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Impact of an intruder on granular matter leads to formation of mesoscopic force networks seen
particularly clearly in the recent experiments carried out with photoelastic particles (Clark et al.,
Phys. Rev. Lett., 114 144502 (2015). These force networks are characterized by complex structure
and evolve on fast time scales. While it is known that total photoelastic activity in the granular
system is correlated with the acceleration of the intruder, it is not known how the structure of the
force network evolves during impact, and if there are dominant features in the networks that can
be used to describe the intruder’s dynamics. Here, we use topological tools, in particular persistent
homology, to describe these features. Persistent homology allows quantification of both structure
and time evolution of the resulting force networks. We find that there is a clear correlation of
the intruder’s dynamics and some of the topological measures implemented. This finding allows us
to discuss which properties of the force networks are most important when attempting to describe
intruder’s dynamics. In particular, we find that the presence of loops in the force network, quantified
by the persistent homology, is strongly correlated to the deceleration of the intruder. In some cases,
particularly for the impact on soft particles, the measures derived from the persistence analysis
describe the deceleration of the intruder even better than the total photoelastic activity. We are
also able to define an upper bound on the relevant time scale over which the force networks evolve.
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I. INTRODUCTION

When a high-speed intruder strikes a granular material, its momentum is carried away and dissipated by the
grains. This process is important in a wide variety of natural and man-made settings, including astrophysics [1, 2],
rugged-terrain robotics [3, 4], and ballistics [5]. Previous experimental studies [6–20], have developed macroscopic
descriptions involving, for example, the dynamics of the intruder [7, 13, 14], the size of the impact crater [10, 12],
collective dynamics of multiple intruders [15], the influence of bed preparation [16], or the influence of interstitial
fluid [18, 20]. However, relating macroscopic behavior to physical processes at the grain scale or at intermediate
length scales can be quite difficult, primarily because measuring forces and dynamics inside the granular material is
not possible in most experimental realizations.

Recent experiments on granular impact using photoelastic disks [21–24] and high-speed video (frame rates of 10-
50 kHz) have provided some insight on the complex nature of grain-grain force transmission within the granular
material during initial impact [25] and penetration [26]. This allows visualization of the force networks that form
during impact, and these forces can then be connected to the intruder dynamics [26–28] or the motion of grains [29].
However, a complete description of the relationship between the intruder motion and the space- and time-dependent
granular forces is still lacking, partially because the images from high-speed videos lack the spatial resolution required
to quantitatively measure vector forces [30, 31] between grains. Quantitative photoelastic measurements are thus
limited to, for example, the total photoelastic intensity in a certain region of the image, which gives an estimate of
the pressure in that region.

In recent years, significant progress has been made toward an understanding of force networks using tools such as
statistical methods [32–34], network analysis [35–37], and application of topological methods [38–43]. A significant
part of the research involving consideration of topology of force networks has been carried out based on persistence
homology; see [42] for in-depth discussion of the application of this technique to granular matter, and [43] for a
brief overview. In this context, persistent homology is based on reducing the complex information contained in force
networks to point clouds, called persistence diagrams, that describe the underlying networks. Persistence diagrams
are computed by varying the force threshold and measuring the threshold value at which various components of the
network appear and disappear. Commonly, this filtering is carried out by considering superlevel sets, where the
topological measures are computed on the force values above the threshold. As the force threshold is continuously
decreased from the maximum value to the minimum value, individual components appear (they are ‘born’), connect
(during this process one of the components ‘dies’), and/or form loops.

While this outlined reduction leads to some loss of information, the persistence diagrams have been very useful
in describing the force networks for compressed granular systems [40, 41, 43], as well as in helping to identify the
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influence of particle shape on the properties of force networks [44, 45]. It should be pointed out however that until
now the tools of persistence homology, as well as the other techniques listed above have been applied mostly to the
data resulting from simulations, and there have not been attempts so far to analyze the properties of force networks
that emerge during dynamic experimental processes evolving on fast time scales.

