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We probe the effects of particle shape on the global and local behavior of a two-dimensional
granular pillar, acting as a proxy for a disordered solid, under uniaxial compression. This geometry
allows for direct measurement of global material response, as well as tracking of all individual
particle trajectories. In general, drawing connections between local structure and local dynamics
can be challenging in amorphous materials due to lower precision of atomic positions, so this study
aims to elucidate such connections. We vary local interactions by using three different particle
shapes: discrete circular grains (monomers), pairs of grains bonded together (dimers), and groups
of three bonded in a triangle (trimers). We find that dimers substantially strengthen the pillar and
the degree of this effect is determined by orientational order in the initial condition. In addition,
while the three particle shapes form void regions at distinct rates, we find that anisotropies in the
local amorphous structure remain robust through the definition of a metric that quantifies packing
anisotropy. Finally, we highlight connections between local deformation rates and local structure.

I. INTRODUCTION

When a disordered solid is subject to a mechanical
load, various characteristics of its local structure and
composition directly impact the observed response and
performance. For example, composite metallic glasses
with interspersed dendrites that arrest shear bands and
cracks can counteract the standard trade-off between ma-
terial strength and fracture toughness in brittle mate-
rials [1, 2]. Other materials can fail in a ductile fash-
ion, in which material failure is marked by local plastic
flow and/or growth and coalescence of voids within the
bulk [3].
In general, characteristics of the local interactions be-

tween constituent elements are critical in determining the
response of a disordered system. These descriptors can
include bond strength, dissipation, and elasticity. These
considerations may require, for instance, additional terms
in the development of a constitutive model for the disor-
dered solid, in order to best predict creep and the onset of
failure. For example, the Gurson-Tvergaard-Needleman
(GTN) model currently serves as a basis for constitutive
modeling of ductile failure that can incorporate either
void coalescence or plastic flow [4–6]. We would like to
focus on one aspect that does not inherently alter the
interaction between material components, but can still
substantially influence behavior: particle shape.
If the shape of constituent particles (or grains) is

changed, that alone may not necessarily alter the in-
herent physics of how particles interact with one an-
other. The underlying mechanisms of their interactions
will remain, but one must consider effects that the shapes
have on contact distance, surface curvature, and rota-
tional frustration. Indeed, the effects of grain shapes
can be observed in a wide variety of systems, spanning
several decades of particle sizes. These phenomena in-
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clude the toughening of disordered nanoparticle assem-
blies with elongated particles [7] and colloidal packings
of polygons whose shape frustrates crystalline order [8].
On even larger length scales, in which thermal fluctua-
tions are negligible, effects of particle shape become cru-
cially important. Many recent studies have considered
the implications of grain shape in granular flows, such
as dense driven systems in which nematic ordering can
spontaneously occur [9–13], as well as gaseous states in
which random collisions impart both translational and
rotational motion [14]. To better understand the sta-
bility of packings of arbitrarily shaped particles, there
has also been interest in characterizing (near-)jamming
characteristics, such as contact numbers and vibrational
modes, of elongated noncircular particles [15–20].

Recently, grain shapes have been explored as a way
to generate free-standing architectural structures [21].
Examples include highly elongated and U-shaped par-
ticles with the capability to form geometrically con-
strained contacts [22–24] and custom particle fabrica-
tion that is facilitated by evolutionary searches for the
strongest shapes under a specified load [25, 26]. While
an overall strength can be prescribed, stress relaxation
events, or avalanches, occur as a granular system is slowly
driven [27–33]. The distribution of sizes of these drops,
defined either in terms of a global pressure or energy,
often falls on a power law with commonly observed ex-
ponents [34, 35]. Coarse-grained and depinning models
have been proposed to associate stress fluctuations with
local plastic rearrangements [36, 37]. Particle shape is
thought to contribute to the micromechanics of localized
slip events [36], but to our knowledge has yet to be ex-
plicitly studied within this framework.

