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Abstract

In this work we computed the main features of a surface-wave driven plasma in argon at atmo-

spheric pressure in view of a better understanding of the contraction phenomenon. We included

the detailed chemical kinetics dynamics of Ar and solved the mass conservation equations of the

relevant neutral excited and charged species. The gas temperature radial profile was calculated by

means of the thermal diffusion equation. The electric field radial profile was calculated directly

from the numerical solution of the Maxwell’s equations assuming the surface-wave to be propagat-

ing in the TM00 mode. The problem was considered to be radially symmetrical, the axial variations

were neglected and the equations were solved in a self-consistent fashion. We probed the model

results considering three scenarios: (i) the electron energy distribution function (EEDF) was cal-

culated by means of the Boltzmann equation; (ii) the EEDF was considered to be Maxwellian; (iii)

the dissociative recombination was excluded from the chemical kinetics dynamics, but the non-

equilibrium EEDF was preserved. From this analysis, the dissociative recombination was shown to

be the leading mechanism in the constriction of surface-wave plasmas. The results were compared

with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar+2 . An

explanation is proposed for the trends seen by Thomson Scattering diagnostics that shows a sub-

stantial increase of electron temperature towards the plasma borders where the electron density is

small.
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I. INTRODUCTION

The phenomenon of the positive column’s contraction of gas discharges has been observed

and discussed for more than one century. It was described systematically for the first time by

the German physicist Johannes Stark in his book Elektrizität in Gasen dated from 1902 [1].

In this book, he describes a typical discharge produced in a transparent vacuum tube using

a DC power supply. He reported that the light emitted by the plasma’s positive column did

not always fill the whole tube volume. He noted that under low pressure the discharge filled

all the tube’s cross section but as the pressure was increased it would eventually collapse

into a thin canal between anode and cathode.

Although the first report of such phenomenon was more than a century ago, the con-

tracted discharge regime did not receive as much attention as the discharge regime at lower

pressures. The mathematical description of the low pressure regime was accomplished by

Schottky in 1924 [2]. His theory described the radial profile of electrons and positive ions by

assuming that charge production occurred by electron impact ionization and that charge loss

occurred by diffusion into the walls. Unfortunately, the Schottky theory could not predict

the contraction effect.

In contrast, convection or wall stabilized arcs at higher pressures could be successfully

described assuming that volume recombination of charged particles was the only mechanism

of loss. The intermediate case, where both diffusion and recombination contribute about

equally, remained unsolved. This fact can be promptly illustrated if we consider that in

1954 Fowler reviews four different theories to explain discharge contraction [3]. The author

himself proposed a fifth one, in which it was suggested that inelastic collisions produce a

damping effect, which accounted for the contraction effect by means of an anti-dispersing

action. The author recognized it was an oversimplification, but it was an attempt to account

for the effect of inelastic collisions on the electron energy distribution function (EEDF). His

theory was not fully accepted due to the lack or rigor based on kinetic theory.

The four explanations in Fowler’s paper are now revisited because they offer a better

understanding of the current status of the problem. The first explanation is based on the

intrinsic non-linearity of the differential equations that describes the transport of charge

carriers. The conventional Schottky theory does not include them. One possible cause for

non-linearity arises from the mathematical formulation of the transport equations in the
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sheath region [4]. However, it can be dismissed on grounds that the contraction occurs

when the pressure is increased, while the sheath length decreases with pressure. But other

non-linearities may play an important role. For instance, dissociative recombination reaction

introduces rates in the mass conservation equations that depend on the square of the charge

density.

The second group of explanations is related to the rate of volume recombination, in partic-

ular electron-ion recombination. This mechanism was thought to be too weak to explain the

magnitude of the observed effect, until the dissociative recombination of molecular ions with

electrons was discovered. This is because the rate coefficient for dissociative recombination

is several orders of magnitude higher than the electron-ion recombination rate coefficient.

Pioneering work by Kenty published in 1962 was the first to suggest the crucial role of dis-

sociative recombination in the onset of plasma constriction [5]. Kenty went one step further

by suggesting that it was related to the gas temperature gradient.

In fact, the third group of explanations attributed the onset of plasma contraction to

temperature gradient, but they were not related to any kind of volume recombination. It

was thought that the transport equations of mass, momentum and energy could give rise

to a solution that would eventually describe a thin channel of dense plasma surrounded

by a hot neutral gas which transported heat outward [6]. The temperature gradient also

implied a number density gradient, which could eventually produce a significant drop in the

reduced electric field E/N in the outer regions of the plasma column and trigger the plasma

contraction. At the time that this explanation was proposed no numerical solution could be

found and all the reasoning was based on the equation’s analysis in limiting cases. Today

we know that the temperature and number density gradients may also influence the rate

coefficients and reaction rates of important reactions, such as dissociative recombination.

For that reason, the first and third explanations are usually grouped together and referred

as non-uniform gas heating effects. In spite of that fact, the role of gas heating and volume

recombination should always be analyzed separately, since a model accounting for non-

uniform gas heating alone may give completely different predictions when compared to an

analysis which also includes volume recombination.

There was also an attempt to associate the contraction of the plasma column to the well

know Z-pinch effect, but it was soon realized to be a poor explanation for the following

reason. If we consider the typical electron temperatures and densities of these discharges,
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the confinement current computed using the Bennett relation would be something between

100 A and 1000 A [7], which is much higher than the actual currents observed in contracted

columns (. 0.01 A). Therefore, the Z-pinch effect does not play any role in these cases.

The numerous theories developed over the years could not be tested until the advance of

computer technology that allowed the numerical study of this topic. Theoretical and numer-

ical analysis made by Golubovskii and co-workers showed that in many cases the contraction

effect may be explained solely by the dependence of the ionization rate with electron density,

which is related to the competition of electron-atom and electron-electron collisions [8–12].

In argon and neon, for instance, this effect was proposed as the main explanation for plasma

contraction. One of the main arguments supporting that conclusion was that experiments

carried out with controlled wall temperature in argon and neon discharges would still con-

tract, ruling out non-uniform gas heating. In contrast, the same experimental procedure

did not lead to plasma contraction in helium, so in this case non-uniform gas heating was

considered to be the primary mechanism of contraction.

Nonetheless, other numerical models which assume a Maxwellian EEDF everywhere in

the plasma column could successfully predict the plasma contraction in argon discharges, as

demonstrated by Moisan’s group [13, 14]. These models included detailed chemical kinetics,

with dissociative recombination, and the heat equation to describe the non-uniform gas heat-

ing. The effect of the non-equilibrium EEDF was not taken into account; nonetheless, the

model was able to describe the plasma contraction and explain experimental data. Whether

or not this can be harmonized with Golubovskii’s theory remains an open question.

