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In this work, we elucidate the mathematical structure of the integral that arises when computing
the electron-ion temperature equilibration time for a homogeneous weakly-coupled plasma from
the Lenard-Balescu equation. With some minor approximations, we derive an analytic formula,
requiring no input Coulomb logarithm, for the equilibration rate that is valid for moderate electron-
ion temperature ratios and arbitrary electron degeneracy. For large temperature ratios, we derive the
necessary correction to account for the coupled-mode effect, which can be evaluated very efficiently
using ordinary Gaussian quadrature.

I. INTRODUCTION

Computing the equilibration time of a two-
temperature electron-ion plasma is a fundamental
problem in plasma physics. Over the decades, theories
have been developed that include physics beyond what
is captured in simple Landau-Spitzer formulas [1, 2],
such as fermion statistics and collective oscillations. For
a weakly-coupled plasma, the quantum Lenard-Balescu
equation [3, 4] is believed [5–7] to be a very good
approximation. In the form given in Refs. [5–8], the
instantaneous equilibration rate is

dTi
dt

= − ~
3π3ni

∫ ∞
0

dkk2

∫ ∞
0

dωω

∣∣∣∣ vei(k)

ε(k, ω)

∣∣∣∣2
×
[
N

(
~ω

2kBTi

)
−N

(
~ω

2kBTe

)]
Imχ(0)

e (k, ω)Imχ
(0)
i (k, ω),

(1)

where k is the wave vector, ω is frequency, ni is the num-

ber density of ions, N(x) = coth(x), χ
(0)
j (k, ω) is the

free-particle response function of species j, vei(k) is the
Fourier transform of the Coulomb potential,

vei(k) = −4πZe2

k2
, (2)

Z is the ionic charge, and ε(k, ω) is the dielectric function
in the random phase approximation,

ε(k, ω) = 1− 4πe2

k2
[χ(0)
e (k, ω) + Z2χ

(0)
i (k, ω)]. (3)

Equation (1) can be derived in many different ways; lin-
ear response and fluctuation-dissipation arguments [6],
Keldysh Green’s functions [9, 10], or simply starting from
the quantum Lenard-Balescu collision operator [5, 8].

All such derivations assume: (a) The ionic charge,
Z, is fixed over the interval of time in which the in-
stantaneous rate of (1) applies, and (b) The plasma
is sufficiently weakly coupled that potential energy can
be completely neglected (other than for the screening
and scattering processes themselves), so that kinetic

energy conservation is mandated. Both assumptions
are standard in often-used analytic expressions for T -
equilibration [1, 2, 5, 6] [11]. An important consequence
of kinetic energy conservation, 3

2niTi+
3
2neTe = constant,

is dTe/dt = −(ni/ne)× dTi/dt. Thus, we only report ex-
pressions for dTi/dt in this work.

It is not our aim here to shed any new light on the
physics of this problem. Rather, we devote this work
to developing techniques for evaluating (1) efficiently
enough that it can be quickly carried out as part of a
larger computation, such as a radiation-hydrodynamic
simulation of a fusion-burning plasma [12]. In the pro-
cess we will show that these integrals are not nearly as
difficult as generally assumed, especially with the help of
some fairly minor approximations, and indeed we give an
analytic formula, equation (63), that is accurate over a
wide range of conditions. Where (63) is not necessarily
a good approximation is deep in the so-called coupled
mode regime [8]. This occurs when the electron and ion
temperatures are separated sufficiently, and/or Z is suf-
ficiently large, that an ion acoustic oscillation impacts
the rate. Mathematically, this occurs in the part of the
integrand where

Re ε(k, ω) = 0 (4)

and Imε(k, ω) is small, and will manifest as a sharp peak
in the integrand. As we will show, the approximation
leading to (63) begins to break down when

Ti < 0.28ZTeff (5)

where Teff is an effective electron temperature that we
will derive carefully later. Suffice it to say for the moment
that for strongly degenerate electrons [8]

Teff →
2

3
EF , (6)

where EF is the Fermi energy (see (14) below), and

Teff → Te (7)

in the classical limit. Vorberger and Gericke [8] give a
condition similar to (5) although they estimate the con-
stant to be more like 0.27. This difference is unimpor-
tant, and one might even question the value of stating
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the coupled mode condition (5) with such precision; we
only wish to point out that the particular coupled mode
effect of interest to us only begins causing mathemati-
cal issues when (5) is satisfied. In practice, our main
concern regarding coupled modes is computing (1) when
Ti � ZTeff .

We should point out here that recent work [13] has
called into question whether coupled modes can ever re-
ally impact the temperature equilibration rate in a physi-
cal plasma system. Specifically, the effect was not seen in
classical molecular dynamics simulations set up at con-
ditions where it was expected to be important. Instead,
the observed rate was closer to that obtained from the
so-called Fermi golden rule approximation [9], in which
the dielectric function is factored into electron and ion
pieces,

|ε(k, ω)|2 = |εe(k, ω)|2|εi(k, ω)|2. (8)

This approximation facilitates analytic computation us-
ing a sum rule but decouples the modes. It was argued
in Ref. [13] that strong ion-ion coupling may modify the
predictions of the standard Lenard-Balescu equation, in
which the random phase approximation is adopted for
the plasma screening [3, 4]. Although some of us were
involved in that work, we will take no position on it
here. Instead, we present a method for efficiently cor-
recting (63) to account for the coupled mode effect when
it might occur (and as predicted using a strict applica-
tion of the Lenard-Balescu equation [8–10]), and leave
the debate about the necessity of such a correction for
another place. This will enable researchers to perform
sensitivity studies in which the potential effects of cou-
pled modes can be assessed in applications, following the
spirit of Ref. [14].

Our main approximation will be the neglect of quan-
tum diffraction in the dielectric function only. As pointed
out in Ref. [15], quantum diffraction is important
for large wavenumbers at which, assuming the thermal
de Broglie wavelength is much smaller than the De-
bye length, screening is not very important. This sug-
gests we need not keep diffraction in the dielectric func-
tion, an approximation which, somewhat surprisingly
perhaps, simplifies the problem enormously. Another
important mathematical issue revolves around the coef-
ficient α ≡ meTi/(miTe). The large mass disparity be-
tween electrons and ions means that α is generally small
for physically relevant situations, and when Te � Ti it
only becomes smaller. In section III, we show that when
we set α = 0 and neglect diffraction in the dielectric func-
tion, it is possible to find an exact expression for (1). The
strategy is to find the Laurent expansion of the dielec-
tric function and to perform the integral in the complex
frequency plane. These details are relegated to the ap-
pendices, with the main text used to report the results
and to call attention to particularly interesting features
of the derivation. The exact formula is given in pow-
ers of 1/Λ, where Λ is a parameter we will derive that
is typically large in weak coupling. It will also prove to

be the argument of the ubiquitous Coulomb logarithm
[1, 2], log Λ, although we stress that this quantity will
arise naturally from the evaluation of convergent inte-
grals and will not be put in “by hand” as it is in the
Landau-Spitzer formula.

Where coupled modes are important, setting α = 0
in the dielectric function prevents one from fully captur-
ing the effect. In this regime, the method of section III
does not work and in section IV we lay out the modified
strategy for handling this situation. Here, rather than
evaluating the ω-integral exactly, we first perform the k-
integral to order 1/Λ3, leaving us with a one-dimensional
integral over ω that has no difficult peaks but can no
longer be solved exactly. It can, however, be handled
with ordinary Gaussian quadrature. This allows us to
isolate the place it is necessary to retain a non-zero α
and so to derive a correction to be added, if needed, to
the α = 0 formula.

