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In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids
is generally expected to deviate from a rectilinear law approaching the critical point. However, by
performing precise scanner-like optical measurements of the position of SF6 liquid-vapor meniscus,
in an approach much closer to criticality in temperature and density than earlier mesurements, no
deviation from a rectilinear diameter can be detected. The observed meniscus position from far
(10K) to extremely close (1mK) to the critical temperature is analyzed using recent theoretical
models to predict the complete scaling consequences of a fluid asymmetry. The temperature de-
pendence of the meniscus position appears consistent with the law of rectilinear diameter. The
apparent absence of the critical hook in SF6 therefore seemingly rules out the need for the pressure
scaling field contribution in the complete scaling theoretical framework in this SF6 analysis. More
generally, this work suggests a new way to clarify the experimental ambiguities in the simple fluids
for the near-critical singularities in the density diameter.

PACS numbers: 81.70.Ha, 05.70.Jk, 64.60.Fr, 78.35.+c

Phase transition is ubiquitous in nature. The most fe-
cund phase transition is presumably through the liquid-
vapor critical point accompanied by the spectacular crit-
ical opalescence, as already observed nearly two centuries
ago. The vicinity of the critical points of many different
systems is indeed characterized by strong singularities in
their thermodynamic and transport properties. The cur-
rent theoretical paradigm on critical phenomena, based
on the use of renormalization group theory [1], has cat-
egorized all systems in well-defined universality classes
[2] and characterized the singularities in terms of power-
laws of only two relevant scaling fields [3] in a manner
consistent with the scaling hypothesis [4]. Simple fluids
are then assumed similar to the so-called O (1) symmet-
ric

(
Φ2

)2 field theory and (or) the N = 1-vector model of
three-dimensional (3D) Ising-like systems [2, 5, 6]. How-
ever, for the case of the gas-liquid critical point of simple
fluids, some additional difficulties can occur because the
order parameter - the fluctuating local density - shows a
noticeable asymmetry in the nonhomogeneous region, as
for instance through the well-known rectilinear density
diameter of the coexistence curve. The latter obeys the
law ρd = ρL+ρV

2 = ρc + Ad (Tc − T ) first evidenced by
Cailletet and Mathias for three fluids [7]. ρL and ρV are
the liquid and vapor densities of the coexisting phases
and ρc is the critical density. T and Tc are the temper-
ature and the critical temperature, respectively, and Ad
is the experimental slope of the density diameter. Subse-
quent litterature has largely confirmed this law rectilinear
diameter for a broad class of fluids (usually denoted nor-
mal fluids) with attemps to correlate the change of Ad
with the differences in the two-body potential of molecu-
lar interaction [8, 9]. Nevertheless, such an asymmetrical
linear form of the density diameter cannot be accounted

for from the symmetrical uniaxial 3D Ising model and its
induced standard fluid-like version, i.e., the symmetrical
lattice-gas model.

An alternate theoretical way to introduce the fluid
asymmetry consists in mixing and extending the number
of the physical fields contributing explicitly to the rele-
vant scaling fields, so-called complete scaling phenomeno-
logical hypothesis [10–14]. The predictions of complete
scaling have been tested against experiments with various
fluid systems, especially binary solutions [15], and sim-
ulations representing ionic and polymer solutions with
extraordinary asymmetry [12, 16]. In a recent work [17],
Yang-Yang critical anomaly and singular density diam-
eter arise in exactly soluble compressible cell gas mod-
els where complete scaling includes mixing with pressure
field. However, the additional pressure field increases the
complexity in the quest of a true asymptotic simple fluid
behavior, which still remains a conundrum to the exper-
imentalists who’s objective is to check it experimentally
closer and closer to the critical point. De facto, the asym-
metrical contributions, the analytical backgrounds, and
the classical-to-critical crossover corrections due to the
mean-field-like critical point, further hindered the test of
the asymptotic Ising-like fluid behavior. Such difficul-
ties are intrinsically ineludible, even along the true crit-
ical paths where the crossover contribution due to one
additional non-relevant field [18] can be accounted for
correctly in the field theory framework [19–21].