To elucidate this issue we use a particular example in which we modeled an argon dis-

charge at atmospheric pressure sustained by a surface-wave at microwave frequency. Our

approach is very similar to the one proposed by Petrov and Ferreira [15], and Dyatko et

al [16], which consider an uniform electric field and DC current. In contrast, we solve the

Maxwell’s equations that describe the TM00 field components of the surface-wave, which

were coupled to the transport equations. A very similar approach was adopted by Gregorio

et al to describe micro-plasmas produced by microwave sources [17]. This is a different

problem because the magnitude of the electric axial field increases towards the tube wall to

a maximum value near the boundaries.

We simplified the problem by neglecting the gradients in the axial direction, so that the

equations could be written only in the radial coordinate. There are many works in the

5



literature that consider the axial coordinate and the detailed geometry of the microwave

launcher, but as far as we are concerned these works assume the EEDF to be Maxwellian

[18, 19]. Here the EEDF is calculated using the electron Boltzmann equation in the classical

two term expansion. In order to study the most important contributions to the contraction,

we considered three scenarios. In the first scenario, the EEDF was calculated solving the

Boltzmann equation. In the second scenario, the EEDF was considered to be Maxwellian

and in the third scenario the dissociative recombination was excluded from the chemical

kinetics dynamics, but the non-equilibrium EEDF was preserved.

Our primary motivation was the theoretical interpretation of a recent experimental work

based on mass spectrometry which reported measurements of the ionic fluxes of Ar+ and

Ar+2 as a function of the radial coordinate in a surface-wave discharge in argon at atmo-

spheric pressure [20]. As we will show, the numerical results reproduced the experimental

behaviour of the ionic fluxes [20]. The trend of the experimental data was marked by the

population inversion of the ions Ar+ and Ar+2 , the density of Ar+ being higher in the center

of the discharge and the density of Ar+2 being higher near the border. That result was con-

sistent with Kenty’s mechanism [5], which was the first explanation stating that dissociative

recombination with molecular ions in the outer regions of the plasma was the main source

of charge loss leading to contraction.

The results we present here also shed light on the interpretation of electron tempera-

ture measurements of contracted surface-wave discharges carried out by means of Thomson

Scattering [21–23]. The experimental data show that the electron temperature increases

significantly towards the border as the electron density decreases whenever the discharge is

in the contracted regime. Here these measurements will be interpreted in the light of the

shape variation of the calculated EEDF at different radial positions. As it will be shown, the

experimental observations can only be correctly interpreted if the EEDF is non-equilibrium.

We also discuss what is in our opinion the most accurate interpretation of the electron

temperature measurements and how it is related with the temperature defined as 2/3 〈E〉.
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II. THEORY AND MODELING

A. Problem Definition

Before proceeding with a detailed description of the model, we shall give an overall

picture of the experimental setup. This is relevant because the simulation was run using

physical parameters which were consistent with these experimental conditions. We recall

that our primary motivation was to explain the mass spectrometric results from our previous

work [20]. Many other works report data on the electron density and temperature radial

profiles of similar discharges, and our model could be adapted to their particular experiments.

However, we chose this particular condition, emphasizing the investigation of the contraction

mechanism.

In this plasma source, the electromagnetic wave is excited by means of a surface-wave

launcher called surfatron, which is basically a cylindrical resonant cavity [24] which excited

a surface-wave along the plasma medium. The feeding gas is delivered through a ceramic

tube with one millimeter radius, which is inserted into the launcher’s central cavity. The

tube’s end is placed near the launcher gap, so that the plasma column extends into the

ambient air. Although a small amount of air molecules penetrate the flow, the density of

these species is small relative to Ar. Here we use a pure Ar plasma chemistry scheme to

approximately describe the plasma. The physical configuration of such system is visualized

z

x
y

θ

ρ

Δz

surfatron

(surface-wave

launcher)

plasma

cross section

plasma

column

FIG. 1. Scheme of a typical experimental setup. The problem is solved for a given cross section

in the axial direction for which the electron density at the axis is known. The cross sections is

specified by it’s distance ∆z =3.7mm from the launcher gap.
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in Fig. 1.

The plasma column is assumed to have cylindrical symmetry. We take a slice that is

orthogonal to the symmetry axis located at a distance ∆z from the launcher gap and restrict

our analysis to this slice. The results are expected to be valid as long as the axial gradients

of the relevant physical quantities are much smaller than the radial gradients. In the next

sections, we give a more detailed description of each part of the model and show how they

are connected in the iterative self-consistent procedure.

B. Electron Kinetics

The purpose of the electron kinetics study was the computation of the EEDF as a func-

tion of the radial coordinate, which is of fundamental importance for the calculation of

many crucial plasma quantities such as the electron mean energy, the electron temperature,

transport parameters and reaction rate coefficients. These quantities are needed as input

data in the modeling of plasma chemistry, plasma heating and electrodynamics, which will

be discussed in the next section.

The simplest approach concerning the EEDF is to consider it Maxwellian. In this case,

an energy balance equation for the electrons is needed to calculate the temperature that

characterizes its Maxwellian distribution. However, plasmas in rare gases at atmospheric

pressure almost always have some degree of deviation from equilibrium [25], which require

numerical solution of the Boltzmann equation. This method was used for the first time

by Morse et al [26] back in the 30’s to study the EEDF of elastically colliding electrons

in uniform electric fields and was further expanded to include the description of oscillating

fields [27, 28], inelastic collisions [28] and magnetic fields [29]. In the analysis developed by

these authors the electron velocity distribution function (EVDF) is written as a spherical

harmonics expansion in the velocity space. The z-coordinate from which the polar angle

is accounted for is usually set to the direction of the electric field. If the magnetic field is

absent or can be neglected the problem becomes azimuthally symmetrical and the expansion

reduces to a sum of Legendre’s polynomials of the polar angle’s cosine. The first term of

this expansion gives the EEDF [30] and it is isotropic in velocity space. The other terms are

anisotropic and usually only the first of them is retained in the expansion. This technique

– which is usually known as two-term expansion in the specialized literature – was adopted
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here. Some cases must be treated retaining higher order terms [31], but in the conditions

met here – i.e. high-frequency Ar discharge subjected to low reduced electric fields – this

approximation is considered to give a good description of the problem [32].