In this work, we apply the techniques of persistent homology to analyze the granular force networks that form during
impacts into photoelastic disks. In the present context, persistent homology involves a topological characterization of
a scalar field, in this case the brightness of a given photoelastic image from a high-speed movie of a granular impact
event. The resulting topological measures can give detailed information about the granular response at a spatial scale
that is larger than a grain but small compared to the size of the granular assembly. By analyzing a time series of
photoelastic images, we show that persistence homology can be used to tie the granular force response to the intruder
dynamics, In many cases, persistence homology provides a more detailed connection than simply measuring the total
photoelastic intensity. In addition, our topological analysis suggests that the presence of loops in the force network
plays a crucial role in decelerating the intruder. To our knowledge, this is the first attempt to use topology-based
methods to analyze the results of physical experiments on granular materials involving fast dynamics.

The rest of this manuscript is organized as follows. In Section II we discuss the techniques used to analyze the results,
including experimental techniques, image processing, and a brief description of the used topology-based measures. In
Section III we discuss the main results, including both structural and time-dependent properties of the force networks.
Section IV gives conclusions and outlook.

II. TECHNIQUES

A. Experimental Techniques

We perform topological analysis on images from high speed impacts into a collection of photoelastic disks (3 mm
thick), which are confined between two Plexiglas sheets (0.91 m × 1.22 m × 1.25 cm) separated by a thin gap
(3.3 mm). The experimental apparatus is identical to that used in previous experiments [25–28]. Circular intruders
are machined from bronze sheet (bulk density of 8.91 g/cm3 and thickness of 0.23 cm) of diameters D of 6.35 cm,
12.7 cm, and 20.32 cm. We drop these intruders from varying heights through a shaft connected to the top of the
apparatus, yielding an impact velocity v0 ≤ 6.6 m/s. We record results with a Photron FASTCAM SA5 at frame
rates of up to 25,000 frames per second (fps). To measure v0, we track the intruder and take a numerical derivative
as in [25–28].

Photoelastic particles are cut from polyurethane sheet from Precision Urethane into disks. Granular samples are
all bidisperse, containing a mixture of disks with 6 mm and 9 mm diameter in roughly equal numbers. We use
two different sets of particles with distinct stiffnesses: Shore 60A (bulk elastic modulus of roughly 1-10 MPa) and
Shore 80A (bulk elastic modulus of roughly 10-100 MPa). We give a more comprehensive treatment of the physical
properties of these particles, including a relation of force as a function of compression, in Ref. [25]. Following [25], we
refer to Shore 60A particles as soft and Shore 80A particles as medium stiffness.

B. Image Processing

Figure 1 shows two examples of experimental images, for impact on medium (a,b) and soft (c,d) particles. We first
remove noise from the initial images, (a,c) in Fig. 1, by spatial homogenization to account for the inconsistent lighting
as well as by applying a notch filter to remove the flickering of the AC light source at 120 Hz. We then perform image
subtraction between each frame and a reference frame. The result is an 8-bit grayscale image that shows negligible
temporal fluctuations or spatial inconsistencies in the lighting. We note that, for the soft particles, pre-existing force
chains from gravity are visible before impact, as seen in Fig. 1c), and these are subtracted from the final images.
After noise removal, we use built-in MATLAB functions to slighly dilate and erode the images, to make sure gaps
between neighboring grains in a force chain are connected. The final images are as shown in Fig. 1(b,d). The image
processing we show is performed on the entire image.

Figure 1(a,b) corresponds to medium stiffness particles, for which the speed of sound is roughly 90 m/s [25]. These
images are recorded at 25, 000 fps. For soft particles shown in Fig. 1(c,d), the estimated speed of sound is 30 m/s [25],
and the frame rate here is 10, 000 fps. The speed of sounds divided by the frame rate gives the typical distance of
information propagation between two consecutive images of roughly 3 mm, which is about half of the smallest grain
diameter. Thus, we record images sufficiently fast to resolve grain-grain force transmission during impact, although
our results below suggest the possibility of evolution on even faster time scales.
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FIG. 1. Example of image processing for medium 6.35 − 4.5 (a, b) and soft 6.35 − 1.3 (c, d) particles. Here, (a, c) are raw
images, and (b, d) show the post-processed images (using MATLAB jet color scheme). See the text for details on image
processing. Note in particular that our image processing approach removes the pre-existing force chains that are clearly visible
at the bottom part in (c) but not in (d). The naming convention is such that the first number specifies radius of the intruder
in cm, and the second one the impact speed in m/s. The images are shown at the times 0.276 ms (medium) and 16 ms (soft)
after impact. We will refer to medium 6.35 − 4.5 experiment as the reference one for the remainder of the manuscript.
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C. Topological Measures

