz ρ̂s(0)). (7)

We plot 〈Ŝz(mT )Ŝz(0)〉s in Fig.3 as a function of time
for different total particle number N . Fig.3 demonstrates
that the two-time correlation evolves with a period which
is twice that of the driving, T , for an amount of time
which becomes longer the more atoms are in the system
[30]. From our previous analysis of the Floquet rapidi-
ties, we can understand this behavior from the presence
of a Floquet rapidity close to −1. Once the operator Ŝz

acts on the steady state, we can write the resulting op-
erator as a superposition of ρ̂j the eigen-operators of the
Floquet propagator PF , with eigenvalues (Floquet rapidi-

ties) λj , i.e. Ŝz ρ̂s(0) =
∑
j cj ρ̂j , where the cj are scalars.

From this it is easy to show that the (stroboscopic) time
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evolution of such operator is given by

P0,mT

[
Ŝz ρ̂s(0)

]
=
∑
j

cj ρ̂jλ
m
j . (8)

As shown in Fig.2, for parameters such that the classi-
cal corresponding dynamics has bifurcation, and for large
enough particle number, the spectrum of PF has, on top
of the steady state, another eigenvalue close to the unit
circle which is positioned close to the value −1. The peri-
odic steady state operator ρ̂s and the one corresponding
to eigenvalue −1, i.e. ρ̂−1 will dominate the long-time
dynamics [31]

P0,mT

[
Ŝz ρ̂s(0)

]
≈ csρ̂s + c−1ρ̂−1(−1)m. (9)

The second term on the right-hand side of Eq.(9) is the
one responsible of the period−2 evolution of the two-
times correlation function 〈Ŝz(mT )Ŝz(0)〉s. In fact this
correlation, at long enough times, can be approximated
by

〈Ŝz(mT )Ŝz(0)〉s ≈ cs tr(Ŝz ρ̂s) + c−1 tr(Ŝz ρ̂−1)(−1)m

(10)

which oscillates with a period 2T , i.e. twice that of the
driving.

The presence of an underlying classical period dou-
bling dynamics carries other interesting consequences. It
has been shown before that for a system in which both
the Hamiltonian and the dissipator are number conserv-
ing, two-time correlators of the type 〈Â(t)B̂(0)〉 behave
very differently depending on whether the first operator
included in the two-time correlator, B̂, is number con-
serving or not [3, 32]. When the first operator is number
conserving, it is possible to observe very slow dynamics
such as power-law decays, stretched exponentials and ag-
ing [3, 17, 33]. However, when the first operator is not
number conserving, the dynamics is bound to be an over-
all exponential decay [3]. We then analyze the two-time

correlator 〈b̂†2(t)b̂1(0)〉 in which each operator does not
conserve the total particle number and for which expo-
nential decay is expected.

In Fig.4 we depict |〈b̂†2(mT )b̂1(0)〉| versus the num-
ber of periods m. In particular we show in Fig.4(a,b)
the case for which the corresponding classical dynamics
has period doubling, UN = 0.2J , while for the param-
eters of Fig.4(c,d) the classical meanfield equations pre-
dict chaotic motion UN = 1.6J . Fig.4(a) shows clearly
signatures of period doubling and also that the decay
time scale increases with the number of particles N . At
the same time, the relaxation is still exponential, as evi-
denced by log-lin plot in Fig.4(b). In Fig.4(c,d), for which
the corresponding classical equations are chaotic, we ob-
serve a much more rapid exponential decay, and no signa-
tures of period doubling. This analysis highlights that for
large N not only is period doubling present for number
conserving operators, but also for non-number conserving
operators. The presence of a classical limit with period
doubling makes the dynamics particularly robust.
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FIG. 4: (color online) Absolute value of the two time cor-

relator 〈b̂†2(t)b̂1(0)〉 versus number of periods m for different
particle numbers N = 25 (red squares with dot-dashed line),
N = 50 (green triangle with dashed line) and N = 100 (blue
circles with continuous line). In panels (a,b) we show the case
near a period doubling, UN = 0.2J , respectively in a lin-lin
and in a log-lin plot. In panels (c,d) we show the case of a
chaotic region, UN = 1.6J , respectively in lin-lin and in log-
lin. Other parameters are µ0 = J , µ1 = 3.4J and γN = 0.1J .