The steady-state electron Boltzmann equation may be written as [33–35]

d

du
(GE +Gc +Gee) =

√

2e

m

∑

s,j,j′

ns [(u+ us,jj′)δs,jσs,jj′(u+ us,jj′)f(u+ us,jj′)−

−uδs,jσs,jj′(u)f(u)− uδs,j′σ
′

s,jj′(u)f(u)+

+(u− us,jj′)δs,j′σ
′

s,jj′(u− us,jj′)f(u− us,jj′)
]

. (1)

The first term contains the electron fluxes in energy space due to the electric field (GE),

elastic collisions with heavy particles (Gc) and collisions between electrons (Gee). These

quantities depend only on the EEDF, f(u), which is proportional to the anisotropic compo-

nent of the EVDF. Their expressions are given by the following formulae

GE = − 2e

3m

E2
effu

3/2

ν(u)

df

du
(2)

Gc = −N

√

2e

m

(

∑

s

2m

Ms
δsσ

m,e
s

)

u2

(

f + Tg
df

du

)

(3)

and

Gee = −
√

2

m

e5.5

8πǫ20
ne ln Λ

[

I(u)f + J(u)
df

du

]

, (4)

where

I(u) =

∫ u

0

f
√
x dx ,

J(u) =
2

3

(
∫ u

0

fx3/2dx+ u3/2

∫ ∞

u

f dx

)

,

ln Λ = ln
(

12πneλ
3
D

)

,

ν(u) =

√

2e

m
N
∑

s

δsu
1/2σm

s ,

Eeff =
E√
2

1
√

1 +
(

ω
ν

)2
.
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In equations 1-4 u is the electron energy in eV; e and m are the elementary unit of charge

and the electron’s mass, respectively; E is the maximum value of the high-frequency electric

field; N is the absolute density of the gas; f is the EEDF satisfying the normalization

condition
∫∞

0
f(u)

√
udu = 1; δs = ns/N and δs,j = ns,j/N are the relative densities of the

atomic species s and of its excited electronic state j, respectively (ns and ns,j being the

corresponding absolute densities, satisfying
∑

s ns = N and
∑

j ns,j = ns); σm,e
s and σm

s

are the electron-neutral scattering cross sections for the elastic and the total momentum-

transfer, respectively; σs,jj′ and σ′
s,jj′ are the electron-neutral scattering cross sections for

the excitation/de-excitation between upper level j′ and lower level j of species s with energy

threshold us,jj′; ǫ0 is the vacuum permittivity; ne is the electron density; λD is the Debye’s

length; and ω is the angular frequency of the field. The quantities ln Λ, ν and Eeff are

commonly known as Coulomb logarithm, electron collision frequency and high-frequency

effective field, respectively.

This stationary EBE (electron Boltzmann equation) was solved numerically using a stan-

dard finite difference procedure implemented in MatlabR©. Many physical quantities such as

the electric field, species densities and gas temperature must be determined from equations

which will be discussed in the next sections. These equations take the EEDF indirectly

by its mean energy as an input parameter, so that a self-consistent scheme is needed. It

also takes as input the cross sections for many different electron-neutral collisional processes

which will be discussed in more detail in what follows. Before that, however, we shall explain

the procedure for the special case where the EEDF is a Maxwellian distribution. In this case

we determine the electron temperature from the energy balance equation. It can be derived

from Eq. 1 by multiplying it by the kinetic energy and then integrating it in energy space

to obtain

PE = Pel + Pinel , (5)

where PE is the power gained from the applied electric field, Pel is the net power lost in

elastic collisions and Pinel is the net power lost in inelastic/superelastic collisions. They are
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given by the following expressions:

PE =

∫ ∞

0

GE du

Pel = −
∫ ∞

0

Gel du

Pinel = −
∫ ∞

0

Θinelu du ,

where Θinel is the right-hand term of Eq. 1. By determining the energy gain by the field and

the energy lost in elastic and inelastic collisions, one is able to find the electron temperature

Te which satisfy Eq. 5 within an acceptable accuracy. Eq. 5 was solved at each grid point

to determine the radial profile of Te. We shall mention that Eq. 5 does not contain the

energy flux term, an approximation which is valid as long as the electron density variation is

negligible in the energy relaxation length. The energy balance terms at a given axial position

are determined only by the balance between the energy gained by the local field and the

energy lost in collisions. This approximation is usually called “local approximation”. In

cases for which the EBE was solved, the electron temperature is obtained from the EEDF

as 2/3〈u〉. It also uses the local approximation assumption, though in this case the EEDF

is computed instead of being assumed to be Maxwellian.

Table I shows the electronic collisional processes that participate in the numerical solution

of the EBE. The cross sections were extracted from a database compiled by the plasma

group from IST-Lisbon (Instituto Superior Técnico de Lisboa) which is available on-line

in the LXcat project site [37]. Some processes do not have any perceptible effect on the

EEDF, but their rate coefficients are needed in the computation of the balance equation

of the heavy species. In such cases, the cross-sections are computed using semi-empirical

formulae proposed by Vriens and Smeets [36] or the Klein-Roseland relation based on the

microreversibility principle [38].

C. Treatment of Ions and Neutral Species

The radial profile of the species densities may be computed using the mass conservation

equations with a proper set of chemical reactions. We will not show here the detailed form

of these equations, which may be found in many textbooks. In Ref. [39] these equations are
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TABLE I. Electronic collisional processes included in the model and references for the cross-section

databases. The tag EB indicates that the corresponding processes was included in the EBE cal-

culation and the tag RC indicates that the rate coefficients was calculated for later use in the

chemical kinetics code.

Collision Aplication Ref. Threshold (eV)
Elastic:
Ar(1S0) + e → Ar(1S0) + e EB IST –
Excitationa:
Excitation from Ar(1S0):
Ar(1S0) + e → Ar(3P1)+ e EB, RC IST 11.62
Ar(1S0) + e → Ar(1P1)+ e EB, RC IST 11.82
Ar(1S0) + e → Ar(3P2)+ e EB, RC IST 11.55
Ar(1S0) + e → Ar(3P0)+ e EB, RC IST 11.72
Ar(1S0) + e → Ar(4p) + e EB, RC IST 13.00
Ar(1S0) + e → Ar∗∗ + e EB IST 14.00
Excitation from 4s:
Ar(4si) + e → Ar(4p)+ e RC IST –
Excitation between 4s states:
Ar(4si) + e → Ar(4sj) +e, i < j RC IST –
Ionization:
Ionization from Ar(1S0):
Ar(1S0) + e → Ar+ + 2e EB, RC IST 15.60
Ionization from 4s:
Ar(4si) + e → Ar+ + 2e RC [36] –
Ionization from 4p:
Ar(4p) + e → Ar+ + 2e RC [36] 2.60
Ionization from excimer Ar∗2:
Ar∗2 + e → Ar+2 + 2e RC [36] 3.80
Superelastic processes:
Ar(4s)+e → Ar(1S0) + e EB, RC Klein-Rosseland –
Ar(4p)+e → Ar(1S0) + e EB, RC Klein-Rosseland –
Ar(4p)+e → Ar(4s) + e RC Klein-Rosseland –
Ar(4si) + e → Ar(4sj) +e, i > j RC IST –

a The electronic states of Argon are expressed in L-S notation when upper cases are used. The minor case

notation, such as 4s and 4p, indicates the electronic configuration of the uppermost orbital and it is used

to group together all states which share this configuration.

written with special emphasis to problems of plasma modeling. Here we will limit ourselves

to the detailed description of the set of chemical reactions and other processes that influence

the particle balance, such as radiative decay and diffusion.