In the context of granular matter, persistence homology computations have so far been reported for the data from
numerical simulations. The results presented here constitute the first attempt to extract useful information using
persistent homology from experimental data. In our case, the data available, consisting of the images shown in the
previous section, are by necessity incomplete, since the impact is a fast process involving large number of particles.
The spatial resolution of these images is not sufficient to resolve the photoelastic response at each grain-grain contact,
therefore detailed information about the interparticle forces is not available. Thus, the question we address is whether
useful information can be extracted from such data using persistent homology computations. If so, then the tools we
discuss here could be applied to a broad range of experimental granular systems involving fast dynamics.

The details regarding applications of persistent homology to analysis of force networks in granular matter could
be found in previous works [42, 43], and here we provide a brief overview. Before going into the description, it is
important to point out one significant difference between the approach taken by the persistence homology compared
to more classical approaches, that typically consider the interparticle forces as a function of (often arbitrarily chosen)
force threshold. Instead of using a threshold, persistent homology is able to treat the information about the forces on
all levels at once. Therefore, separation into weak and strong force networks, for example, is not necessary, although
it can be carried out if so desired. For the data considered in this paper, we will not be even considering forces on
the level of contacts, as discussed above, but on the level of image brightness.

Each experimental image could be considered as a rectangular array of pixels, with each pixel specified by its
brightness value in the range θ ∈ [0 : 255]. For each image, we carry out superlevel filtration, meaning that we
consider the pixels with the brightness above specified threshold as white, with the rest being black. Clearly, if we
choose a very high threshold, only a few pixels will be white. Then, as we lower the threshold level, more and more
pixels will become white. In simple terms, persistent homology keeps track of and quantifies the connectivity of the
network that forms by the white pixels. For detailed discussion of dealing with pixelized data in the context of
particulate systems we refer the reader to [42]; a less technical description could be found in [43]. We note however,
that the listed references focus on extracting force networks, since the data (either experimental examples or simulation
results) included sufficient information to be able to extract the forces at each particle contact. This is not the case
here, so we focuses on the direct analysis of the pixelized images, without attempting to formulate well-defined force
networks. The codes used for computation of persistence are available online [46].

By the filtering process described above, each image can be associated with a corresponding persistence diagram
(PD) that quantifies changes of the image as the filtering threshold, θ, is modified. There are two PDs for each
image: PD0 and PD1, corresponding to the components and the loops, respectively. These diagrams encode the
appearance and disappearance of connected components and loops, by keeping track of the values of θ at which a
component and/or loop appear or disappear. To help interpretation, one could think of the connected components as
‘force chains’ (for large values of θ). However, the idea of connected components is more general and more precisely
defined than the somewhat vague ‘force chain’ concept. The PD1 keeps track of appearance and disappearance of
loops, defined by the requirement that all pixels that form a loop are brighter than a specified value of θ. Connected
components disappear when they merge (at some lower value of θ); the loops disappear when they get filled up with
the pixels that are at least as bright as the specified threshold.

Figure 2 shows an example of PDs for one image/frame from the reference experiment. On the horizontal axis we
plot birth (appearance) of a component/loop, and at the vertical axis we show the disappearance (death) coordinate.
Part (a) shows the diagram for the components, PD0, and the part (b) shows the diagram for the loops, PD1. Since
components/loops are born before they die (that is, appear on higher intensity levels than the ones on which they
disappear), all the points (generators) are below the diagonal. To guide the reader in interpreting these diagrams, we
provide a few brief remarks:

• Note large number of generators close to the diagonal. These are generators that persist just for a small range
of brightness values and could be considered as noise.