In section V, we compare numerical evaluations of (1)
to our exact solution to demonstrate its wide range of
validity.

II. INTEGRAND

Here, we define the various functions used in (1) and
the approximations that facilitate our calculations. We
work in dimensionless variables with the help of the fol-
lowing definitions,

x2 ≡ miβiω
2

2k2
, y2 ≡ ~2βik

2

8me
, α ≡ meβe

miβi

γ ≡ βe
βi

=
Ti
Te
, η ≡ λQ

λD
, ρ ≡ 2

√
me/mi(γ − 1) (9)

and

λ2
Q ≡

~2βi
8me

, λ2
D ≡

1

4πe2Z2niβi
, (10)

where βe,i = 1/(kBTe,i). Note that, as already pointed
out, the parameter α is always small unless Ti � Te by a
factor comparable to the mass ratio, an extreme situation
that will not concern us here.

A. Response functions

The free-particle response function is given by the in-
tegral

χ(0)
q (k, ω) = lim

η→0+

∫
d3v

f(v)− f(v + ~k/m)

~ω − ~v · k− ~2k2

2m + iη
.(11)

For the electrons, we use the Fermi-Dirac distribution,

fe(v) =
2m3

e

h3

1

exp (βemev2/2 + µ) + 1
, (12)
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which we write in terms of the classical momentum mev
when doing the response function integrals. The dimen-
sionless chemical potential, µ, is determined by particle
number conservation,∫ ∞

0

x1/2dx

1 + ex+µ
=

2

3
Θ−

3
2 (13)

where Θ is the degeneracy parameter

Θ ≡ 1

βeEF
=

2me

βe~2(3π2ne)2/3
. (14)

Note that our µ is the negative of the usual definition; a
fit is given in Appendix A.

The imaginary part of the electron response function
is well-known (e.g., [16]) and is given by

Imχ(0)
e (x, y) = − m2

e

2π~4βek

[
ln
(

1 + e−µ−(
√
αx−√γy)2

)
− ln

(
1 + e−µ−(

√
αx+
√
γy)2

)]
. (15)

This form includes both quantum diffraction and elec-
tron degeneracy. Expanding (15) to lowest order in the
small parameter α, we have the alternative form that we
will use in (1) in the numerator, outside the dielectric
function,

Imχe(x, y) ≈ − m
3/2
e
√
αx√

2π
√
βe~3

1

1 + eγy2+µ
. (16)

As for the ions, we use (11) but with the Maxwell distri-
bution

fi(v) = ni

(
miβi
2π

)3/2

exp
(
−βimiv

2
)

(17)

which leads to

Imχi(x, y) = −niβi
√
π

2

√
mi

me

1

y
e−y

2−x2

sinh

(
2

√
me

mi
xy

)
.

(18)
Once again, this will be used outside the dielectric func-
tion in (1).

B. Dielectric function

Inside the dielectric function, as promised, we drop
quantum diffraction. That is, we take the limit ~ → 0
where it explicitly appears in (11) but retain it in the
Fermi-Dirac distribution. We need both the real and
imaginary parts of the response functions, and for the
ions we have the well-known expressions

Reχi(x) = −niβi [1− 2xF (x)] (19)

Imχi(x) = −niβi
√
πxe−x

2

, (20)

where F (x) is the Dawson function [17],

F (x) ≡ e−x
2

∫ x

0

et
2

dt = xe−x
2

∫ 1

0

es
2x2

ds . (21)

In Appendix B, we derive the electron response function,

Reχe(x) =

−neβeff

[
1− e−µ

I− 1
2
(−µ)

2
√
αxF (

√
αx;µ)

]
(22)

Imχe(x) = −neβeff

√
π

1

I− 1
2
(−µ)

√
αx

1 + eµeαx2 , (23)

where I− 1
2
(−µ) is a Fermi-Dirac integral, defined in equa-

tion (B17), and F (x;µ) is a generalization of the Daw-
son function for degenerate electrons. As we will see in
section IV, we can set α = 0 in the real part, even in
the coupled mode regime, so we fortunately never need
to evaluate F (x;µ). The effective electron temperature,
βeff , is defined to make (22) and (23) look as much like
their classical counterparts, (19) and (20), as possible.
Comparing (B22) to (B19) (with α = 0) gives

neβeff ≡
4
√

2π3/2m
3/2
e I− 1

2
(−µ)

h3
√
βe

, (24)

and we also define an effective temperature ratio,

γeff ≡
βeff

βi
. (25)

The effective temperature has the limits

βeff → βe when Te � TF
βeff → 1/TF as Te → 0 .

(26)

Note that an effective electron temperature is often used
in Coulomb logarithms in the form

Teff =

[
T pe +

(
2

3
EF

)p]1/p

(27)

precisely to capture these two limits. Generally, p = 2 is
used but in Ref. [18] it was suggested that p = 9/5 pro-
duces slightly better results for some calculations. We
find as well that p = 9/5 provides a very accurate ap-
proximation to (24), with maximum error around 2%,
although using p = 2 is not very much worse. On the
other hand, our formula can be easily evaluated with the
help of Dandrea, Ashcroft and Carlsson’s [19] very accu-
rate Padé approximant, given in Appendix A. Putting
the results of this section together, the dielectric function
is

ε(x, y) = 1 +
η2

y2
w(x) (28)

where

w(x) = wr(x) + iwi(x) (29)

and

wr(x) = 1 +
γeff

Z
− 2xF (x) (30)

wi(x) =
√
π

(
γeff

Z

1

I− 1
2
(−µ)

√
αx

1 + eµeαx2 + xe−x
2

)
.(31)



4

Here we can clearly see the benefit of dropping quan-
tum diffraction. Normally, w(x) would be a function of
both x and y, as is obvious from a glance at (15), but
instead we have (28). This clean separation between the
variables x and y is a key component of our (otherwise)
exact solution.

C. Final form of integral

Now, we put the response functions (16) and (20) into
the integral (1). Making use of the following identity,[

N

(
~ω

2kBTi

)
−N

(
~ω

2kBTe

)]
sinh

(
~ωβi

2

)
=

sinh
[
2(γ − 1)

√
me/mixy

]
sinh

[
2
√
me/miγxy

]
≈

sinh
[
2(γ − 1)

√
me/mixy

]
2
√
me/miγxy

(32)

we find

dTi
dt

= −8

3

e4m
3/2
e e−µ

π3/2~3βe
√
mi

∫ ∞
0

dy

y2

∫ ∞
−∞

dxx
e−x

2

|ε(x, y)|2

× sinh
[
2(γ − 1)

√
me/mixy

] e−(me/mi+γ)y2

1 + e−µ−γy2
. (33)

An interesting thing to note here is that if we drop all
quantum diffraction terms and set ε(x, y) = 1 in the pre-
vious integral, the result is exactly Brysk’s correction to
the Landau-Spitzer formula. The details of this are given
in Appendix C.

To facilitate our later treatment of the dielectric func-
tion, we make use of the formula

1

|ε(x, y)|2
=

1

2iImε(x, y)

[
1

ε∗(x, y)
− 1

ε(x, y)

]
(34)

and note that ε∗(x, y) = ε(−x, y). Similarly
Imε(−x, y) = −Imε(x, y). We can use these in the first
term in (34), and then change the integration variable
x→ −x to see that the replacement

1

|ε(x, y)|2
→ −1

i

1

Imε(x, y)

1

ε(x, y)
(35)

does not change the integral. We also expand the sinh in
the integrand

sinh
[
2(γ − 1)

√
me/mixy

]
=

∞∑
n=0

ρ2n+1

(2n+ 1)!
y2n+1x2n+1

(36)
where ρ is defined in (9). In general, only one or two n
need to be retained.