The mass conservation equation was solved for six neutral species: Ar(3P2), Ar(
1P1),

Ar(3P0), Ar(
3P1), Ar(4p), Ar

∗
2; and two charged species: Ar+ and Ar+2 . The electron density

is determined as the sum of the positive species densities. The ten excited states in the
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electronic configuration 4p were grouped together and treated in the model as one excited

level. Higher excited states of argon were not considered in this model. The same procedure

was adopted in the case of the excimer Ar∗2, which has a complex structure with singlet and

triplet states, besides vibrational levels [40]. Therefore the detailed processes of the excimer

kinetics was not taken into account.

For the density of the ground state Ar(1S0) there is no need to solve the mass balance

equation. Rather, it may be determined through the ideal gas law once the gas temperature

is computed from the heat equation.

In order to solve the mass balance equations one needs to choose proper boundary condi-

tions. The plasma’s cross section (see Fig 1) does not have boundaries and we assumed that

all charged and radicals have null density at an imaginary border that we would get if the

ceramic tube wall was prolongated downstream. This is an approximation, but it may give

reasonable results since these species are supposed to be destroyed the chemical processes

in the surrounding air.

The system of the mass balance equations was solved numerically using the standard

pdepe routine from MatlabR© for parabolic partial differential equations. The time variable

upper limit was chosen so that a stationary solution could be reached in that limit.

The table II lists the reactions involving other species. The rate coefficients were compiled

from different references and in order to abbreviate the extensive work of detailing them we

refer to previous works which adopted a very similar approach [41, 42]. The reactions or

rate coefficients which were introduced in this model will be discussed in what follows.

1. Diffusion

The diffusion processes are relevant in the case of the metastable Ar(3P2) and Ar(3P0),

and the charged Ar+ and Ar+2 species. In the first case, we adopted the diffusion coefficients

of Kutasi and Guerra [42]. The ambipolar diffusion coefficients for the charged species were

computed following Jonkers et al [43] and the mobilities are from Ref. [49]. The electron

diffusion and mobility were determined directly from the EEDF. The diffusion of resonant

species was neglected since diffusive losses are negligible compared to radiative decay.
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TABLE II. Reactions and other creation/destruction processes included in the mass balance equa-

tions of heavy species and their corresponding rate coefficients.

Reaction Ref. Reaction coefficient
Diffusion: [s−1]
Free diffusion
Ar(3P2), Ar(

3P0) [42] Df/Λ
2

Ambipolar diffusion
Ar+, Ar+2 [43] Da/Λ

2

Spontaneous Emission [s−1]
Ar(3P1)→Ar(1S0)+hν [44] ga ×(1.19 · 108), see text
Ar(1P1)→Ar(1S0)+hν [44] ga ×(5.1 · 108), see text
Ar(4p)→Ar(3P2)+hν [44] 1.43 · 107, see text
Ar(4p)→Ar(3P1)+hν [44] 7.3 · 106, see text
Ar(4p)→Ar(3P0)+hν [44] 3.5 · 106, see text
Ar(4p)→Ar(1P1)+hν [44] 9.83 · 106, see text
Ar2(*)→ 2Ar(1S0)+hν [40] 3.13 · 105, see text
Molecular conversion: [cm6s−1]
Ar++Ar(1S0)+Ar(1S0) [45] 2.25 · 10−31(300/Tg)

0.4

→Ar+2 +Ar(1S0)
Dissociative recombination: [cm3s−1]
Ar+2 +e→Ar(1S0)+Ar(1S0) [46] 9.6·10−7

(

1−exp(− 630
Tg

)
)

χ( 300
Te
)
0.67, see text

Penning Ionization [cm3s−1]
Ar(4si)+Ar(4sj)→Ar(1S0)+Ar++e [42] 3.69 · 10−11T 0.5

g

Ar(4p)+Ar(4p)→Ar++Ar(1S0)+e [47] 5 · 10−10

Ar(4p)+Ar(4s)→Ar++Ar(1S0)+e [47] 5 · 10−10

Ar(4si)+Ar(4sj)→Ar+2 +e [47] 5 · 10−10

Electronic impact [cm3s−1]
dissociation

e+Ar+2 → e+Ar(1S0)+Ar+ [48] 1.11·10−6 exp
(

−
(2.94−3(Tg [eV]−0.026))

(Te[eV])

)

Atomic conversion [cm3s−1]

Ar+2 +Ar(1S0)→Ar++2Ar(1S0) [48] 5.22 · 10−10
exp(− 1.304

Tg [eV]
)

Tg[eV]

Three-body recombination [cm6s−1]
e+e+Ar+ → e+Ar(4p) [36] 1.43 · 10−28(Te[eV])

−3

e+e+Ar+ → e+Ar(3P2) [36] 6.14 · 10−29(Te[eV])
−3

e+e+Ar+ → e+Ar(3P1) [36] 1.33 · 10−29(Te[eV])
−3

e+e+Ar+ → e+Ar(3P0) [36] 3.81 · 10−29(Te[eV])
−3

e+e+Ar+ → e+Ar(1P1) [36] 4.19 · 10−29(Te[eV])
−3

Excimer formation [cm6s−1]
Ar(4s)+2Ar(1S0) → Ar2(*)+Ar [41] 10−32

Excimer extinction [cm3s−1]
Ar2(*) + Ar2(*) → Ar+2 +2Ar(1S0) [40] 5 · 10−10

Ar2(*) + Ar(4s) → Ar+2 +Ar(1S0) + e [40] 6 · 10−10

Atomic [cm6s−1]
three-body recombination

Ar++Ar(1S0) +e → 2Ar(1S0) [41] 3.7 · 10−29Te(eV)
−1.5Tg(K)−1 .

a Here g is the scape factor in Holstein’s theory of radiative transport.
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2. Spontaneous emission

The loss by spontaneous emission must be considered for all excited states, except

metastables. The only species in the model that decay to the ground state are the ex-

cited states Ar(3P1) and Ar(1P1), for which cases it is important to take into account the

radiation imprisonment due to the large density of atoms in ground state. This effect was

taken into account using Holstein theory [50].