All attempted experiments can never be strictly on
these critical paths, adding paradoxically a new opportu-
nity to investigate the theoretical expectations related to
the non-symmetrical behaviors, as illustrated schemati-
cally in Fig. 1. Indeed, even though the temperature can
be controlled very close to Tc in order to reach very small
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Figure 1: Top: Schematic diagram of coexisting liquid (up-
per branch) - gas (lower branch) density curve near the crit-
ical point (cp) of a simple fluid with critical temperature Tc
and critical density ρc. Inside the two-phase domain, the
dashed line and the full curve (with a “viewed hook” close
to cp) correspond to the expected rectilinear and singular
density diameters, respectively. The horizontal line at ρcell
evidences three characteric points (a,b,c) along the thermo-
dynamic path followed by cooling a cylindrical sample cell
filled at a mean density 〈ρ〉 ≡ ρcell slightly above the critical
density (〈δρ̃〉 = 〈ρ〉

ρc
− 1 > 0). Bottom: Expected meniscus

positions of a two-phase cell during cooling: a: Above the
volumetric median plane (VMP) of the cell at the coexistence
temperature (very close to Tc); b: Matching the VMP of the
cell at the temperature Tcross crossing the density diameter
curve; c: Below the VMP of the cell far from Tc.

∆τ∗ = T
Tc
− 1 values (lower than 10−5, typically), the

mean density 〈ρ〉 of the fluid cell of experiments has been
hardly at its exact critical value ρc [22]. The error-bar
related to the off-critical parameter 〈δρ̃〉 = 〈ρ〉

ρc
− 1 never

contribute to the discussion of the results in terms of true
experimental distance to the critical point. Nevertheless,
from the above experimental facts and the theoretical ex-
pectations, it appears that the related non-symmetrical
effects can be investigated even in a slightly off-critical
(liquid-like) density throughout the meniscus crossing the
volumetric median plane (VMP) of the cell at a single
finite temperature distance from Tc, i.e., Tcross < Tc, as
shown in Fig. 1. From the symmetrical lattice-gas model,
the meniscus of this liquid-like filled cell is expected to
be visible always above this VMP in the two-phase tem-
perature range.

Here, we intend to probe that SF6, generally consid-
ered [23–25] as a standard simple fluid to support the
critical asymmetry from complete scaling hypothesis [12–
14], cannot exhibit the previously viewed critical hook
(of 0.5% maximum amplitude) in the rectilinear density
diameter close to the critical point, as schematically il-
lustrated in Fig. 1. To support this examination, the
relative uncertainty in the SF6 filling density value was
controlled within better than +/- 0.04% precision above
0.2% of the critical density, significatively lower than the

expected critical hook of 0.5% level.
The technical details of the test cell (called ALIR5

[26]) are given in the supplemental material (see also
Ref. [27]). The viewed fluid volume consists in a quasi-
perfect disk-shaped cylindrical fluid volume (of thick-
ness ef = (2.510± 0.002) mm and diameter df = 2R =
(10.600± 0.005) mm). Its observation in light transmis-
sion leads to a two-phase fluid imaging similar to the
schematic bottom views of Fig. 1. This viewed cylin-
drical fluid volume (Vfv = πR2ef =

(
221.50+0.20

−0.70

)
mm3

[28]) is surrounded by two opposite, small, and strictly
similar dead volumes ( 1

2Vfb = (7.1± 0.2) mm3), which
correspond to the cell filling lines, positionned in the
thickness median plane. This cell (of total fluid volume
Vf = Vfv + Vfb =

(
235.70+0.5

−1.0

)
mm3) was filled with

99.995% pure SF6. The filling was made at a liquid-like
mean density, such as 〈δρ̃〉 = 〈ρ〉

ρc
− 1 =

(
0.20+0.04

−0.04

)
%,

as measured from our filling and weighing processes. As
schematically illustrated in the top part of Fig. 2, which
shows the colored fluid cross sections for different direc-
tions of the VMP, 8 different cell configurations are used
for the test. Each cell configuration is named (i,X),
where the digit i represents two opposite gravity orienta-
tions (g↓ for i = 1 and g↑ for i = 2) and the letterX is as-
sociated with directions of the meniscus position and/or
the VMP (X = H for θ = 0◦, X = V for θ = +90°,
X = T for θ = +22.9° and X = Z for θ = −23.2°).
We note that the (i, T ) and (i, Z) configurations are not
equivalent w.r.t. (w.r.t.) the liquid (or gas) positionning
as, in the (i, T ) case, one (on the gas-phase side) of the
dead volumes can always act as a well for liquid trapping.

A similar temperature-timeline is used for each cell
configuration during the temperature cooling of the cell,
where temperature follows a log scale to cover the range
1mK to 10K from Tc. As discussed in the supplemen-
tal material, the exact value of Tc (highly reproducible
over a 2mK range from 318.721K to 318.723K for the 8
experimental runs) is not essential for the following anal-
ysis. The liquid-vapor meniscus is observed from optical
transmission imaging through the cell, using LED illu-
mination and cell view observation with a CCD camera
(1024 × 1024 pixels) [29]. A physical pixel size corre-
sponds to 12µm. The image of each meniscus position
data is recorded when thermal equilibration and den-
sity relaxation are achieved at each temperature distance
Tc − T .