The integral is now

dTi
dt

=
8

3i

e4m
3/2
e e−µ

π3/2~3βe
√
mi

∞∑
n=0

ρ2n+1

(2n+ 1)!

×
∫ ∞

0

dy

∫ ∞
−∞

dx
x2n+2y2n−1

Imε(x, y)

e−x
2

ε(x, y)

e−(me/mi+γ)y2

1 + e−µ−γy2
.(37)

It appears we have made this quantity complex, but the
real part of the integral is zero by symmetry, leaving it
purely imaginary to cancel the i in the prefactor. For the
coming work, this is the most useful form.

III. EXACT SOLUTION FOR α = 0

Given the smallness of α, it may seem reasonable to
set α = 0 in the electron response function. Though we
will ultimately do this, it requires serious consideration
because sum rules no longer produce the correct results
when α = 0. On the other hand, it seems that this is not
really a problem outside of the coupled mode regime, as
we will show in section V. It has been previously pointed
out that this approximation allows an exact evaluation of
integrals similar to (1) in the context of the conductivity
problem [15, 20] although our method is new, as far as
we know.

Setting α = 0 in the dielectric function leaves us with

ε(x, y) = 1 +
η2

y2

[γeff

Z
+ 1− 2xF (x) + i

√
πe−x

2
]
(38)

and we have the simplification

xe−x
2

Imε(x, y)
=
y2

η2

1√
π
. (39)

The main observation that aids the calculation is that in
the complex plane, for large complex x→ z, we have the
Laurent expansion

η2γeff

y2Zε(z, y)
=

∞∑
n=0

a2n(y)

z2n
, (40)

where the coefficients a2n(y) are calculated in Appendix
D. The x-integral we are planning to solve is

Inx =

∫ ∞
−∞

η2γeff

y2Zε(x, y)
x2n+1dx. (41)

In the complex plane, we integrate along the x-axis,
where there are no singularities, and close the path by
integrating along the arc |z| = R, taking R → ∞. We
denote this arc component of the integration as IR. Be-
cause there are no singularities in the upper half plane
for the dielectric function (38), we have

Inx = −InR, (42)

where

InR = i

∞∑
m=0

a2m(y)

∫
z2(n−m+1)θdz. (43)
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The integration is over the arc z = Reiθ in the upper half
plane, i.e. θ ∈ [0, π]. This is easily performed, the result
is in fact zero unless m = n+ 1, and we have

Inx = −iπa2n+2(y) (44)

so that

dTi
dt

= −8

3

Z3e4m
3/2
e e−µ

π~3βe
√
miη4γeff

∞∑
n=0

ρ2n+1

(2n+ 1)!
Jn (45)

where

Jn ≡
∫ ∞

0

y2n+3 e
−(me/mi+γ)y2

1 + e−µ−γy2
a2n+2(y)dy. (46)

It is sufficient for a wide range of conditions to calculate
these for n = 0 and 1. Starting with n = 0, we have,
after a convenient change of variables

J0 =
γeffη

4

4Z

∫ ∞
0

te−t

(1 + e−µ−rt)(t+ 1/Λ)2
dt (47)

where

1

Λ
≡ γeffη

2(me/mi + γ)

Z
(48)

which is generally a small quantity in weak coupling. The
parameter r ≡ γ/(me/mi + γ) we refer to as the Brysk
number, for the following reason. When γ � me/mi,
which is to say for essentially all conditions of interest,
r ≈ 1. However, in the opposite limit, when γ � me/mi,
r ≈ 0 and we can take the first factor in the denomi-
nator of the integrand in (47) outside of the integral, so
quantum degeneracy just produces a Brysk multiplica-
tive correction. Normally this correction is somewhat
useful at weak degeneracy, but when r ≈ 0, it is exactly
the right thing to do. This is of course a rare situation,
where we are unlikely to apply this formula anyway, so
we will set r = 1 from now on.

We point out here that although the integral (1) is
completely convergent, the exact mode of this conver-
gence may not always be physically justified. If we write
(48) in the form

1

Λ
=
b2min

b2max

(49)

then we have

b2min = λ2
th =

~2

8

(
βi
mi

+
βe
me

)
(50)

b2max = λ2
Debye =

1

4πe2Zniβeff
. (51)

However, if the Landau length (the classical distance of
closest approach ∼ Ze2/Te), b0, is greater than the ther-
mal de Broglie wavelength, then really b0 ought to serve
as bmin. A similar competition exists between the De-
bye wavelength and the Wigner-Seitz radius, ai [21, 22].

Although neither b0 nor ai appear anywhere in (1) as
written, we can account for this physics by modifying
the length scales to be

bmin = max[λth, b0] (52)

bmax = max[λDebye, ai], (53)

or some form that interpolates smoothly between the
regimes. These corrections are somewhat ad hoc and
we will not use them in the remainder of the paper, but
we mention them because they are commonly used in
Coulomb logarithm formulas (see section V) to extend
their range of validity.

We now have

J0 =
γeffη

4

4Z
f̃

(
1

Λ

)
(54)

where

f̃(x) ≡
∫ ∞

0

te−t

(1 + e−µ−t)(t+ x)2
dt . (55)

This is a special function that does not appear to be
expressible in terms of anything simple. Integrating it
numerically would certainly not prove to be much of a
challenge but we really only need to be able to evaluate
it for small x. In Appendix E, we derive the needed
expansion, which is a somewhat tricky procedure. To
order x3 lnx (we also have some pieces of higher-order
terms),

f̃(x) = ex
[
U1(µeff)− eµeff

B(µeff)
− eµeff

B(µeff)
lnx

− e2µeff

[B(µeff)]2
x lnx+

(
2e2µeff

[B(µeff)]2
− U2(µeff)

)
x

+
e2µeff (−1 + eµeff )

4[B(µeff)]3
x2 − e2µeff (1− 4eµeff + e2µeff )

36[B(µeff)]4
x3

]
(56)

where B(µ) is part of the Brysk degeneracy factor,

B(µ) ≡ 1 + eµ (57)

and µeff is an effective chemical potential,

µeff = µ− x. (58)

The motivation for the latter is given in Appendix E.
The numbers U1(µ) and U2(µ) are defined by

U1(µ) ≡
∫ ∞

0

ln te−t

(1 + e−µ−t)2
dt (59)

U2(µ) ≡ −
∫ ∞

0

ln t(e−t − e−2t−µ)

(1 + e−µ−t)3
dt. (60)

In the classical limit, these are U1(µ)→ γE and U2(µ)→
−γE , where γE ≈ 0.57722 is the Euler constant. To
evaluate these functions, we use the fits,

U1(µ) =


0.949714eµ ln |µ| µ < −5

a0 + a1µ+ a2µ
2 + a3µ

3

+a4µ
4 + a5µ

5 + a6µ
6 −5 ≤ µ ≤ 1

−γE tanh[0.4753(µ+ 0.04989)] µ > 1

(61)
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U2(µ) =


1.16511eµ/µ µ < −4

a0 + a1µ+ a2µ
2 + a3µ

3

+a4µ
4 + a5µ

5 + a6µ
6 −4 ≤ µ ≤ 1

γE tanh[0.4914(µ− 0.772571)] µ > 1

(62)
Putting all these things together we have, for n = 0,

dTi
dt

(0)

= −4

3

e4Z2m2
ee
−µ

π~3βemi
(γ − 1)f̃

(
1

Λ

)
. (63)

Although this is sufficient for many applications, we will
also add the correction for n = 1.