In the case of radiative decay from 4p states to 4s states it is important to consider the

Einstein coefficients from the transition of each state k with configuration 4p to each state i

with configuration 4s. Considering the statistical weights of each state, gk, an effective decay

coefficient from Ar(4p) to each state i with configuration 4s was computed. The expression

for this coefficient is

A4p,i =

∑

k gkAki
∑

k gk
, (6)

where the sum is taken over all the allowed transitions between the states with configuration

4p to each state with configuration 4s. The values of the computed coefficients are shown

in Tab. II.

The triplet state of the excimer has a non negligible decay constant [40], though lower

than the ones of others resonant species. Since the excimer does not exist in the fundamental

state, there is no radiation imprisonment. However, the decay constant of the singlet state

is much larger and because of that the density of the singlet is expected to be much lower

than the density of the triplet. Therefore, we considered the decay constant of the triplet

state as the effective decay constant of the excimer (see Tab. II).

3. Molecular conversion

The reaction of molecular conversion that forms the molecular ion Ar+2 is a three-body

reaction, which plays an important role in rare gas discharges at atmospheric pressure.

Unfortunately, the reaction rate coefficients from literature are not perfectly adequate to

plasma modeling, since the experiments from which they are determined are usually carried

out at temperatures around 300 K. There are many studies which proposed values which

are consistent among each other [45, 51, 52], but at low temperatures. Here we have adopted

the rate coefficients from the work Jones et al [45] (see Tab. II)
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4. Dissociative recombination

In this process an incident electron is captured by the ion, producing a auto-ionizing state

Ar∗2(n) which dissociates in two neutral atoms. Since it is a very efficient process, it is usually

the main channel of charge destruction. Although the rate coefficients have been studied

experimentally by many authors [46, 53], there is no reliable information concerning its

branching ratio. It has been experimentally shown that two dissociation paths are possible:

the formation of an atom in ground state and another atom in one of the four states in the 4s

electronic configuration or the formation of two atoms in the ground state [54]. Since it is an

exothermic reaction, the extra energy is shared between the two atoms. The experimental

study of Ramos et al [54] showed that on average ∼ 1.5 eV of the extra energy is carried

by the 4s excited atom and the ground state. If the reaction occurs via the second path,

∼ 7.21 eV is carried by the two atoms in the ground state. Since fast atoms are very likely

to ionize due to collisions with other species, only a small proportion of the dissociative

recombination effectively reduces the net charge of the discharge. Following Jonkers et al

[48], we considered that only 5% of the events effectively reduce the net charge of the plasma

medium (χ = 0.05).

5. Electronic impact dissociation

The process of electronic impact dissociation competes with dissociative recombination

and the rate coefficients have the same order of magnitude at the typical plasma conditions

of this study. In this process the incident electron excites the molecular ion from a bounding

state to an anti-bounding state which dissociates [55]. The rate coefficient for this processes

was extracted from the work of Jonkers et al [48], which proposed an analytical expression

consistent with the theoretical cross sections derived by Marchenko [55]. Even so, the

dissociative recombination remains the main mechanism of charge destruction.

6. Three-body recombination

The three-body recombination processes are specially relevant to the charge balance when

the electron density is relatively large (ne > 1015 cm−3) or the molecular ion density is

much smaller than the atomic ion density. The rate coefficient expression of the three-body
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recombination involving two electrons and an ion was taken from the work of Vriens and

Smeets, which arrived at their expression using the micro-reversibility principle and their

semi-empirical formulas of the direct process (ionization). We also considered the three-body

recombination processes involving the atom in the ground state as a third particle. In this

case, the rate coefficient was taken from Ref [41].

In order to guarantee the model consistency, we considered the recombination processes

which are the inverse of the ionization of states 4s and 4p by electronic impact. Recom-

bination to the ground state is negligible and it was not included in the model, since the

ionization from the ground state is also negligible at the typical plasma conditions of this

study. This was confirmed by the results as will be shown later. The excited states of

the higher levels which were not considered in the model were considered to be at Saha

equilibrium so that the ionization is compensated by the three-body recombination.

D. Plasma Heating

The temperature was determined using the following heat equation

1

r

d

dr

(

rλ(Tg(r))
dTg

dr

)

= −σe(r)E0(r)
2 , (7)

where λ(T ) is the thermal conductivity of argon, which is temperature dependent, and σ is

the electric conductivity (σe = eneµe). Note that all the energy given up by the electrons to

the plasma (Joule heating) contributes to plasma heating, not only elastic collisions. It is

assumed that excited states convert the internal energy into translational energy mainly by

relaxation processes, heating the gas. Eq. 7 is frequently referred as Elenbaas-Heller equation

[56], with an additional term accounting for the radiative losses. The terms containing axial

gradients were also neglected, in accordance with earlier assumptions.

The thermal conductivity in Eq. (7) depends on the temperature, so an empirical relation

for λ(T ) [57] had to be used to obtain a realistic solution. The electron conductivity σ(r)

was obtained from the solution of the electron Boltzmann equation. The electric field in the

heat equation was determined by solving the Maxwell’s equation, as will be described in the

next section.

In the same way as the continuity equations, the heat equation was solved numerically
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using the standard pdepe routine from MatlabR© for parabolic partial differential equations.

E. Plasma Electrodynamics

Plasmas can be sustained by microwaves by several mechanisms. In the problem described

here, the plasma is sustained by a propagating wave in the magnetic mode TM00. Note that

the discharge is also the propagating medium of the wave.

In the case of a TM00 propagating wave, the electric and magnetic fields E and B can be

written in cylindrical coordinate as E = (Er, 0, Ez) and B = (0, Bφ, 0). These components

are assumed proportional to the factor exp (−jωt+ j
∫

z
k(z′) dz′), where k = β + jα, β is

the propagation coefficient and α is the space damping factor (attenuation coefficient), and

another factor which only depends on the radial coordinate. The relation between these

components can be found using the Maxwell’s equations [58]

∂Bφ

∂z
= j

ω

c2
ǫEr ;

1

r

[

∂

∂r
(rBφ)

]

= −j
ω

c2
ǫEz ;

∂Er

∂z
− ∂Ez

∂r
= jωBφ (8)

where ǫ is the medium relative dielectric constant. In the case of vacuum (or free space),

the value is ǫ0 = 1; in the case of a dielectric, the value is ǫd; and in the case of a plasma

the dielectric constant is given by the following formula [59]

ǫp = 1−
ω2
p

ω2 + ν2
+ j

ν

ω

ω2
p

ω2 + ν2
= 1− ξ + j

ν1
ω
ξ , (9)

where ωp =
(

nee2

ǫ0me

)1/2

is the plasma oscillation frequency. After some algebraic manipula-

tions of equations (8), we arrive at the following expression for the component Ez