When a granular material is slowly driven, it can be-
have like a slowly deforming solid and provide a bridge
to better understanding much of the microscopic behav-
ior within disordered solids. Granular materials are, by
definition, assemblies of discrete macroscopic particles,
so their constituents can be directly imaged in certain
geometries, allowing for a full characterization of mi-
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crostructure that is not possible in other materials. Other
properties of disordered solids, such as bond strength
between component particles, can be represented using
fluid capillarity [38] or inter-particle bonding with a cured
polymer [39]. In this study, we focus on altering particle
shapes, with varying amounts of circularity, that com-
prise a dry granular packing.
This article is organized as follows. In Section II, we

describe the experimental apparatus, the granular sys-
tem that is used as a model disordered solid, the parti-
cle shapes we study, and the techniques used to collect
data on the global and local responses of the material un-
der uniaxial compression. In Section III, we summarize
the primary findings of our study. Specifically, in Sec-
tion III A we describe the effect of particle shapes on the
overall material strength, and in Section III B we discuss
stress relaxation events, or avalanches, that occur during
compression. Then, in Section III C, we describe how we
characterize structural anisotropies within the packings
through the adaptation of a previously defined metric
for non-circular grains. In Section IIID we show how we
quantify local plastic strains within the system and test
their relationship with avalanches. In Section III E, we
draw connections between local structure and local dy-
namics in terms of how anistropies in local plastic strain
are correlated with structural anisotropies. Finally, we
discuss the broader implications of these findings and
motivate further study in Section IV.

II. MATERIALS & METHODS

The granular system consists of bidisperse acetal (del-
rin) rods with diameters 0.25 in (6.4 mm) and 0.1875 in
(4.8 mm) and uniform height 0.75 in (19 mm), standing
upright on an acrylic substrate. The large and small rods
are mixed with a number ratio of 1:1. In order to alter
the grain shape, we bond individual rods together to form
a composite shape that is overall noncircular, but retains
surfaces with a constant radius of curvature. Particle
shapes that are comprised of bonded, sometimes over-
lapping, combinations of circles or spheres is a common
technique to explore generic grain shapes, especially in
simulation [17, 18, 25, 40–45], so the technique used here
is another iteration of this general approach. While sim-
ulations have been used to study the response of circular
particles in the apparatus described in this article [46],
we choose to focus on experiments to establish shape-
dependent behaviors before determining how to best in-
corporate material properties and shape-dependent for-
mulations of contact forces. From here, arbitrary particle
number, shape, and size can provide fruitful ventures for
simulation study.
The specific shapes we study in this article are

monomers (individual plastic rods), dimers (pairs of
bonded rods), and trimers (groups of three bonded rods
in a triangular shape), as shown in Fig. 1. Different par-
ticle shapes are constructed by gluing rods together using

(a)

(c)

(b)

4.8 mm

6.4 mm

FIG. 1. Photographs of the particle shapes used in this study:
(a) monomers, (b) dimers, and (c) trimers. In (a), large and
small rods are labeled with their diameters and the height of
each rod is 19 mm.

a cyanoacrylate adhesive. The entire fabrication proce-
dure for a dimer is shown in Fig. 2. A small amount of
adhesive is placed near the top of a rod standing upright
on a horizontal table. Then, a second rod, also standing
upright, is brought into contact with the first. To ensure
both rods are straight, they are confined to stand within
the jaws of a vernier caliper set to the rod diameter. The
adhesive spreads down the pair of rods through capillar-
ity, while also curing to form a strong bond between the
rods. The amount of adhesive used is not precise, but
it must be substantial enough so that the cured bond is
strong, yet limited so the adhesive does not spread all
way down the rods, bonding them to the table. When
fully cured, the pair of rods now form a dimer. To make
a trimer, this same adhesive procedure is repeated with
a third rod brought in to form a triangle. This type of
trimer is preferred, as a linear chain of more than two
tall macroscopic rods is generally difficult to achieve by
hand with sufficient accuracy and consistency. Further-
more, this allows us to isolate dimers as our case study
in elongated particles, while the trimers are more axially
symmetric, but with characteristic bumps. After allow-
ing the adhesive to cure overnight, the dimers and trimers
require substantial effort to break apart by hand. With-
out precisely measuring shear and/or flexural strength,
we observe that internal stresses within each experiment
never cause breakage.