To do this, we need J1 from (46). This leads to yet
more special functions for which we again need the small
x expansions. The procedure is essentially no different
from what we have already shown so we omit the deriva-
tions. The result is

dTi
dt

(1)

= −4

9

e4Z2m3
ee
−µ

π~3βem2
i

(γ − 1)3

×
[
η2f̃5

(
1

Λ

)
+

3

γ +me/mi
f̃4

(
1

Λ

)]
(64)

where

f̃4(x) = ex
[
eµeff ln(1 + e−µeff )− 2U1(µeff)x

+

(
U2(µeff)− 5e2µeff

2[B(µeff)]2

)
x2 +

e2µeff (1− eµeff )

6[B(µeff)]3
x3

+
2eµeff

B(µeff)
x lnx+

e2µeff

[B(µeff)]2
x2 lnx

]
, (65)

f̃5(x) = ex
[
− 3eµeff

2B(µeff)
+ U1(µeff)

+

(
2e2µeff

[B(µeff)]2
− 2U2(µeff)

)
x

+

(
3e2µeff (eµeff − 1)

2[B(µeff)]3
+ U3(µeff)

)
x2

+
e2µeff (1− 4eµeff + e2µeff )

18[B(µeff)]4
x3 − eµeff

B(µeff)
lnx

+
e2µeff (1− e2µeff )

2[B(µeff)]3
x2 lnx

]
(66)

and

U3(µ) ≡ e−2µ

2

∫ ∞
0

e−3t(1− 4eµ+t + e2µ+2t) ln t

(1 + e−µ−t)4
dt.

(67)
Once again, we use a fit for U3(µ),

U3(µ) =


−1.01714eµ/(2µ2) µ < −3.75

a0 + a1µ+ a2µ
2 + a3µ

3

+a4µ
4 + a5µ

5 + a6µ
6 −3.75 ≤ µ ≤ 1

−0.5γE tanh[0.5241(µ− 1.6374)] µ > 1

(68)
with the coefficients given in Table I. Equation (64) is
meant to be added to (63) if the temperature difference is

U1 U2 U3

a0 -0.0617725 -0.118312 0.104306

a1 -0.183813 0.0823933 0.0638929

a2 -0.052559 0.0971156 -0.0357814

a3 0.0183355 0.013315 -0.033785

a4 0.0113972 -0.00760402 -0.00625476

a5 0.00199856 -0.00246233 0.000446359

a6 0.00012039 -0.000203598 0.000152431

TABLE I. Fitting coefficients for the special functions U1(µ),
U2(µ) and U3(µ).

large enough to require the next power in γ−1. This pro-
cedure can be carried on to arbitrary n, with the results
becoming increasingly complicated, but the reader is left
on his or her own for that; it is unclear that even (64)
is actually necessary for applications of current interest.
We give some numerical examples in section V.

IV. COUPLED MODES

Dropping α completely from the dielectric function, al-
though leading to an accurate approximation for a wide
range of conditions, does not allow us to capture the cou-
pled mode effect completely. The crux of the problem is
illustrated in Figure 1, where we have plotted the piece
of the integrand in equation (33),

A(x, y) ≡ xe−x
2

|ε(x, y)|2
, (69)

for hydrogen at Ti = 1.0 × 105K, Te = 3.0 × 107K and
ne = ni = 1026 cm−3 at y = 2.1. At these conditions,
γeff = 0.0032 and α = 1.8 × 10−6 . In the top panel in
Figure 1, we plot (69) for y = 2.1 and α = 0 in the dielec-
tric function and in the bottom panel is A(x, 2.1) with α
retaining its physical value. As we can see, the two plots
are qualitatively similar, each with a sharp ion acoustic
peak around x ≈ 4.9, but the height of the peak is far
greater when α = 0. This is what causes the overestima-
tion of equilibration rate in the coupled mode regime if
we drop α. Note, however, that we can always neglect
α in the real part of the dielectric function because this
piece primarily fixes the location of the peak; a small α
will move it hardly at all. It is the imaginary part that
determines the height, and here is where we need to be
careful about dropping α in the coupled mode regime.

Retaining α in the calculation of the previous section
leads to complications that render the method imprac-
tical. Instead, we take the alternative approach of first
integrating (37) over the dimensionless wave number y,
a technique that has been used successfully for related
problems [15, 23]. For this, we define the double inte-
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grals Jn by

dTi
dt

=
8

3i

e4m
3/2
e e−µ

π3/2~3βe
√
mi

∞∑
n=0

ρ2n+1

(2n+ 1)!
Jn (70)

Jn ≡
∫ ∞

0

∫ ∞
−∞

x2n+2e−(1+α)x2

η2wi(x)

× e−(me/mi+γ)y2

y2 + η2w(x)

y2n+3

1 + e−(αx2+γy2+µ)
dxdy . (71)

Now we expand the special function defined by the y-
integral to a few orders in its argument, which in this
case is a complex function. Isolating this y-integral, we
define

In[η2w(x)] ≡
∫ ∞

0

y2n+3

1 + e−(γy2+µ)

e−(me/mi+γ)y2

y2 + η2w(x)
dy ,

(72)
where w(x) = wr(x) + iwi(x) is given by (30) and (31).
Clearly, the special function we need to study is

fn(z;µ) ≡
∫ ∞

0

e−ttn+1

(t+ z)(1 + e−µ−t)
dt (73)

Defining the variable u to make the substitution

u ≡ t+ z (74)

to write

fn(z;µ) = ez
∫ ∞
z

e−u(u− z)n+1

u(1 + e−µ+z−u)
du. (75)

Finding the expansion of this function in z is tedious but
straightforward. It follows a procedure similar to that
outlined in Appendix E except that it is not possible
to combine the z inside the integrand into an effective
chemical potential because z is complex. For this, we
must expand the integrand in powers of z and then ex-
pand each of the resulting terms as is done in Appendix
E. We omit these details, but the expansion is of the
form

fn(z;µ) ≈ f (0)
n (µ) + f (L)

n (µ) log z + f (1L)
n (µ)z log z

+ f (2L)
n (µ)z2 log z + f (3L)

n (µ)z3 log z

+ f (4L)
n (µ)z4 log z + f (1)

n (µ)z + f (2)
n (µ)z2

+ f (3)
n (µ)z3 + f (4)

n (µ)z4 . (76)

It will turn out that we do not need the explicit forms of
all of these coefficients. The only ones we do need are

f
(1L)
0 (µ) = f

(2L)
0 (µ) =

eµ

1 + eµ
(77)

f
(3L)
0 (µ) =

1

2
f

(1L)
0 (µ) (78)

f
(1L)
1 (µ) = 0 (79)

f
(2L)
1 (µ) = f

(3L)
1 (µ) = − eµ

1 + eµ
. (80)

Inserting our expansion of the y-integrand (72) into the
integral (37) leaves us with a one-dimensional integral

over x containing a complicated mixture of wr(x) and
wi(x) resulting from inserting z = η2w(x) into (76) and
taking the imaginary part. The result is that we can
expand the integrals Jn of equation (71) as

Jn ≈
1

(me/mi + γ)
n

(
J

(0)

n + J
(L)

n log φ+ J
(1L)

n φ lnφ

+J
(2L)

n φ2 lnφ+ J
(3L)

n φ3 lnφ+ J
(1)

n φ

+ J
(2)

n φ2 + J
(3)

n φ3
)
, (81)

where each J is an integral over x and

φ ≡ (γ +me/mi)η
2 (82)

is an expansion parameter that serves the same purpose
as 1/Λ in section III. This definition is more convenient
for the coupled mode calculations. Each integral in (81)
is a function of α and γeff/Z and if we set α = 0 in all
of these, the result should be identical with (63). There
are in fact not many terms in (81) that are sensitive to
setting α = 0; the only ones that matter are of the form