The highly symmetrical cell, the small off-critical av-
erage density filling, and the cell imaging provide highly-
symmetrical behavior of the meniscus position as a func-
tion of temperature for both (i = 1, 2, X) configurations
w.r.t. gravity (see details in supplemental material). The
exact position of the fluid in the cell image and the cell
VMP are measured at sub-pixel level. The pixel coordi-
nate of the meniscus, noted hiX , is measured as one half
part of the pixel difference between the bare positions,
i.e., by the distance from each VMP of the fluid cell.
The temperature behavior of hiX is reported in Fig. 2
for the 4 (i,X) directions. Except for the (i,X = T ) case
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Figure 2: (top) Schematic cross-sectional orientation of the
fluid volume and corresponding horizontal meniscus position
close to its VMP. (bottom) Temperature dependence of both
(i = 1 and i = 2) symmetrical pixel shifts of the meniscus
position (w.r.t. each corresponding VMP), for the 8 (i,X)
configurations. 1pixel=12µm.

-6

-4

-2

0

2

4

6

N
or

m
al

iz
ed

 M
en

isc
us

 P
os

iti
on

 [ 
10

2  z
/R

 ]

10-6 10-5 10-4 10-3 10-2 10-1

1 - T/Tc

 Experiment
 

 Eq.1: Linear density diameter case
        (no gravity effect included)
 

 CPM calculation (b2=0.00)

 Δρ~  = 0.002

 CPM calculation with gravity effect
        (no pressure scaling field, b2=-0.06)
 

 Kim-Fisher complete scaling theory 
        (using parameters to fit Weiner's data)

Figure 3: Full circles: Ratio h
R

for the (i, V ) configuration, as
a function of 1− T

Tc
. Full curve: Eq. (1) with 〈δρ̃〉Tc

= 0.002,
using a ∆ρ̃LV theoretical estimation without adjustable pa-
rameter (see text and Ref. [22] for details), ρ̃d = 1 + ad∆τ

∗

with ad = 0.84, and capillary correction as defined in the
text and supplemental material. Dashed curve: Normal-
ized meniscus position z

R
obtained from CPM calculations

for 〈δρ̃〉Tcoex
= 0.002, with compressible effects due to gravity

(see text). Dashed-dotted curve: Eq. (1) for 〈δρ̃〉Tcoex
= 0.002

and ∆ρ̃d given by Eqs. (3), using the the Kim and Fisher’s
[12] parameters.

discussed below, the temperature crossing of the VMP
occurs in the range 317.823 ≤ Tcross (K) ≤ 318.123 (ac-
counting for ±0.5-pixel uncertainty around hiX = 0).
Consequently, Tc − Tcross ' (750 ± 150)mK. Making
reference to Fig. 1 and anticipating the following mod-
elling approaches using non-dimensional quantities, we
note that the knowledge of the corresponding reduced
temperature distance ∆τ∗cross = Tcross

Tc
− 1 provides a sin-

gle value of 〈δρ̃〉 = 〈ρ〉
ρc
− 1. 〈δρ̃〉 thus depends only on

the related density diameter excess ∆ρ̃d = ρ̃d − 1, (here
ρ̃d = ρd

ρc
), without explicit knowledge of the absolute

value of ρc.

The first modelling is based on the CPM model [30] of
equation-of-state to define the temperature range where
the gravity effects are significant. We use the mass con-
servation to derive a relationship between the average
density and the local density profile of the compressible
fluid. Modelling considers an ideal, non-dilatable cylin-
drical fluid sample volume of radius R and depth ef ,
ignoring the role of the two dead volumes and neglecting
the capillary effects. The CPM permits to estimate the
local chemical potential (at position z) and the density
profile ρ (z) along the vertical axis of the cell. The den-
sity profile is a function of the temperature T , position z,
and the CPM non-universal parameters ū, l0, m0, and b2.
The latter one, b2, is often referred to as the field mixing
parameter [31, 32], or asymmetry parameter since a well-
defined value of b2 appears characteristics of the singular
asymmetry in the two-phase domain. Once we fix the
constant average density of the cell, 〈ρ〉 = 1.002ρc (i.e.,
〈δρ̃〉 = 0.002, see below), the corresponding meniscus po-
sition z0 can be found through numerical integrations and
root finding methods. Introducing a dimensionless vari-
able z∗ = z

R , the better fitting adjustment of z∗ to hiX

R
can be obtained for a particular set of the CPM param-
eters. Using our previous results ū = 0.166, l0 = 38.303,
m0 = 0.4877 from fitting the SF6 compressibility, heat
capacity, and coexisting curves (see Ref. [22]) and fix-
ing b2 = 0 leads to the dotted curve in Fig. 3. This
curve shows that the meniscus position can never be ob-
served below the VMP of the cell. Such a behavior is also
expected from the symmetrical uniaxial 3D-Ising model
and the symmetrical lattice-gas model.