Our experimental apparatus is shown in Fig. 3(a), with
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(c)
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FIG. 2. Schematic of the procedure for constructing dimers.
(a) A small drop of adhesive is placed near the top of a rod
along its side. A second rod is carefully moved toward the
first, both standing on a horizontal table. To ensure both rods
are standing upright, they are guided using a vernier caliper
set to the rod diameter. (b) The rods are brought nearly
into contact, adhesive now adhering to both surfaces. The
callout shows a top view. (c) The adhesive spreads between
the rods due to capillarity, while simultaneously curing and
forming a strong bond. The final separation is exaggerated for
clarity. In the top view, the rods are in contact, also shown in
Fig. 1(b). For trimers, a similar procedure is repeated, adding
a third rod to form a triangular composite.

its various components labeled. This is the same appa-
ratus used in Refs. [38, 46–49] to study granular pillar
deformation. The entire apparatus lies on a horizontal
table-top, so gravity does not directly drive or hinder the
motion of grains. The grains, all of one chosen shape,
are arranged into a tall, narrow pillar with an aspect ra-
tio of approximately 2:1 using a rigid frame. An initial
pillar configuration is shown in Fig. 3(a)-(b). Since the
particle shapes have distinct area fractions when packed
randomly, we choose to keep the width of the pillar con-
sistent (W0 = 4.875 in = 12.4 cm), while the initial pillar
height (H0 ∼ 9.75 in = 24.8 cm) can vary slightly from
one trial to another, much less from one shape to another.
Differences in H0 between trials are especially appar-
ent in pillars comprised of dimers and trimers, since the
particle geometries frustrate random close-packing as op-
posed to the circularly symmetric monomers. The initial
area fraction of monomers is φ = 0.823± 0.004, dimers,
φ = 0.809± 0.007, and trimers, φ = 0.805 ± 0.005. The
uncertainties in φ are determined from the range covered
over all trials.
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FIG. 3. (a) A photograph of the apparatus from the top-
down, slightly off-line from the actual camera used to image
the system. The acquisition system and the stepper motor
that drives the compression bar are not pictured. (b) A raw
unprocessed image of the granular pillar comprised of dimers.
The compression and static bars are visible in the top and
bottom of the image, respectively. The direction of gravity
is also labeled. (c) A close-up image of a neighborhood of
dimers within the interior of the pillar.

The pillar is unaxially compressed from the top by a
slowly moving bar (vc = 0.033 in/s = 85 µm/s), while a
static bar remains in contact with the pillar bottom. As
the pillar is compressed and laterally spreads out, its inte-
rior structure constantly evolves due to interspersed local
plastic flow and the creation and collapse of voids. These
aspects are commonly present in materials undergoing
ductile failure [3], so our apparatus can serve as a model
system for this type of material failure. An important
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distinction between this apparatus and other uniaxially
driven granular systems [41, 50] is that we do not restrict
expansion of the system with any sort of hard boundary
or soft membrane, nor is the compression direction along
or against the direction of gravity. We performed 5 trials
for each type of pillar composition, with the specifics of
the microscopic initial structure varying from run to run,
but initial dimensions remaining constant as described
above. Keeping the system dimensions consistent across
shapes also requires altering the total number of parti-
cles. N = 1000 for monomers, N = 500 for dimers, and
N = 334 for trimers. We chose to keep the pillar size
constant, rather than the discrete particle count, in or-
der to draw fair comparisons of material strength and
behavior. In fact, large pillars comprised of 1000 dimers
or 1000 trimers would present practical challenges for the
present apparatus. Similar studies that can control for
pillar size, particle count, and particle mass, via sim-
ulation or custom particle fabrication, would make for
interesting studies.

While the compressing bar is in motion, we acquire 4.2
megapixel (2048x2048) images of the pillar deformation
using a JAI/Pulnix TM-4200CL camera with a frame
rate of 8 fps. For each image, we simultaneously record
the forces exerted on the moving and static bars using
Omega Engineering LCEB-5 force sensors. After acquir-
ing images, we locate all circular particles using a circular
edge-finding algorithm [49]. Fig. 3(c) demonstrates the
sharp intensity contrast between the painted caps of the
particles and the background illumination. The displace-
ment of the compressing bar between successive frames
is about 10−3R, where R is the large monomer radius, so
linking position coordinates together into particle tracks
is a straightforward process. To suppress noise in particle
positions, we apply a Gaussian filter with a time window
equal to the time over which the compression bar moves
2

15
R. This becomes the effective time interval between

filtered frames. We also use this Gaussian smoothing to
differentiate positions, yielding approximations of instan-
taneous velocities.