J
(j)

n , i.e., the terms that do not involve log φ. Within
these terms, we have the integrals

Γ(j)
n

(γeff

Z
,α
)

≡
∫ ∞
−∞

e−x
2

x2n+2w
j+1
r (x)

wi(x)
arctan[wr(x), wi(x)]dx(83)

where arctan(x, y) is the four-quadrant version of
tan−1 y/x. The arctangent arises from the logarithmic
terms in the series (76) because for complex w(x),

lnw(x) = ln |w(x)|+ iθ (84)

where the angle θ is given by the arctangent. It is in-
teresting to consider how exactly the integral (83) con-
verges. First, if we have α = 0, the wi(x) in the de-

nominator cancels e−x
2

and convergence is left up to the
arctan. Because tan−1 z ≈ z for small z, one might think
that the integrand goes to zero in the same manner as
wi(x). This is essentially correct, but if wr(x) is nega-
tive, then arctan[wr(x), wi(x)] goes to π, no matter how
small wi(x) becomes, and the integrand cannot be zero
until wr(x) becomes positive again. When do we have to
worry about wr(x) being negative? This happens when
γeff/Z is sufficiently small, and as we can see from equa-
tion (30), wr(x) is always positive provided

γeff

Z
> |min(1− 2xF (x))| ≈ 0.28, (85)

hence the condition (5). The smaller γeff/Z, the larger
the x at which wr(x) becomes positive again, and thus
the larger the integral. If, however, we have a non-zero
α then the factor in the integrand,

Q(x) ≡ xe−x
2

wi(x)
, (86)
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which is constant if α = 0, provides its own mode of
convergence if γeff/Z is very small. In Figure 2, we plot
Q(x) for α = 1.8 × 10−6. It is constant for x . 3 but
then falls to zero, providing an earlier cutoff than the
arctangent if γeff/Z is sufficiently small.

The point of this discussion is that when coupled
modes are important we should correct equation (63) by
subtracting the piece containing the integral

Γ(γeff/Z) ≡ Γ(γeff/Z, 0) (87)

and adding Γ(γeff/Z, α). This correction then looks like

∆R ≡ 4

3

e4m
3/2
e e−µ

π3/2~3βe
√
mi

∞∑
n=0

ρ2n+1

(2n+ 1)!

×
[(

Γ(0)
n (γeff/Z, α)− Γ

(0)

n (γeff/Z)
)
f (1L)
n (µ)

+
(

Γ(1)
n (γeff/Z, α)− Γ

(1)

n (γeff/Z)
)
f (2L)
n (µ)φ

+
(

Γ(2)
n (γeff/Z, α)− Γ

(2)

n (γeff/Z)
)
f (3L)
n (µ)φ2

]
. (88)

The remaining question is how to evaluate the Γ integrals.

Starting with Γ
(j)

n (γeff/Z), these are functions of only a
single variable and power series can be derived for them;

they are given in Appendix F. As for Γ
(j)
n (γeff/Z, α), we

could also try a series or a fit, but instead we will just
use a simple 10-point Gaussian quadrature. Because of

the weight e−x
2

in (83) and the fact that the integrand is
even, we make the substitution u = x2 and use a Gauss-
Laguerre scheme. The integral is then approximated by

Γ(j)
n

(γeff

Z
,α
)
≈

N∑
i=1

Wig
(j)
n (ui) (89)

where ui are the zeros of the the N th associated Laguerre

polynomial of order 1/2, L
(1/2)
N (u), Wi are the weights,

given by

Wj =
ujΓ(N + 1/2)

N !(N + 1/2)
[
L

(1/2)
N−1 (uj)

]2 , (90)

and g
(j)
n (u) is the part of integrand of (83) not including

the factor u1/2e−u,

g(j)
n (u) ≡ unw

j+1
r (
√
u)

wi(
√
u)

arctan[wr(
√
u), wi(

√
u)] (91)

The weights, Wi, and the abscissa points, ui, are given
in Table II for N = 10. The function g(u) must be com-
puted at the points ui, but this is readily accomplished
since no special functions need to be evaluated; the Daw-
son function in (30) can be precalculated at the points
ui, and these are given in Table II as Di = 2

√
uiF (

√
ui).

This is all one needs to compute the correction to (63)
given by (88) in the coupled mode regime, if necessary.
As before, we include both the n = 0 and n = 1 terms
but n = 0 should be sufficient for most applications.

j Wj uj Dj
√
uj

1 0.17547082 0.22987298 0.39536421 0.47945071

2 0.35522339 0.92448155 1.03900923 0.96149963

3 0.25268356 2.09941046 1.28306187 1.44893425

4 0.08635610 3.78288087 1.21745057 1.94496295

5 0.01510978 6.01991803 1.12171083 2.45355212

6 0.00132822 8.88034760 1.07086902 2.97999121

7 0.00005419 12.4748324 1.04633928 3.53197288

8 8.73747587× 10−7 16.9908473 1.03251942 4.12199555

9 4.01969989× 10−9 22.7910029 1.02357156 4.77399234

10 2.29222153× 10−12 30.8064059 1.01709339 5.55035187

TABLE II. Constants used in the quadrature scheme; the
weights, Wi; the abscissa points ui; the Dawson function eval-
uated at the abscissa points Di = 2

√
uiF (

√
ui); the square

roots of ui.
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FIG. 1. Top panel: plot of the piece (69) of the integrand
(33) for y = 2.1 and α = 0; bottom panel: same as left but
with α = 1.8 × 10−6. Retaining even a small α is crucial in
getting the sharp ion-acoustic peak height correct.
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FIG. 2. The function Q(x) defined in (86). This is constant
if α = 0, but here α = 1.8 × 10−6 and Q(x) is constant for
x . 3 but then drops to zero. This function is a part of the
integrand in (83) and provides convergence in the coupled
mode regime.



9

V. NUMERICAL EXAMPLES

Here, we compare our formula (63) to direct numeri-
cal integrations of (1) in which we neglect neither α nor
quantum diffraction in the dielectric function. We also
compare with simpler approximate formulas based on the
Brysk formula (C2) with prescribed Coulomb logarithms.
The latter are generally taken to be of the form [21, 22]

ln Λ =
1

2
ln

(
1 +

b2max

b2min

)
, (92)

with various choices made for the length scales bmax and
bmin. One choice currently in use [24, 25] is based on the
form proposed by Lee and More [21] for the conductivity
problem,

b2max = λ2
Debye + a2

i (93)

b2min = λ2
th + b20 (94)

where ai is the Wigner-Seitz radius

ai ≡
(

3

4πni

) 1
3

, (95)

λth is a thermal deBroglie wavelength defined to be

λ2
th ≡

~2

12meTeff
(96)

and λDebye, the screening length, and b0, the Landau
length, are

1

λ2
Debye

= 4πnee
2

(
1

Teff
+

1

Ti

)
(97)

b0 =
Ze2

3Teff
, (98)

and Teff is given by (27). Another popular Coulomb log-
arithm is the sixth entry in Table I of Gericke, Murillo
and Schlanges [22], usually called GMS6. It is similar to
the one given above but does not attempt to account for
degeneracy with an effective electron temperature. We
refer the reader to [22] for details.