The modelling is thus performed by only using the
parameter b2 as a single adjustable quantity to explain
the meniscus position behavior hiX

R (|∆τ∗|) around Tcross.
The result is illustrated by the dashed curve in Fig. 3,
with b2 = −0.06 ± 0.01. Only the (i, V ) configuration
data are reported here to simplify the comparison with
the experiments, especially approaching Tc where the
contribution of the compressible effects does matter. Ad-
ditional analytic modelling results obtained by changing
the cell diameter from reference to df = 2R, have also
confirmed that the relative importance of the effective
cell height in the different configurations is significant
only close to the critical temperature (|∆τ∗| < 10−4).

The results given in Fig. 3 support following remarks:
(i) The compressibility effects become noticeable only
within the reduced temperature range |∆τ∗| < 10−4,
i.e., Tc − T . 30mK. We note that these effects can
be observed in our experiment only in the temperature
range Tc − T . 15mK, using a grid shadow diagnosis
[29] and/or local turbidity measurements on both sides
of the gas-liquid meniscus; (ii) The CPM results (with
b2 = −0.06±0.01) shown as a dashed curve are consistent
with the measured meniscus position around the crossing
temperature of the VMP. Although the CPM calculation
remarkably matches the current SF6 data [6], we note
that the value b2 = −0.06 differs significantly from the
value b2 = 0.035 obtained using the direct description of
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the Weiner’s density diameter data in Ref. [24], even in
its sign. Such results point out the practical difficulties
to separate system-dependent parameters (e.g., free am-
plitudes of the |∆τ∗|1−α, |∆τ∗|, and correction to scaling
terms) unambiguously from the CPM modelling .

To shed light on this singular asymmetry problem, we
used an additional modelling of the data, without refer-
ence to CPM, to analyze the meniscus behavior using a
simple law of rectilinear diameter and compare it directly
with the singular diameter case .

This second modelling can be performed in the tem-
perature range Tcoex − T > 30mK where the gravity
effects are neglected. A simple geometrical consideration
(see Ref. [33]) based on the mass conservation inside
the total volume, Vf = Vfv + Vfb = πR2ef (1 + x) (with
x =

Vfb

Vfv
' 0.060), leads to the following analytical form

of h
R

h

R
=
π

4

〈δρ̃〉T −∆ρ̃d
∆ρ̃LV

(1 + x)−
〈δh〉ca
R

, (1)

The difference ∆ρ̃d = ρL+ρV
2ρc

− 1 is the excess quantity
from ρ̃d, and ∆ρ̃LV = ρL−ρV

2ρc
is the symmetrical density

coexistence curve. As detailed in supplemental material,
two disturbing effects of the meniscus position are in-
corporated in Eq. (1) through the quantities 〈δρ̃〉T and
〈δh〉ca, respectively. 〈δρ̃〉T accounts for the cell thermal
expansion through a linear approximation of the tem-
perature change of the reduced average density change
〈δρ̃〉Tc

defined at Tc. The equivalent height 〈δh〉ca, as-
sumed proportional to the squared capillary length, ac-
counts for a practical approximation of the liquid volume
involved in the capillary rise along the windows and the
cell body. Here it is only essential to note that capillary
rise effect can be neglected when Tc − T . 3K, while
the cell thermal expansion effect remains easy to esti-
mate of 2 % at Tc − Tcross ' 750mK and lower than 8 %
when Tc − T < 3K. In such a latter temperature range
only the first-term in Eq. (1) is thus important, and for
〈δρ̃〉Tc

> 0, the meniscus crosses the median plane at
Tcross, where 〈δρ̃〉Tcross

= ∆ρ̃d.
We first consider the rectilinear behavior of the reduced

density diameter

ρ̃d = 1+ad |∆τ∗| (2)

where the excess quantity ∆ρ̃d is proportional to |∆τ∗|.
The value ad = AdTc

ρc
= 0.84 ± 0.025 is obtained ana-

lyzing the coexisting density data of Refs. [34, 35] on
the two-phase temperature range 288K . T . 316K.
The measured value of Tcross corresponds to 〈δρ̃〉Tcross