When analyzing pillars with dimers or trimers, we
group rods together by measuring interparticle distances
over time. Since every dimer and trimer consists of equal
sized rods, we can deduce some of the combinations just
from the initial packing. Within portions of the pillar
that significantly deform over the full run (over which
the bar moves about halfway down the initial height),
we usually find there is only one possible combination
to link dimers or trimers together. For regions that do
not significantly deform, especially large clusters of like-
sized particles at the bottom of the pillar, we group parti-
cles such that interparticle distance fluctuations are mini-
mized. Ultimately, we can successfully group every dimer
and trimer together, particularly those that exhibit mo-
tion beyond our noise level in calculating positions. The
centroid positions of the dimers and trimers are directly
calculated from the positions of their constituent rods,
smoothed, and differentiated as described above.

0.29 0.3 0.31
25

26

27

28

29

         S
         H0

         H

         H

FIG. 4. (Main) Stress-strain curve for a single trial of com-
pression of a pillar with dimers. The stress is the force applied
by the moving bar divided by the current width of the pillar,
σ = F/W . The strain is the change of the pillar height di-
vided by the initial pillar height, γ = ∆H/H0 = (H0−H)/H0.
Raw images of the pillar are interspersed along the curve, cor-
responding to points when the pillar is in its initial condition
(γ = 0), at yield (γ ∼ 0.01), and undergoing long-term de-
formation and failure (γ > 0.01). (Inset) A zoomed-in area
of the failure portion of the stress-strain curve (outlined with
a black box in the main plot) exhibiting several avalanches.
The largest avalanche in this window is labeled S.

After particle tracking and the identification of
monomers, dimers, and trimers, we can measure vari-
ous aspects of local structure and motion. These shall be
discussed in further detail in Sections III C and IIID.

III. EXPERIMENTAL RESULTS

A. Material Strength

As an analog to standard tests of material strength,
we measure the stress-strain response of the pillar as it is
compressed. Following the procedure set in Ref. [46], we
quantify the compressive stress, σ, as F/W where F is
the driving force exerted by the moving bar on the pillar
and W is the current width of the pillar in contact with
the moving bar, making σ a measurement of true stress.
A rod is considered to be in contact with the moving bar
if its vertical position is within 0.25R of the rod at the
top of the pillar, where R is the large rod radius. The
pillar width W is calculated as the end-to-end horizontal
distance of these contacting rods. The forces on the static
bar are negligible for monomer runs, so to be consistent
across all trials we choose to focus on just the force ac-
tively driving the pillar. As expected, both F andW tend
to continuously increase over the course of a pillar com-
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pression. While W tends to grow steadily over the course
of a compression, it can exhibit a jump discontinuity if
new particles(s) come into or out of contact at either end
of the pillar top, while new contacting particles within
the interior of the pillar top, the primary mechanism of
width increase, do not result in W discontinuities or fluc-
tuations. Indeed, jumps in W only occur about 5 times
in a single run, so it primarily behaves as a smooth func-
tion without inducing substantial fluctuations in stress,
σ. In every plot showing stress, we quantify σ in derived
units of mgµ/D, where m and D are the mass and diam-
eter, respectively, of a large rod, g is the acceleration due
to gravity, and µ is the grain-substrate coefficient of fric-
tion, measured to be 0.23 ± 0.01 [49]. Effectively, these
units represent the stress required to move an individual
large monomer at constant speed. The vertical strain
γ is given by ∆H/H0, where H0 is the initial height of
the pillar and ∆H is the difference in height between the
initial pillar and the deformed system, H0 −H .

In Fig. 4, we show the stress-strain behavior for a
single compression trial of a pillar comprised of dimers
and highlight three regimes of pillar deformation: (1) an
elastic-like initial compression, which occurs over a very
short strain range (γ <

∼ 0.01), too short to confirm a
linear response, (2) a yield transition around γ ∼ 0.01
when stress reaches a maximum value, and (3) long-term
(γ >

∼ 0.01) deformation and failure that is marked by
a fairly constant material strength, with irregular stress
fluctuations. In Section III B we will consider the distri-
bution of stress drops, but for now we are motivated by
their relative size and irregular frequency to consider trial
averages as a way of better gauging the material strength
of pillars comprised of our three particle shapes.

We average 5 trials together to generate stress-strain
curves, shown in Fig. 5, significantly reducing the preva-
lence of stress fluctuations during long-term deformation.
Note that Fig. 5 is presented with a horizontal log scale,
emphasizing low-strain behavior. Before averaging, the
point of zero strain, γ = 0, in each trial is set to mini-
mize initial strain readings that result from the motion
of individual particles within the top layer of particles.