VI. BIFURCATION AS DRIVER OF CLEAN
FLOQUET TIME CRYSTALS

Clean Floquet time crystals are defined as systems
which in the thermodynamic limit fulfil the following
properties: (i) there is a quantity which does not evolve
with the period of the driving, (ii) it presents a periodic
evolution without fine-tuning of the system parameters,
and (iii) the periodic evolution should persist for an in-
definitely long time [6]. If a quantum open periodically
driven system has a classical correspondent which is in
a period-doubling regime, then it is straight-forward to
show that there are initial conditions which are robust
both to changes in their exact position and of the system
parameters and which show an evolution with a period
different from the driving in the thermodynamic limit.
To show this we take a coherent state centered in one of
the two periodic points of the classical Poincaré section
from Eq.(5) and we evolve it in time. The coherent state
is given by [34]

|φ(ϑ, ϕ)〉 =

N∑
n=0

fn(ϑ, ϕ)|n,N − n〉 (11)

where fn =
√(

N
n

) [
cos
(
ϑ
2

)]n [
sin
(
ϑ
2

)
eiφ
]N−n

. In

Fig.5(a-f) we show stroboscopic images of the state as it
evolves in time. Each panel is a Poincaré-Husimi section
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FIG. 5: (color online) (a-f) Husimi-Poincaré section of the evolution of a coherent state centered at one of the two classical
periodic points of the classical Poincaré map. In particular the times are t = 0 (a), t = T (b), t = 2T (c), t = 6T (d), t = 7T

(e), t = 8T (f). Panels (g-h) show 〈Ŝz〉 at times given by different integers of period t = mT . In panel (g) we show that
the evolution shows an alternating evolution for different initial conditions. In particular we chose coherent states centered
in the points (ϑ, ϕ) = (2,−3) (blue circles), (1.95,−3.05) (green triangles) and (2.05,−2.95) (red squares). The strength of
the interaction in (a-g) is UN = 0.2J . In panel (h) we show the robustness of the motion to different system parameters. In
particular we evolve a coherent state centered at (ϑ, ϕ) = (2,−3) for parameters UN = 0.2J (blue circles), UN = 0.21J (green
triangles) and UN = 0.19J (red squares). Common parameters in (a-h) are µ0 = J , µ1 = 3.4J , γN = 0.1J

obtained by projecting the evolving state over coherent
states. In particular we show the Poincaré-Husimi sec-
tion of the state for times t = 0, T, 2T, 6T, 7T and 8T .
We can observe that the coherent state jumps between
two different positions, which is the expected behavior
for classical period doubling. Due to the finite number
of particles, we also observe a broadening of the state.
In Fig.5(g-h) we focus on the stability of this dynamics.

In Fig.5(g) we show the evolution of 〈Ŝz〉 versus time
for different initial condition close to one of the classi-
cal periodic points. In Fig.5(h) instead we vary the sys-
tem parameters, still within the region of classical period
doubling, and we observe that the evolution is stable. As
expected, the dynamics of this system fulfils the prop-
erties of a clean Floquet time crystal [6]. However, it
should be here stressed that, while such time crystal is
robust against small changes of the parameters and of
the initial condition, it is not completely robust to the
initial condition. Instead, the steady state of the sys-
tem is a perfect example of a robust Floquet time crystal
because it is completely independent of the initial con-
dition. We build upon [35], where the authors defined
a time crystal as having long range crystalline order in
two-time correlations (it is by this starting point that
they proved the non-existence of quantum time crystals
in equilibrium systems). Since the two-time correlator on
the steady state can manifest period doubling, as shown
in Fig.3, the steady state is a Floquet time crystal which,
given an atom number N , is completely independent of

the initial condition.
In the final stages of the preparation of this work, a

partially related article was posted [8], which discusses
the connection between Floquet time crystals and bifur-
cations. However this work does not study the dynamical
correlations of the system which are necessary to estab-
lish the steady state as an intrinsically robust Floquet
time crystal.

VII. CONCLUSIONS

In periodically driven open quantum system the den-
sity operator of the steady state typically evolves with a
period which exactly matches that of the driving. This
implies that static observables measured on this steady
states can also oscillate at the same period, but not at
multiples of it. Here we have presented clear signatures
of period doubling in such steady states when studying
its dynamical correlations, and we have shown that the
period doubling is due to the dynamics of the underlying
classical correspondent system. The occurrence of period
doubling can be predicted by the presence of a Floquet
rapidity which approaches −1 and can induce oscillations
of period 2T in dynamic observables. We have also shown
that this open manybody quantum system can behave as
a clean Floquet time crystal. Moreover, characterizing a
time crystal has having long range order in time [35],
the (period−1) steady state emerges as a Floquet time
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crystal which is completely robust to initial conditions.
Future works could study the complete route to chaos

in periodically driven manybody open quantum systems.
Another emerging important future direction is that of
manybody periodically driven open system in presence of
disorder [36, 37], and in particular of how disorder affects

the dynamics here studied.
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