• The dominant features (such as strong ‘force chains’) are described by the generators that are further away from
the diagonal, and which are born at high values of θ.

• Note that the birth values of PD1 are lower than that of PD0. This is due to the fact that the birth of a loop
corresponds to the lowest magnitude of the pixels that form the loop.

These PDs are essentially point clouds that describe (in a simplified manner) complex network structure. They are
still, however, rather complex since they include the information about connectivity of the networks over all brightness
levels. Therefore, one needs some approach for their analysis and quantification. While there are different quantities
that could be used for this purpose, in the present context we find it useful to consider the following simple measures:
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FIG. 2. Persistence diagrams (PDs) for the reference experiment (medium 6.25−4.5) (same time as shown in Fig. 1). The parts
(a) and (b) show the PDs for components and loops, PD0, and PD1, respectively. The parts (c) and (d) show the corresponding
lifespans. The x-axis range correspond to brightness, covering the full range [0 : 255]. Note large number of generators with
very small lifespans, showing that there are many points in the diagrams that are near the diagonals and represent essentially
noise. Supplementary animation [47] show the PDs and lifespans for all considered images of the reference experiment.

• Lifespan: Consider a generator that got born on the level θ = b, and died on the level θ = d. The lifespan is
then defined as b − d. The lifespans for the PDs shown in Fig. 2 (a) and (b) are given in the parts (c) and
(d), respectively, of the same figure. We note that small lifespans occur very often, saying that there are many
generators very close to the diagonals. In our data analysis presented in the next section, we find it convenient
in some cases to remove such small lifespans from consideration, since the corresponding generators could be
thought of as a consequence of noise in the experimental images.

• Total persistence (TP) is defined as the sum of all lifespans, TP(PD) =
∑

(b,d)∈PD(b− d). TP allows to describe

a whole PD by a single number at the cost of a significant information loss. If we think of the original image as
a landscape (with the altitude corresponding to pixel brightness) then the TP essentially tells us how flat this
landscape is: larger TP corresponds to the landscape that is more mountain-like, with lots of hills and valleys,
while small TP corresponds to the landscape without too many features. Since we have PD0 and PD1, we define
total persistence for the components and the loops, TP0 and TP1, respectively. Another related measure is the
total number of generators, TC, again for the components, TC0, and loops, TC1.

• Betti numbers: Betti numbers simply count the number of features, components, β0, or loops, β1, at a specified
threshold level, θ. These quantities could be obtained by simple counting, persistence homology is not required
for their definition or computation. However they could be also obtained from the PDs by essentially summing
the number of generators such that their birth coordinate is larger, and death coordinate smaller, than a
considered threshold, θ. It should be noted that Betti numbers are function of θ, and therefore contain much
less information than PDs themselves.
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Although it can be proven that PDs are stable with respect to noise (small changes of input data produce small
changes in corresponding PDs), the same cannot be shown for Betti numbers [42]. This property of PDs and Betti
numbers should be remembered in particular when dealing with potentially noisy data, as in this paper.

The final quantity that we discuss in this overview of topological measures is the concept of distance between the
PDs obtained at two different times. Such a quantity is possible since the space in which PDs live is a metric space
and therefore a distance can be defined. In particular, the distance concept that we define below is such that the
distance is small if the PDs are similar; see [42, 43] for more in depth discussion. The metrics that we consider and
define here is based on the entire diagram, i.e., we compare two diagrams by comparing all points in each diagram.
Note that this comparison does not involve thresholding: this measure compares the images on all brightness levels.

Consider two persistence points p0 = (b0, d0) and p1 = (b1, d1). The distance between p0 and p1 is defined by
‖(b0, d0)− (b1, d1)‖∞ := max {|b0 − b1|, |d0 − d1|}. Now, given two persistence diagrams PD and PD′ let γ : PD→ PD′

be a bijection between points in the two persistence diagrams where we are allowed to match points of one diagram
with points on the diagonal of the other diagram. The degree-q Wasserstein distance, dW2(PD,PD′), is obtained by
considering for each bijection, γ, the quantity  ∑

p∈PD

‖p− γ(p)‖q∞

1/q

and defining the distance between PD and PD′ to be the minimum value of this quantity over all possible bijections.
Stated formally

dWq(PD,PD′) = inf
γ : PD→PD′

 ∑
p∈PD

‖p− γ(p)‖q∞

1/q

.