=
(0.20±0.04)%. Accordingly, fixing 〈δρ̃〉Tc

= 0.002 to cal-
culate 〈δρ̃〉T , the full curve of Fig. 3 represents h

R of Eq.
(1), where ∆ρ̃d = ρ̃d − 1 results from Eq. (2) and where
is accounted for the capillary rise correction as given in
supplemental material. The resolution in the image pro-
cessing at the sub-pixel level is a key to the accurate de-
termination of the filling density when the reduced slope

of the linear density diameter is only the unknown (but
essential) physical parameter in the temperature range
around Tcross. As shown in xenon [6] and similarly in
Ref. [22] for SF6, the singular top-shape of the reduced
coexistence curve ∆ρ̃LV (|∆τ∗|) for |∆τ∗| > 10−2 was
predicted without adjustable parameter, using the theo-
retical master crossover functions [21] estimated from the
massive renormalization scheme [19, 20]. Nevertheless,
any other effective power laws to describe ∆ρ̃LV of SF6

(such as ∆ρ̃LV = 1.7147 |∆τ∗|0.3271
+0.8203 |∆τ∗|0.8215−

1.4396 |∆τ∗|1.2989 from Ref. [25]) do not modify the cur-
rent analysis, especially considering the two temperature
decades 30mK ≤ Tc−T ≤ 3K, where compressiblity and
capillary rise effects are negligible.

We secondly consider the expected singular shape of
the density diameter as predicted from the various com-
plete field mixing approaches [10–14, 17]. The corre-
sponding singular excess quantity presumably satisfies
the following form:

∆ρ̃d =
Aβ |∆τ∗|2β +Aα |∆τ∗|1−α +A1∆τ∗ +A∆ |∆τ∗|x∆

1 + a∆ |∆τ∗|∆
(3)

with α = 0.109, β = 0.326, ∆ = 0.52, and x∆ = 1−α+∆.
Since 1974, several amplitude sets obtained from the
Weiner’s data fitting were published in literature [12, 14].
For clarity, only are here used in Eq. (3) the Kim and
Fisher’s [12] parameters, Aβ = 1.0864, Aα = −7.990,
A1 = 9.770, A∆ = 0,and a∆ = 3.318, noting no signifi-
cant difference using any other literature parameter sets
despite the large differences in the values of each ampli-
tude term. By fixing 〈δρ̃〉Tc

= 0.002, the corresponding
estimation of h

R is illustrated by the dashed-dotted curve
in Fig. (3). Clearly, the h

R calculations for the singu-
lar density diameter case are not compatible with our
current experimental data, especially in the two decades
10−4 < |∆τ∗| < 10−2, i.e., 32mK > Tc − T . 3.2K,
where compressibility and capillary rising effects are neg-
ligible.

The noticeable inconsistency between the current data
and any theoretical singular modelling based on Eq. (3)
could be attributed to the fitting process of the ρ̃d exper-
imental values using this non-analytic theoretical func-
tional form. The main reason is presumably due to the
large number of adjustable parameters in Eq. (3) and
effective relative contributions of each power-law term
at least one-decade larger than the maximum amplitude
(0.5%) of the global excess deviation, especially close to
the critical temperature. In addition, a systematic larger
error-bar in these fitting results can be implicitely due
to the Weiner’s values of the critical parameters ρc, εc,
and then CMc = 1

ρc
εc−1
εc+2 , which are significantly differ-

ent (−1.35%, −10.9%, and −3.3%, respectively) from the
litterature values [36].

As a conclusive remark, the predictive modelling of
h
R from Eq. (1) and rectilinear density diameter of Eq.
(2) compare well (in amplitude and uncertainty) with
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the measurements. Along the off-critical thermodynamic
path of (0.20± 0.04) % in the mean density, the high res-
olution imaging analysis of the SF6 in two-phase domain
shows no evidence of any singular hook-shapped devia-
tion in the rectilinear density diameter near the critical
point. The main part of the uncertainty in the rectilinear
density diameter remains due to the accuracy (0.21%) for
the SF6 critical density value. In this simple experiment,
the cell thermal expansion, the fluid compressibility, and
the liquid wetting effects are well controlled, thanks to
the highly symmetrical sample geometry, while the den-
sity diameter is understood without any additional ad-
justable parameters, except for the slope of the linear
density diameter. More accurate data on SF6 obtained
in the new experiment is consistent with other normal
fluids showing no detectable deviations from the rectilin-

ear diameter. Although the validity of the complete scal-
ing theoretical framework has been well-demonstrated for
many fluids systems including the binary solutions with
extraordinary asymmetry, its experimental validation re-
mains extremely challenging in one-component fluid sys-
tems.
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