In Figure 3, we give some example calculations for hy-
drogen at n = 1026 cm−3, Ti = 0.8Te eV for various elec-
tron temperatures. The agreement between our formula
and the numerical integration is nearly perfect. Brysk
with the Coulomb logarithm defined above and GMS6
are also reasonably close, although we stress that our for-
mula (63) is hardly more difficult to compute than those
simpler ones. In Figure 4, we again show hydrogen at
1026 cm−3, but now we fix the electron temperature at
500 eV and vary the ion temperature. Once again, (63)
matches the numerical integration almost exactly. This
time, GMS6 is very accurate, whereas the Coulomb loga-
rithm defined by (92)–(98) is somewhat worse. Although
we are in a mildly degenerate regime here, the correc-
tions in (92)–(98) are apparently better left off in favor

of something more like GMS6. In Figure 5, we show the
case of argon (Z = 18) at ni = 1025 cm−3 over a range
of Te with Ti = 1.1Te. This plot covers a wide range
of electron degeneracy and once again the agreement be-
tween (63) and the full integration is very good, albeit
with some noticeable deviation likely due to the fits used
to evaluate (59) and (60). We should point out here that
under these conditions, the Landau length is greater than
the thermal de Broglie wavelength. Although we men-
tion in section III how a correction might be included
for such a scenario, we do not use it for the purposes of
this comparison. Nevertheless, the prescription (92)–(98)
does have this correction, and apparently disagrees with
GMS6 about how much of an effect it should have.

Next, we examine the coupled mode correction, equa-
tion (88). Table III gives various numerical examples,
using only n = 0 of equation (88), at conditions where
the coupled mode effect is expected to be important. We
include here calculations done with the Fermi golden rule
(FGR) approximation, equation (8), which can be used
at non-degenerate conditions. We find that (88) does a
good job of correcting (63) to capture the coupled mode
effect. One interesting thing to note here is that the
FGR results are numerically very close to (63). It is not
completely obvious that this should be the case, as we
have nowhere assumed the factorization (8). As illus-
trated clearly in Ref. [8], the FGR approximation both
moves the position of the ion-acoustic pole and alters its
height. In contrast, as shown in Figure 1, in the coupled
mode regime (63) does not correctly capture the height
of the peak but at least locates it accurately. Apparently,
this distinction is not important for the numerics at these
conditions.

The small errors in Table III can be corrected by
adding the next order term in Ti − Te, equation (64). In
Table IV we show the result of adding (64) to the coupled
mode calculations. Obviously, this correction mostly ac-
counts for the errors. However, they are quite small and
correcting them is probably not important for practical
applications, making (64) of primarily academic interest.
Adding the n = 1 term from (88) changes the answer
hardly at all for these conditions.

So far, we have looked at cases for which the elec-
tron temperature is higher than the ion temperature.
Equation (63) is also valid when the ions are hotter.
In Figure 6 we show the rate computed for hydrogen at
ni = ne = 1025 cm−3, Te = 100 eV and a spread of ion
temperatures. Over a wide range of temperature differ-
ences, equation (63) provides an excellent approximation.
We also plot the correction (64) and we can see that it
does provide the required, but miniscule, correction at
lower ion temperatures but at very large ion tempera-
tures, where (63) begins breaking down, (64) does not
make things any more accurate. The reason for this is
that we have discarded α in several places, both inside
and outside of the dielectric function, and when α starts
to become large, as it will when Ti � Te, there is no rea-
son to believe that either (63) or its correction via (64)
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FIG. 3. Equilibration rates for hydrogen at density ni =
ne = 1026 cm−3 and Ti = 0.8Te; solid green: equation (63);
dashed red: Brysk, equation (C2), with the GMS6 Coulomb
logarithm; dotted blue: Brysk with prescription (92)–(98);
circles: numerical integration of equation (1). Fermi energy:
EF = 786.60 eV.
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FIG. 4. Equilibration rates calculated for hydrogen at ni =
ne = 1026 cm−3 and Te = 500eV over a range of ion tempera-
tures; solid green: equation (63); dashed red: Brysk, equation
(C2), with the GMS6 Coulomb logarithm; dotted blue: Brysk
with prescription (92)–(98); circles: numerical integration of
equation (1). Fermi energy: EF = 786.60 eV.

will provide an accurate estimate of the integral. Evi-
dently, according to Figure 6, when this occurs one is
better off simply using (63) on its own. Once again, this
is probably not of much practical concern.

VI. CONCLUSION

We have derived an analytic expression for the
electron-ion temperature equilibration rate predicted by
the Lenard-Balescu integral, (1). The main result, equa-
tion (63), closely matches numerical integrations of (1)
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FIG. 5. Equilibration rates calculated for argon (Z = 18)
at ni = 1025 cm−3 and Ti = 1.1Te eV over a range of ion
temperatures; solid green: equation (63); dashed red: Brysk,
equation (C2), with the GMS6 Coulomb logarithm; dotted
blue: Brysk with prescription (92)–(98); circles: numerical
integration of equation (1). Fermi energy: EF = 1162.48 eV.
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FIG. 6. Equilibration rates calculated for hydrogen at ni =
ne = 1025cm−3 and Te = 100eV over a range of ion temper-
atures. Black x: direct integration of (1); red squares: equa-
tion (63); green circles: equation (63)+equation (64). Fermi
energy: EF = 169.25 eV.

over most conditions of practical interest, is valid for ar-
bitary electron degeneracy, and is suitable for fast com-
putations within a larger simulation. We also include
corrections for the coupled mode effect and for large tem-
perature differences. However, it is likely that for most
practical applications equation (63) is perfectly sufficient
without these corrections. Our method for exactly solv-
ing dielectric function integrals, namely the Laurent ex-
pansion for large complex frequency, can probably be
applied to computing other properties for which Lenard-
Balescu integrals appear, such as thermal and electrical
conductivities [15, 26].
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ni Ti (K) Te (K) eq.(63) (eV/fs) eq.(63)+eq.(88) FGR (eV/fs) eq.(1)

1× 1023 1× 105 3× 107 0.0346 0.0292 0.0350 0.0297

1× 1024 1× 105 3× 107 0.274 0.220 0.279 0.225

1× 1025 1× 105 3× 107 2.017 1.49 2.06 1.54

TABLE III. Comparison of formulas with numerical evaluations of (1) and the Fermi golden rule (FGR) in the coupled mode
regime. Equation (63) on its own does not capture the coupled mode effect but rather closely matches FGR. Adding the
correction (88) brings the results much closer to their coupled mode values.

ni Ti (K) Te (K) eq.(63)+eq.(64) (eV/fs) eq.(63)+eq.(64)+eq.(88) FGR (eV/fs) eq.(1)

1× 1023 1× 105 3× 107 0.0350 0.0296 0.0350 0.0297

1× 1024 1× 105 3× 107 0.278 0.225 0.279 0.225

1× 1025 1× 105 3× 107 2.07 1.54 2.06 1.54

TABLE IV. The effect of adding the large-temperature correction, equation (64). Adding it only to (63) brings the result into
essentially exact agreement with the FGR, whereas combining it with the correction (88) gives an answer nearly indistinguishable
from the numerical coupled mode result.
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Appendix A: Fitting functions for Fermi integrals

Here, we give the fits for computing the chemical po-
tential and the Fermi integral I−1/2(−µ).

For the chemical potential, we use the fit given by Man-
agan [24],

µ = − ln(eR3(ξ) − 1) (A1)

with

R3(ξ) ≡
4

3
√
π

+
∑3
i=1 aiξ

i

1 +
∑4
i=1 biξ

i
(A2)

and

ξ ≡ Θ−
1
2 (A3)

where Θ is the standard degeneracy parameter, given in
(14), and the coefficients ai and bi are

a1 = 0.19972
a2 = 0.17258
a3 = 0.145
b1 = 0.25829
b2 = 0.28756
b3 = 0.16842
b4 = 0.145 .