In simple terms, ones looks into the cheapest way to move the points of one diagram to the those corresponding to
the other diagram, remembering that the points could be moved to the diagonal as well. The cost of ‘moving the
points’ (i.e., selecting a given bijection) varies for different values of q. For example, the Wasserstein distance dW1

sums up all the differences with equal weight. For q > 1, the distance still keeps track of all the changes but the
small differences contribute less. For brevity, in this paper we use q = 2 only, and for simplicity of notation we use
dW2(β0) and dW2(β1) to denote the distances between the components and for the loops, respectively. The code used
for calculating distances is available online [46].

III. RESULTS

A. Material Response: Structure and Geometry

Figure 3 shows the results for the reference case. The four panels in the figure show the total persistence, TP0, TP1,
total photoelastic intensity, and intruder’s acceleration. Since the position data from which the intruder acceleration
is computed are rather noisy, as discussed in [26], the velocity and acceleration are computed by numerical derivatives
calculated based on a linear best fit to the data over a range of roughly 50 frames. This is equivalent to taking
numerical derivatives and then smoothing with a low-pass filter. For consistency, the intensity and TP data, which
are computed from photoelastic images, are also filtered using a similar procedure. However, the photoelastic signals
here, using medium and soft particles, are not strongly fluctuating in time and thus not significantly affected by this
process. This is in contrast with Ref. [26] using hard particles and faster force dynamics, where time filtering is needed
on the photoelastic data to connect to the intruder dynamics.

We first make the general observation that TP curves are highly similar in shape to the photoelastic intensity and
acceleration of the intruder, suggesting that the material response responsible for slowing down the intruder involves
formation of highly structured force field. It is not only that the particles exposed to impact light up, but they respond
in a manner that corresponds to strongly nonuniform force field. Strongest de-acceleration of the intruder (the peak
in Fig. 3(d)) corresponds (approximately) to the maximum values of TP0 and TP1.

We observe particularly good agreement among TP1, photoelastic intensity, and acceleration. Examining the
acceleration curve in Fig. 3(d), we note that there is a primary peak, corresponding to forces building up beneath
the intruder and relaxing, but then there is a secondary rise at roughly 0.008 seconds. This event is clearly visible in
movies of the impact, see [48]. TP1 captures the secondary rise in the acceleration at roughly 0.008 seconds, while TP0

does not follow the acceleration and photoelastic intensity accurately. This result already suggests that the properties
of the loops, in particular, play an important role in determining the dynamics of the intruder.
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FIG. 3. Total persistence, for the components, TP0, for the loops, TP1, photoelastic intensity, and intruder’s acceleration for
the reference case (medium 6.35 − 4.9). Supplementary animation [48] shows the above curves jointly with the (processed)
photoelastic images.

Figure 4 shows another example of impact on soft particles. This example is interesting since it shows particularly
clearly the correlation between the TP1 and the acceleration of the intruder. For this experiment, the agreement
between TP1 and acceleration is even better than the agreement between photoelastic intensity and acceleration.
We conclude that the strong presence of loops in the force networks (as quantified by the TP1) appears to plays an
important role in determining the intruder’s dynamics.

Table I shows in precise terms the degree of correlation between the various topological measures, photoelastic
intensity, and the acceleration of the intruder for the 10 considered experiments. In addition to TP0,1, the table also
shows TC0,1, defined as the total number of generators for the components and loops, respectively. This measure
appears to also show similar level of correlation as TP. Across the board, we find high correlation for the measures
related to loops, showing once again that the loops play an important role across different impact speeds and different
particle properties. The correlation of the measures related to loops is comparable to the correlation of the photoelastic
intensity.