1

r

[

∂

∂r

(

r
∂Ez

∂r

)] [

k2

κ2
p

− 1

]

+
∂Ez

∂r

∂

∂r

(

k2

κ2
p

)

=
ω2

c2
ǫEz , (10)

where κp = k2 − (ω2ǫ)/c2. We note that the solutions of Eq. 10 are complex, so that the

physical solution is obtained taking the real part of the solution. Note also that the factor

exp (−jωt+ j
∫

z
k(z′) dz′) may be canceled out from equation (10) so that only the radial

dependence is retained.
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The propagating and attenuation coefficients must be determined from the continuity of

the axial components of the electromagnetic fields in the boundary between the plasma and

the air. Here we considered that the boundary is located at r = R, where R is the radius of

the ceramic tube. We shall recall that our analysis is restricted to a given cross section of

the plasma column propagating in the ambient air, so only the continuity relations in the

boundary between the plasma and the air are needed. In order to solve that problem, we

built a routine that searched for the attenuation and propagating coefficients which would

satisfy the continuity relations. The Eq. 10 was solved numerically by means of the ode45

solver from the MatlabR© library of ordinary differential equations routines.

F. Self-consistent Method

The workflow of the self-consistent routine is sketched in Fig. 2. The variables – such

as electron and ion densities, gas temperature, axial electric field and transport parameters

– were initialized using arbitrary profiles. The only fixed value was the electronic density

at the center of the discharge, ne0(0), whose value was chosen equal to the one which was

derived from line broadening measurements of the discharge in the desired condition [60].

The method consists of finding a solution for the radial profiles of all the relevant physical

quantities which is consistent with the value ne0(0) at the column center. It may be thought

as an eigenvalue problem, akin to that of Ref. [41]. For instance, the magnitude of the electric

field Ez at the center is adjusted self-consistently with the radial profiles of the electric field

and the charged and neutral particles which satisfy simultaneously the Maxwell’s equations

and the mass conservation relations. This procedure is repeated iteratively until an electric

field which is consistent with the electron density is found. The self-consistent routine

described in the flow chart from Fig. 2 was implemented in MatlabR©.

III. RESULTS AND DISCUSSION

A. Plasma Contraction

The first result we show here is the electron density profile for three different modeling

assumptions (see Fig. 3). The first condition is just the full model described earlier, without

any simplification besides the ones we have already mentioned. In the second case we use a
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Initialization of variables

n (r)e ,Tg(r),Ered(r),Nj (r)

Solve Boltzmann Eq.

f (r),ka (r),De(r)

Solve continuity
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Upgrade electric field

New EredSolve the heat equation

σ r(r)

Tg(r)

ne(0) n   (0)e0 >tol

µe(r),Te(r)

   First time

EBE is solved? 
Yes

No

Solve Maxwell's

     equations

FIG. 2. Flow chart representing the self-consistent routine. Some of the symbols were not intro-

duced in the text, namely; De, the electron free diffusion coefficient; Nj , the density of the heavy

species j; and ka, the rate coefficient of the electronic collisional processes.

Maxwellian EEDF, as also described in the previous section. In the third case we have only

omitted the dissociative recombination from the full model, keeping the non-equilibrium

EEDF. We also plotted the Bessel profile which corresponds to the analytical solution of the

density profile in the linearized Schottky model.

The value of the electron density at the center of the discharge was fixed at 1.25 · 1014

cm−3. This value was estimated by means of the hydrogen Balmer series Hβ line’s broadening

measured in the same experimental conditions of the mass spectrometric diagnostics (see
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1
3

-3

FIG. 3. Electron density profile. Three different scenarios are shown, namely: full model, with no

restrictions ( ); Maxwellian EEDF ( ); no dissociative recombination ( ); Bessel profile ( ).

Sec. III B 1), with the optical fiber fixed at ∆z =3.7 mm from the launcher exit. The results

are presented as a function of the normalized radial coordinate r/R, where R is the tube

radius with a diameter of 1.0 mm.

It can be clearly seen that the highest degree of contraction was obtained when the

full model was considered. When the Maxwellian EEDF is assumed instead of the non-

equilibrium one, it was observed a relatively small broadening of the profile. The broadening

was much more pronounced in the case where the dissociative recombination was switched

off. These results suggest that the main mechanism leading to the discharge contraction is

the dissociative recombination associated with the non-uniform heating, as postulated by

Kenty’s mechanism. The EEDF does play a significant role in the contraction phenomena, as

can be clearly seen in the broadening of the profile in the second scenario. Nonetheless this

broadening is small when compared to that in the third scenario and we may safely conclude

that the dissociative recombination plays more important role than the tail depletion and

other EEDF related effects.

So how can this be reconciled with those experimental observations in which contraction

was not prevented when the discharge tube was heated [11]? First of all, we must consider

that temperature uniformity does not guarantee that dissociative recombination will not

grow faster than ionization processes, even if the EEDF is Maxwellian. Besides that, the
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experimental method of heating the discharge tube can not guarantee that the temperature

will be radially uniform, because the intrinsic plasma heating, the initial feeding gas tem-

perature and it’s thermal conductivity may still contribute to the onset of non-negligible

thermal gradients which may trigger discharge contraction due to Kenty’s mechanism. For

instance, Helium has a much higher thermal conductivity than Argon and Neon, which could

also explain why the tube heating method only prevents the Helium contraction.
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FIG. 4. Reaction rates of charge creation as a function of the normalized radial coordinate. The

creation processes are shown in blue, where the solid line is the ionization from the 4s states ( ),

the dashed line is the ionization from the molecular argon excimer ( ) and the dotted line is the

ionization from the 4p states ( ). The destruction processes, here shown as a negative creation

processes, is given by the red lines, where the solid line is the dissociative recombination ( ) and

the dashed line is the atomic three-body recombination ( ). These results were generated using

the full model.

In order to get a better understanding of the results from the full model, let’s analyze the

main contributions to the processes of charge creation and destruction. The plot in Fig. 4

shows the reaction rate of such processes as a function of the normalized radial coordinate.

The plot in Fig. 5 shows the net effect of creation and destruction of charges and according

to the particle balance equation it is equal to the diffusion rate in the stationary regime.

We see in Fig. 4 that the most important creation process in the discharge center is the

ionization from the 4s states. In the borders (r/R > 0.2) ionization from the excimer

exceeds ionization from the 4s states. This is related to the radial profile of the density

22



of the excimer, which is broader than the radial profiles of the 4s resonant and metastable

states (see Fig. 7). The third most important creation process is the ionization from the 4p

states. Note that the ionization from the ground state is not shown in the plot, because its

contribution is negligible relative to the other creation processes.