Note that if R3 reaches a certain size, say R3 > 5, then
one can just set µ = −R3.

For the Fermi integral I− 1
2
(−µ), we use the formula of

Dandrea, Ashcroft and Carlsson [19], good for all values
of Θ,

I− 1
2
(−µ) =

2√
πΘ

1 + c1Θ2 + c2Θ4 + c3Θ6

1 + (c1 + π2/12)Θ2 + c4Θ4 + (c3/
√

2π)Θ11/2 + (3c3/2)Θ7
(A4)

where

c1 = 41.775 (A5)

c2 = 27.390 (A6)

c3 = 4287.2 (A7)

c4 = 50.605 . (A8)

Appendix B: Response functions without quantum
diffraction

The element that makes the dielectric function difficult
to deal with is quantum diffraction. Without it, there
is a separation of the variables x and y, as in equation
(28), even when we include the effects of degeneracy. The
quantum free-particle response function is given by (11)
and we neglect diffraction by taking the limit ~ → 0.
Thus, we use for the electrons

χe(k, ω) = − 1

me
lim
η→0+

∫
d3v

k · ∇vfe(v)

ω − v · k + iη
. (B1)

where f(v) is the Fermi-Dirac distribution, equation
(12), in which we do not take ~→ 0. We then have

χe(k, ω) =
4πm3

eβee
µ

h3

×
∫ ∞
−∞

∫ ∞
0

kvze
βemev

2/2v⊥dv⊥dvz
(ω − kvz + iη)(eµ+βemev2/2 + 1)2

(B2)

which, by noting that v2 = v2
⊥ + v2

z , can be written

χe(k, ω) =
4πm3

eβee
µ

h3

∫ ∞
−∞

kvze
βemev

2
z/2I⊥(vz)dvz

(ω − kvz + iη)
(B3)

where

I⊥(vz) ≡
∫ ∞

0

eβemev
2
⊥/2v⊥dv⊥

(eµ+βemev2⊥/2+βemev2z/2 + 1)2
(B4)

=
1

βeme

∫ ∞
0

exdx

(eµ+x+βemev2z/2 + 1)2
(B5)

=
1

βeme

e−µe−βemev
2
z/2

eµ+βemev2z/2 + 1
. (B6)

This leaves

χe(x) =
4πm2

e

h3

√
2

βeme

∫ ∞
−∞

zdz

(
√
αx− z + iη)(eµez2 + 1)

(B7)
from which the Sokhotski-Plemelj theorem immediately
gives

Imχe(x) = −4π2m2
e

h3

√
2

βeme

√
αx

1

1 + eµeαx2 . (B8)
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To get the real part, we use the usual trick

1

(
√
αx− z + iη)

= −i
∫ ∞

0

ei(
√
αx−z)te−ηtdt (B9)

to get

χe(x) = −i4πm
2
e

h3

√
2

βeme

∫ ∞
0

∫ ∞
−∞

zei(
√
αx−z)te−ηtdzdt

eµez2 + 1
.

(B10)
The easiest way to proceed appears to be to use the ex-
pansion

1

eµez2 + 1
=

∞∑
n=0

(−1)ne−(n+1)µe−(n+1)z2 (B11)

which is only valid when µ > 0. At the end we will get
an expression that is valid for the whole range of µ and
we will claim it is correct by analytic extension. Using
the expansion we get

χe(x) = −i4πm
2
e

h3

√
2

βeme

∞∑
n=0

(−1)ne−(n+1)µ

×
∫ ∞

0

∫ ∞
−∞

ze−(n+1)z2ei(
√
αx−z)te−ηtdzdt , (B12)

and the z-integral is∫ ∞
∞

e−(n+1)z2ze−iztdz =

− i
√
π

2(n+ 1)3/2
t exp

(
− t2

4(n+ 1)

)
(B13)

so that

χe(x) = −2π3/2m2
e

h3

√
2

βeme

∞∑
n=0

(−1)n
e−(n+1)µ

(n+ 1)3/2

×
∫ ∞

0

t exp

(
− t2

4(n+ 1)

)
eixtdt (B14)

where we have set η = 0 because it is no longer needed.
Now, ∫ ∞

0

t exp

(
− t2

4(n+ 1)

)
ei
√
αxtdt =

2(1 + n)
[
1− 2

√
1 + n

√
αxF (

√
n+ 1

√
αx)

+ i
√
n+ 1

√
πe−(n+1)αx2

]
(B15)

where F (x) is the Dawson function, equation (21), so

χe(x) = −4π3/2m2
e

h3

√
2

βeme

∞∑
n=0

(−1)ne−(n+1)µ

×
[

1

(n+ 1)1/2
− 2
√
αxF (

√
n+ 1

√
αx)

+i
√
π
√
αxe−(n+1)αx2

]
. (B16)

Under the assumption µ > 0, these sums can be done
exactly. From the definition of the polylogarithm Lis(x),
we have

∞∑
n=0

(−1)n
e−(n+1)µ

√
1 + n

= −Li1/2(−e−µ)

=
1√
π

∫ ∞
0

t−1/2

et+µ + 1
dt = I−1/2(−µ) . (B17)

The definition of Lis(x) is only valid when |x| < 1, and
the Fermi integral provides the analytic extension to x <
−1, which is what we need when µ < 0. Next we define

∞∑
n=0

e−nµ(−1)nF (
√

1 + n
√
αx) ≡ F (

√
αx;µ) (B18)

where F (x;µ) is a generalization of the Dawson function
with the property limµ→∞ F (x;µ) = F (x). We could
now use (21) in (B18) to find an integral form for F (x;µ).
However, as we show in the main text, we can set α = 0
in the real part of the dielectric function, even in the
coupled mode regime, so we will not bother with this.
We can now write the real part of the response function,

Reχe(x) = −4π3/2m2
ee
−µ

h3

√
2

βeme

×
[
I− 1

2
(−µ)eµ − 2

√
αxF (

√
αx;µ)

]
.(B19)

In the classical limit, µ blows up as

e−µ =
neh

3

2π3/2m3
e

(
βeme

2

)3/2

(B20)

and I−1/2(−µ)eµ → 1 so we have

Reχe(x) = −neβe
[
1− 2

√
αxF (

√
αx)

]
. (B21)

If α = 0, this is simply −neβe, which strongly suggests
that we write

Reχe(x) = −neβeff (B22)

where the effective temperature βeff is easily read from
(B19) and is discussed in the main text.

Appendix C: Brysk formula

The Brysk correction [27] to the Landau-Spitzer for-
mula was derived mainly from collisional arguments.
Here, we show that it is possible to arrive at the identical
formula from the Lenard-Balescu integral (1) by neglect-
ing quantum diffraction everywhere and setting the di-
electric function to 1. Mathematically, quantum diffrac-
tion is neglected in equation (33) simply by setting y = 0
everywhere, except in dy/y. The reason for this is that
the dimensionless wavenumber, y, contains the factor of
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~ arising from quantum diffraction, but it cancels out of
dy/y. Then setting ∫ ymax

ymin

dy

y
= ln Λ, (C1)

equation (33) becomes

dTi
dt

=
8

3

Z2e4m2
e

π~3mi

1

1 + eµ
ln Λ(Te − Ti) (C2)

which is identical with equation (35) of [27], where
Brysk’s A is our eµ.