For all experiments using soft particles, the correlation values for TP1 are larger than those for the photoelastic
intensity (admittedly, with a small sample size). This is likely related to the fact that the photoelastic intensity of
a given particle under compression forces will saturate at a given deformation, and fringes will begin to appear (see
Fig. 1 from Ref. [30] and Fig. 7 from Ref. [24]). Extracting force information on a per-particle basis past the saturation
force is impossible unless the fringes themselves are analyzed, but this requires images with higher resolution than
we can obtain. Since soft particles are more easily deformed than medium stiffness particles, they have a smaller
saturation force, and we reach this saturation regime more easily. Thus, for soft particles, the photoelastic intensity
begins to break down as a good measure of the intruder dynamics, particularly for higher speed impacts with larger
forces where more particles tend to be saturated. Perhaps surprisingly, the network structure appears to preserve
some information that is lost when the photoelastic intensity saturates, and we are able to extract it via TP1.
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FIG. 4. Total persistence, for the components, TP0, for the loops, TP1, photoelastic intensity, and intruder’s acceleration for
the impact on soft particles (soft 6.35 − 1.3).

TABLE I. The correlations between acceleration and various topological measures and photoelastic intensity for different
experiments with varying particle stiffness, intruder diameter D, and initial impact velocity v0. The value of 1 would correspond
to perfect correlation, while 0 would mean complete lack of correlation.

Particle type D (cm) v0 (m/s) TP0 TP1 TC0 TC1 Intensity

medium 6.35 2.2 0.86 0.64 0.73 0.82 0.86
medium 6.35 3.2 0.84 0.73 0.75 0.73 0.91
medium 6.35 4.9 0.73 0.78 0.73 0.82 0.91
medium 12.7 2.6 0.35 0.70 −0.53 0.68 0.88
medium 12.7 3.8 0.80 0.81 0.77 0.88 0.90
medium 12.7 4.5 0.85 0.78 0.74 0.83 0.96
medium 20.32 2.3 0.79 0.88 0.76 0.86 0.92

soft 6.35 1.3 0.61 0.88 0.46 0.85 0.80
soft 6.35 2.3 0.50 0.79 0.06 0.66 0.68
soft 6.35 3.4 0.34 0.81 0.05 0.63 0.52

average 0.67 0.78 0.44 0.77 0.83

Since TP provides such a good description of the dynamics of the intruder, one may wonder whether some simpler
quantity could provide similarly good description. For example, one could ask whether it is indeed necessary to
employ a relatively complicated concept of persistence on the first place, and instead resort to a simpler measure,
such as Betti numbers, which were shown to be useful in describing force networks in simulated granular systems
exposed to compression [40]. In Sec. II C we described how to compute Betti numbers from the persistence, however
Betti numbers could be computed directly as well by simply counting the number of components and loops for a
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FIG. 5. Betti numbers, β0 (a) and β1 (b), for the reference case, respectively. No smoothing is used here since the amount of
data particularly for β1, is limited. The results are shown for three different brightness threshold levels, as discussed in the
text.

given intensity threshold. Figure 5 shows the Betti numbers, β0 and β1 for the reference case, and for few different
threshold levels. Clearly, as the threshold level is increased, the number of components and loops decreases sharply,
particularly for the loops. Also, by comparison with the Fig. 3, we note that the degree of agreement between the
acceleration and photoelastic intensity for Betti numbers is much weaker. This is not surprising since Betti numbers
provide only partial information. Therefore, one cannot expect such precise correlation with the intruder’s dynamics
and photoelastic intensity as it was the case with the TP. In addition, by definition Betti numbers involve choice of
threshold, therefore any conclusion obtained using Betti numbers is based on an (arbitrary) choice.

B. Material Response: Time Evolution of Networks

Our analysis thus far has focused on topological properties of stationary networks (that is, one image at a time).
However, persistent homology also allows for extraction of information on the evolution of force networks using the
distance concept discussed in Sec. II. Calculation of distance is computationally demanding, since the analysis of a
single experiment involves comparing large number of images, and each image includes a large number of generators
(the computational cost of carrying the computation is O(N3), where N is the number of generators). Of course, one
could skip the images to simplify the calculations (we will do this in what follows, although for a different purpose);
however, such an approach leads to loss of information.