The destruction of charges is caused mainly by the effect of dissociative recombination

within the whole interval between r/R = 0 and r/R = 1. The atomic three-body recom-

bination is also important, but always lower than the dissociative recombination. The plot

of the diffusion rate in Fig. 5 shows that the net rate of charge creation is positive in the

center of the plasma column (r/R < 0.15), but negative in the border. The equality between

diffusion rate and charge creation/destruction rates imposed by the electron particle balance

equation also implies that the diffusion must be positive in the center and negative in the

border. The positive value corresponds to the typical behaviour which is expected from

the linearized Schottky model, where the charge produced in the discharge always diffuses

towards the border. When the contraction phenomena takes place one observes a negative

diffusion rate in the border and this effect is closely related to the contraction phenomena.

Since the net creation of charge is negative in that region, the electron’s flow through the

inward radial surface of a fixed small cylindrical volume is higher than the flow through the

outward radial surface. The destruction processes are acting analogously as a “charge filter”

causing the abrupt collapse of the discharge column.

B. Consistency with Experiment

1. Mass Spectrometric Data of Ar+ and Ar+2

One of the main motivations for the modeling effort reported in this work was to obtain

a theoretical description of the experimental observation of the radial profile of the Ar+

and Ar+2 densities. These measurements were accomplished by means of mass spectrometry.

More information concerning the experimental setup may be find elsewhere [20, 61, 62]. We

also note that the raw data from mass spectrometry measurements is proportional to the

particle flux. However, we are interested in the particle density. The procedure to convert

the flux proportional measurements into density proportional values is described in detail

in [62] and it is based on the supplementary information about the ion energy distribution,
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FIG. 5. Diffusion rate of charges as a function of the relative radial coordinate. These results were

generated using the full model.
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FIG. 6. Normalized number densities of Ar+ and Ar+2 . The blue and red solid lines are the Ar+

( ) and Ar+2 ( ) densities calculated by means of the full model. The dashed blue and red curves

are the Ar+ ( ) and Ar+2 ( ) densities obtained when the EEDF was assumed to be Maxwellian.

The experimental values for Ar+ (•) and Ar+2 (•) are also shown [20].

which was also determined experimentally.

The modeling results give a good qualitative description of the experimental data. The

inversion of the [Ar+]/[Ar+2 ] ratio is observed both experimentally and theoretically around

r/R ≈ 0.25. Nonetheless, the full model’s results overestimates the [Ar+]/[Ar+2 ] ratio in
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FIG. 7. Radial profile of the densities of the excited species considered in the model (Ar(3P2),

Ar(1P1), Ar(
3P0), Ar(

3P1), Ar(4p) and Ar∗2). These results were generated using the full model.

the column center. Besides that, the [Ar+] profile seems to be too narrow. On the other

hand, the model which assumes a Maxwellian EEDF seems to predict correctly the column’s

center [Ar+]/[Ar+2 ] ratio, but the profile in this case is clearly too broad. On the theoretical

side, we must take into account many uncertainties both in the model and the experiment

that may hinder the accuracy. For instance, we took a more or less arbitrary branching

ratio for the dissociative recombination reaction. Since this parameter is critical, an error in

the branching ratio could explain the observed discrepancies. On the experimental side, we

must consider that the mass spectrometer’s probe disturbs the discharge and it may actually

change by a considerable amount the electron density at the column center and the electric

field profile, even if all other physical conditions are kept fixed. Besides, the pure Ar plasma

chemistry is disturbed by the presence of air molecules, whose effect is more important in

the borders of the positive column. Therefore, we may consider a qualitative agreement to

be the best achievable result.

For the sake of completeness, we also show the radial profile of the excited species Ar(3P2),

Ar(1P1), Ar(
3P0), Ar(

3P1), Ar(4p) and Ar∗2. Note that the metastable Ar(3P2) is the most

abundant species in the discharge center. It has the highest statistical weight, which explains

its high density relative to the other excited species. The relatively high density of the

states in the 4s configuration explains why the main creation processes of electrons is the

25



electronic impact ionization from these excited atoms. The Ar(4p) states present only a

negligible density along the radius. It is also interesting to note that the excimer profile

is much broader relative to the other excited species. This may be explained by the fact

that we considered that the excimer extinction occurs only via collision with other identical

partners, electrons or 4s states. The density profile of these species always decreases radially,

contrary to the argon ground state. The quench by argon atoms seems to be negligible [40]

and it was not included in the model. If this behaviour is confirmed experimentally, it may

be explored to build new excimer laser sources.

2. Gas and Electron Temperature
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FIG. 8. Radial profile of the gas temperature ( ), generated using the full model.. The horizontal

lines are used to display graphically the values of the calculated mean ( ) and the measured ( )

temperatures, 〈Tg〉 and Tg,OH , where 〈Tg〉 = 542 K and Tg,OH = 659(8) K.

The radial profile of the calculated gas temperature is shown in Fig. 8. A dashed

horizontal line is used to show the mean value 〈Tg〉 = (2/R2)
∫

Tg(r)rdr = 542 K, which

is compared to the value estimated by means of the Boltzmann plot of the line intensities

from OH (A 2Σ+, ν ′ = 0 → X 2Π, ν ′′ = 0) UV band, Tg,OH = 659(8) K [60]. The values

are consistent and the difference may be explained by the fact that the OH radial profile

may differ from the gas temperature radial profile. Besides, the rotational temperatures are

generally higher than the gas temperature in non-equilibrium discharges [60, 63].
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FIG. 9. Radial profiles of the reduced electric field E/N ( ), electron temperature Te = 2/3〈ǫ〉
( ) and Thomson temperature Te,th ( ). These quantities were derived from the full model

results.

Fig. 9 shows the radial profiles of the reduced electric field and the electronic tempera-

ture. The reduced electric field decreases towards the border, even if the axial component of

the electric field, Ez, increases. This happens because the gas density increases faster than

the electric field. The electron temperature follows a similar trend, but it increases slightly

between r/R = 0 and r/R = 0.2 and after that it decreases. We also included in the plot

the “Thomson temperature”, which allow us to compare our results with Thomson scatter-

ing temperature measurements [23]. The temperature measured by this technique is often

considered the most accurate plasma diagnostic for electron temperature measurements.

However, assumptions must be met, which is discussed next.