Appendix D: Large z expansion of the dielectric
function

Here, we derive the coefficients a2n(y) appearing in
equation (40). First, we need to find the expansion for the
ion response function. Using the Maxwell distribution
and our variables x and y, we can write it in the following
form

χi(x) =
βini√
π

∫ ∞
−∞

ue−u
2

du

x− u
(D1)

and in the complex plane,

χi(z) =
βini√
π

1

z

∫ ∞
−∞

ue−u
2

du

1− u/z
. (D2)

Now we use the expansion

1

1− u/z
=

∞∑
n=0

(u
z

)n
. (D3)

The response function becomes

χi(z) =
βini√
π

∞∑
n=0

1

zn+1

∫ ∞
−∞

un+1e−u
2

du (D4)

where ∫ ∞
−∞

un+1e−u
2

du =
1

2
nΓ
(n

2

)
(D5)

for n odd and is zero otherwise, where Γ(n) is the gamma
function. Putting these together, we get

χi(z) =
βini
2
√
π

∞∑
n=0

(2n+ 1)Γ(n+ 1/2)

z2n+2
. (D6)

The dielectric function is given by (28), where w(x) is
essentially the sum of the electron and ion response func-
tions (as in (3) but in dimensionless variables). Inserting
the expression (D6) for the ions and setting α = 0 for the
electrons we find

η2γeff

y2Zε(z, y)
=

1

ζy2 + 1−
∑∞
n=0A2n+1/z2n+2

(D7)

where

An ≡
Z

2
√
πγeff

nΓ
(n

2

)
, (D8)

and

ζ ≡ Z

γeffη2
. (D9)

We can now use equation (D7) to calculate the coeffi-
cients a2n(τ) of the asymptotic expansion (40). This is
done by an expansion in the small quantity

1

ζy2 + 1

∞∑
n=0

A2n+1

z2n+2
. (D10)

The result is

a2n(y) =
1

2n
1

ζy2 + 1
Pn

(
Z

γeff

1

ζy2 + 1

)
(D11)

where Pn(w) are a set of polynomials. The first few of
these are given by

P0(w) = 1
P1(w) = w
P2(w) = w2 + 3w
P3(w) = w3 + 6w2 + 15w
P4(w) = w4 + 9w3 + 39w2 + 105w
P5(w) = w5 + 12w4 + 72w3 + 300w2 + 945w.(D12)

Appendix E: Series expansions of special functions

Here, we report the series expansions of the special
functions used throughout the paper. We will derive only
(56) as the procedure is the same for the others.

Making the substitution y = t+ x, (55) becomes

f̃(x;µ) = ex[f̃2(x;µeff)− xf̃3(x;µeff)] (E1)

where

f̃2(x;µ) ≡
∫ ∞
x

e−y

y(1 + e−µ−y)
dy (E2)

f̃3(x;µ) ≡
∫ ∞
x

e−y

y2(1 + e−µ−y)
dy, (E3)

and µeff ≡ µ−x. One might as well just use this effective
chemical potential rather than expanding the exponential
in the denominator. We will focus on f̃3(x;µ) because

f̃2(x) is handled the same way. To get most of the terms,
we find the power series of the derivative of (E3),

df̃3(x;µ)

dx
= − eµ

B(µ)

1

x2
+

e2µ

[B(µ)]2
1

x
− e2µ(eµ − 1)

2[B(µ)]3
+ ...

(E4)
where B(µ) is defined in (57), and integrate this term by
term. This does not, however, determine the constant
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(order unity) term. To get this, we integrate (E3) by
parts to obtain

f̃3(x;µ) =
1

x

e−x

1 + e−µ−x
−
∫ ∞
x

e−t

t(1 + e−µ−t)2
dt . (E5)

Integrating the second term by parts gives

f̃3(x;µ) =
1

x

e−x

1 + e−µ−x
+ lnx

e−x

(1 + e−µ−x)2

−
∫ ∞
x

ln t
(e−t − e−µ−2t)

(1 + e−µ−t)3
dt , (E6)

and now the integral in this expression is convergent as
x→ 0. We can simply take this limit to obtain

f̃3(x;µ)→ U2(µ)− e2µ

[B(µ)]2
+ lnx

e2µ

[B(µ)]2
(E7)

as x→ 0, where U2(µ) is defined by (60). We have thus

obtained the series of f̃3. Doing the same procedure on
f̃2 and plugging these results into (E1), we obtain (56).

Appendix F: Series expansions for Γn integrals

Below we present the series expansions for the integrals

Γ
(j)

n (γeff/Z, 0) needed for the coupled mode correction
factor (88). These are derived by means similar to those
used to compute the dielectric function integrals exactly.
It is somewhat more complicated, but we will not go
into the details. The series below are generally good for
γeff/Z < 0.1 and outside this range one probably need
not worry about coupled modes. The following should
be sufficient for nearly all applications,

Γ
(0)

0 = −
√
πc

(0)
1 (γeff/Z) + 0.53485881 + 0.79488185

γeff

Z

+ 0.79488185
(γeff

Z

)2

+ 4.3835505
(γeff

Z

)3

(F1)

Γ
(0)

1 = −
√
πc

(0)
2 (γeff/Z) + 1.2910742 + 3.0889424

γeff

Z

+ 6.1778849
(γeff

Z

)2

+ 32.058147
(γeff

Z

)3

(F2)

Γ
(1)

0 = −
√
πc

(1)
1 (γeff/Z) + 0.51708588− 0.10157305

γeff

Z

+ 1.0154030
(γeff

Z

)2

+ 0.67693539
(γeff

Z

)3

(F3)

Γ
(1)

1 = −
√
πc

(1)
2 (γeff/Z) + 0.32092230 + 0.60469118

γeff

Z

+ 3.7222584
(γeff

Z

)2

+ 4.9630113
(γeff

Z

)3

(F4)

Γ
(2)

0 = −
√
πc

(2)
1 (γeff/Z)− 0.036391827 + 1.5543671

γeff

Z

− 1.2959555
(γeff

Z

)2

+ 1.0930122
(γeff

Z

)3

(F5)

Γ
(2)

1 = −
√
πc

(2)
2 (γeff/Z)− 0.28938771 + 1.5376747

γeff

Z

− 0.92477069
(γeff

Z

)2

+ 3.9070984
(γeff

Z

)3

(F6)

Γ
(3)

0 = −
√
πc

(3)
1 (γeff/Z) + 0.052145343− 0.19030541

γeff

Z
+ 3.1112345

(γeff

Z

)2

− 2.8365990
(γeff

Z

)3

(F7)

Γ
(3)

1 = −
√
πc

(3)
2 (γeff/Z) + 0.062897190− 1.1956660

γeff

Z

+ 3.9093434
(γeff

Z

)2

− 2.9563191
(γeff

Z

)3

, (F8)

where

c
(0)
1 = −1

2

(
log

γeff

Z
+ 1
)

(F9)

c
(1)
1 = −1

2

γeff

Z

(
2 log

γeff

Z
+ 1
)

(F10)

c
(2)
1 = −1

2

(γeff

Z

)2 (
3 log

γeff

Z
+ 1
)

(F11)

c
(3)
1 = −1

2

(γeff

Z

)3 (
4 log

γeff

Z
+ 1
)

(F12)

c
(0)
2 = −3

4
+

Z

8γeff
− 3

4
log

γeff

Z
(F13)

c
(1)
2 =

3

8
− 3γeff

4Z
+

1

4

(
1− 6

γeff

Z

)
log

γeff

Z
(F14)

c
(2)
2 = −3

4

γ2
eff

Z2
+

5γeff

8Z

+
3γeff

4Z

(
1− 3

γeff

Z

)
log

γeff

Z
(F15)

c
(3)
2 = −3

4

γ3
eff

Z3
+

7γ2
eff

8Z2

+
3γ2

eff

2Z2

(
1− 2

γeff

Z

)
log

γeff

Z
. (F16)