Another approach that is more appropriate is based on the fact that the persistence diagrams involve large number
of generators close to the diagonal, see Sec. II C and supplementary animation [48]. These generators could be thought
of as noise, since they represent the features that persist only for a very small range of the force thresholds/image
brightness levels; this range may be even close to the accuracy of the process leading to the analyzed experimental
images. Therefore, it makes sense to remove some of the generators very close to the diagonal. Since there are many
generators there, the computations that ignore these generators can be carried much faster. Figure 6 shows the results
obtained if the generators living during less or equal to the specified number of brightness levels are not considered:
we see that the distance between the images is essentially insensitive if the generators up to 30 levels from the diagonal
are removed. We therefore carry out further computations of the distance ignoring the generators that are closer than
30 levels to the diagonal.

Figure 7 shows the results obtained for the distance if the specified number of images is skipped in calculations.
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FIG. 6. Wasserstein distance between the consecutive images for the reference case as a different amount of noise (shown by
the values of N in the legends is assumed for components (a) and loops (b). The distances are essentially insensitive to noise.

The results show that, as expected, the distance between the images increases with the number of skipped images.
However, the increase is slow: even if only every 7th image is considered, the distance increases by less than a factor of
2, see in particular the insets in Fig. 7. The significance of this finding is as follows: if the evolution of the force field
were completely resolved, the distance should have increased linearly with the number of images skipped (a simple
argument for why linear growth should be expected is that the distance function could be approximated by a linear
function for two diagrams that are arbitrarily close; see [42, 43] for further discussion regarding this issue). This is
not the case, however, showing that the evolution of the force field during impact is not completely resolved, meaning
that the force field evolves on the time scale which is faster than the inverse sampling rate used. While, based on the
results provided, we do not know what is the time scale on which the force networks evolve, at least the presented
results provide a lower bound. The final conclusion is therefore that the force network evolves on the time scale
that is not completely captured by the experimental imaging. We note that the same conclusions can be reached by
considering soft particles (figures not shown for brevity).

IV. CONCLUSIONS

In this paper, we have shown the utility of persistent homology in analyzing the results of physical experiments that
are difficult to analyze via other means. Due to the fast dynamics and finite resolution of the experimental images,
the available data are inherently limited. Even so, persistent homology provides meaningful and insightful results
regarding the structure of the force networks in a granular system during impact from an intruder.

Persistent homology allows quantification of structural or geometrical properties of the force networks. This analysis
has shown, for a set of 10 considered experiments that involve different impact speeds and different particle properties,
that the loop structure of the force networks is crucial in understanding material response and the dynamics of the
intruder. We again point out that this conclusion does not involve the concept of force threshold: it extends over all
force thresholds. Therefore, we avoid making an arbitrary choice for a force threshold. Furthermore, we note that
the the utility of persistent homology is not limited to two spatial dimensions (2D): as long as the data are available,
similar type of analysis can be carried out in 3D.

The tools of persistent homology also allow quantification of dynamical properties of the force networks. We have
shown a quantitative comparison between images obtained at different times during the experiments. This comparison
allows further to discuss the time scale on which force networks evolve. Surprisingly, we are able to show that the
evolution happens on the time scale that is faster than the inverse frame rate used in the experiments. Further work
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FIG. 7. Wassertein distance between the images ((a) - components, (b) - loops) for the reference case assuming that the
generators closer than 30 pixels to the diagonal can be ignored. The given number of ‘skips’ specifies the number of images
that were skipped in the calculation of the Wasserstein distance. The insets show how the maxima of the distances depend on
the time interval between the images considered. For the insets, ∆t on the horizontal axes correspond to the number of skipped
images multiplied by the time between two consecutive images, which is given by the inverse frame rate. Since the data for the
maxima are noisy, we smoothened the distances data from the main panels for the purpose of calculating the maxima shown
in the insets.

will be needed to capture this time scale in more precise terms.
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