The Thomson scattering gives the profile of the light elastically scattered by electrons in

the plasma column. If the EEDF is Maxwellian, this profile can be proven to have a Gaussian

shape and a expression can be derived which relates the standard deviation with the electric

temperature. However, if the EEDF is not Maxwellian, there is no guarantee that the

Gaussian fit will actually give the real electron temperature, if it is defined as Te = 2/3〈u〉.
In this case, the populous low energy electrons provide the most important contribution to

the scattered light and the resulting profile is not exactly Gaussian. However, it is usually

fitted as if it was a normal distribution and the electron temperature is derived in the usual

manner. Actually, the deviation from a Gaussian is imperceptible, because the EEDF in

the energy interval between 0 eV and 2 eV – which contains the electron population that
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gives the most important contribution for the light scattering – may be approximated by a

straight line, even in the worst cases. The contribution of more energetic electrons (ue > 2

eV) in the tail of the Doppler broadened scattering profile – which could possibly show the

deviation from the equilibrium EEDF – is obscured by the signal noise [22]. That is why we

may define the Thomson temperature as the temperature of the Maxwellian which best fits

the non-equilibrium EEDF in the energy interval from 0 eV to 2 eV (see Fig. 12).
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FIG. 10. Radial profile of the magnitude of the axial component of the electric field, Ez, obtained

in the full model simulation.
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FIG. 11. Comparison between the radial profiles of the electron density, ne, and the Thomson

electron temperature, Te,th.These quantities were derived from the full model results.

28



Using this definition, we clearly see that the the Thomson temperature increases radially

as observed experimentally [23]. Nonetheless, this is just an artifact caused by the increas-

ingly higher deviation from equilibrium of the EEDF as the electron density decreases due

to the column contraction. It has been often stated that the electron temperature “must

increase” in order to keep the discharge alive, but this is not the case. Actually, one must

analyze if the physical conditions are such that make the plasma existence possible. Besides,

real electron temperatures of 2 eV or 3 eV in the borders would result in very high ionization

rates, causing the electron density in the borders to be higher than in the center in spite of

the dissociative recombination. No stability would be possible in this case.

2 4 6 8 10 12 14 16
energy (eV)

10-10

10-8

10-6

10-4

10-2

E
E

D
F
 (

eV
-3

/2
)

r/R=0.50 r/R=0.25 r/R=0 

FIG. 12. Electron energy distribution functions at different radial coordinates: r/R = 0 mm ( );

r/R = 0.25 mm ( ) and r/R = 0.5 mm ( ). The Maxwellian distribution which was fitted

in the low energy electron interval is also shown: r/R = 0 mm ( ); r/R = 0.25 mm ( ) and

r/R = 0.5 mm ( ). The EEDFs were obtained using the full model simulation.

The plot in Fig. 11 compares the radial profiles of the electron density, ne, and the

Thomson electron temperature, Te,th. This plot is analogous to the one shown in [23], where

both ne and Te were obtained experimentally in similar physical conditions by means of

Thomson scattering. We were able to reproduce this apparent increase in the electronic

temperature, but only using this new definition of the electron temperature.

The procedure used to obtain the Thomson electron temperature is shown in Fig. 12.

The EEDF in three different positions are shown: r/R = 0.0, r/R = 0.25 and r/R = 0.5.

As the radial coordinate increases, the EEDF becomes more depleted due to the decrease of
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the electron density. Here we recall that the higher the electron density, the higher the e− e

collisions rates, so that the EEDF is expected to approach equilibrium. Note that the non-

equilibrium EEDF always exhibits a negative concavity on a logarithm scale. Consequently,

the Thomson electron temperature is higher than the values of the real electron temperature.

The concavity tends to increase as the EEDF deviates more and more from the equilibrium

and this accounts for the apparent increase in temperature.

Lastly, we would like to discuss the impact of the EEDF on the ionization rate. As can

be clearly seen in Fig. 12 the tail of the EEDF tends to be more and more depleted as the

electron density decreases. This certainly would have a large impact in the rate coefficient

of electronic ionization from the ground state, since the ionization threshold in this case is

15.6 eV and the EEDF experiences a drastic drop in the vicinity of this value. Nevertheless,

the most important ionization source comes from the electron impact with excited states.

In the case of the 4s states, the threshold value is approximately 4.0 eV. In the vicinity

of this value, the tail depletion is much less pronounced and the effect on the ionization

rate coefficient will be relatively small. This reinforces our prior conclusion: the contraction

phenomena is more related to the dissociative recombination rather than the non-equilibrium

EEDF. It also explains why the models which considered the EEDF to be Maxwellian could

provide reasonable results. This conclusion should be valid not only to atmospheric pressure

plasmas, but also to intermediate pressure discharges where the transition between single-

step to multi-step ionization occurs before plasma contraction. On the other hand, if single-

step ionization is the main creation mechanism or no dissociative recombination occurs in

a particular discharge configuration where the constriction is experimentally observed, than

other explanations based on the non-equilibrium EEDF would be more appropriate.

IV. CONCLUSION

In this work we report a physical model for the description of an argon discharge sus-

tained by surface waves at atmospheric pressure. We focused on the problem of column

contraction and we elucidated the relative importance of the dissociative recombination and

the non-equilibrium EEDF to the onset of this phenomenon. By detailed examination of our

results, which also included two alternative scenarios where the dissociative recombination

was switched off and the EEDF was considered to be Maxwellian, the dissociative recom-
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bination was shown to be the most important process leading to plasma contraction. The

leading charge creation path was ionization from the excited species, mainly the 4s states

and the molecular argon excimer. Although the EEDF exhibited a significant tail depletion

in the region of the column borders where the electron density was relatively small, it was not

pronounced enough to produce a significant change in the rate coefficients of the previously

mentioned processes, which have low ionization thresholds. The dissociative recombination

proved to be the most important ingredient for the maintenance of the contracted discharge.

The three-body atomic conversion is also an integral part of the constriction process, since

without this process no molecular ion would be formed. The non-homogeneous heating is

essential, since it causes a positive density gradient of neutral atoms which contributes to the

maintenance of the molecular ion formation in the borders. However, the non-homogeneous

heating only aids the contraction; the dissociative recombination could possibly cause con-

traction even if the atomic density was uniform.

The simulation results showed that the density of the molecular ion Ar+2 becomes larger

than that of the atomic ion Ar+ in the borders of the plasma column. This behavior was

predicted by Kenty [5] and it was verified experimentally recently [20]. Another important

contribution of this work was the elucidation of the apparent steep electron temperature

increase towards the border which was observed in Thomson scattering plasma diagnostics.

We showed that our results can reproduce this behaviour if the effect of the non-equilibrium

EEDF is taken into account in the interpretation of the electron temperature measured by

Thompson scattering.
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[17] J. Gregório, P. Leprince, C. Boisse-Laporte, and L. Alves, Plasma Sources Science and Tech-

nology 21, 015013 (2012).

[18] M. Jimenez-Diaz, E. Carbone, J. Van Dijk, and J. Van der Mullen, Journal of Physics D:

Applied Physics 45, 335204 (2012).
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