We see in Fig. 5(a) that dimers exhibit more strength
than monomers, in terms of a compressive modulus that
can be estimated from the quasi-elastic regime, a larger
yield stress, as well as the stress required to continu-
ally deform the pillar at large strains. Pillars comprised
of trimers retain an average long-term strength that is
comparable to that of monomers.

Dimers are clearly the strongest shape tested in this
study, so we would like to further investigate why this is
the case. The specific question we would like to answer is:
can we prepare a pillar using dimers in a way that either
strengthens the pillar to a further degree or diminishes
the apparent strengthening effect? To do so, we note the
unidirectional driving of the system, in junction with the
elongation of the dimers, to prepare two types of highly
ordered packings of dimers. In addition to the disor-
dered dimers previously measured, we prepare a set of

Dimers

Monomers

Trimers

(a) random initial configs.

Random

Vertical

Horizontal

(b) ordered dimer configs.

FIG. 5. Stress-strain curves for (a) pillars comprised of
randomly packed shapes: monomers (closed circles), dimers
(open circles), and trimers (triangles), and (b) different prepa-
ration protocols of dimers: random (open circles), horizontal
(+’s), and vertical (diamonds). The results shown in these
plots are derived from 5 trials averaged together. Strain is
shown on a log scale, in order to highlight both the modulus
at strains belong yield and the long-term material strengths
for strains well beyond yield. Before averaging the point of
zero strain γ = 0 is adjusted to minimize contributions from
individual particle motions at the top of the pillar.

packings in which dimers are preferentially ordered hor-
izontally, along the compressing and static bars, as well
as a set of packings with dimers preferentially ordered
vertically, along the compression direction. These pillars
are meticulously created layer-by-layer, building upward
in the horizontal case and to the right in the vertical
case, in an effort to minimize the presence of orienta-
tional defects. The pillar dimensions are kept consistent
as before, which necessitates the presence of some de-
fects. Due to the high degree of ordering, the initial
packing fractions for ordered dimers is higher in both
cases, with φ = 0.813± 0.002 for horizontal dimers and
φ = 0.814 ± 0.003 for vertical dimers. We also quantify
the degree of orientational order present in the initial
pillars, and during compression, as shown in Fig. 6.
We note a marked distinction in the material response
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Random

Vertical

Horizontal

FIG. 6. Evolution of a two-dimensional order parameter,
〈2 cos2 θ− 1〉, for every dimer packing. θ is the angle between
the orientation of each dimer and the horizontal compressing
bar and 〈·〉 is the ensemble average. The order parameter
value at γ = 0 indicates the amount of order present in the
initial state, either along or perpendicular to the compression
bar.

for these three types of dimer packings, illustrated in
Fig. 5(b). Specifically, vertical dimers are substantially
weaker than the randomly packed dimers. From there,
we see that horizontal dimers reach an even higher com-
pressive strength at γ ∼ 0.02. The presence of noise in
the low-strain behavior of the ordered pillars should be
noted. This noise can be attributed to the presence of
orientational defects, specifically those near the top of
the pillar, in individual trials. These compound the dif-
ficulty of differentiating low strain behavior to define a
compressive modulus. Nevertheless, the pillar strength is
substantially impacted not only by the grain shape, but
also the procedure by which the packing is generated.

Looking at raw snapshots of these packing types under
compression, illustrated in Fig. 7, we also observe distinct
local behaviors as the dimers are compressed. These dif-
ferences are also apparent in full movies in the Supple-
mentary Material [51]. The movies in the Supplementary
Material include overlays with D2

min, a metric that quan-
tifies plastic deformation and local rearrangement around
each discrete particle [52]. We overlay with D2

min, which
is assigned to individual particles, rather than J2, a mea-
surement of local instantaneous strain rate (discussed at
length in Section IIID), which is defined for regions of
three particles. J2 overlays would thus obscure dimer
positions and orientations. The horizontal dimers buckle
outward, breaking into separate columns with little slip
between particles, as shown in Fig. 7(b). Also, the shape
of the pillar expands with rough edges, the furthest out-
ward extents lying about a quarter of the way down the
pillar. Meanwhile, the vertical dimers deform much more
gradually, shown in Fig. 7(c) with a smooth symmetric
plume right at the very top of the pillar. When dimers

are packed randomly, as in Fig. 7(a), contributions from
both types of deformation are present. The amount of
structural rupture occurring within the interior of the
pillar is quantified in Section III C.
We can now state that the material strength gained

from dimer packings comes directly from dimers that
preferentially lie ordered to each other, specifically in-
terlocking along the horizontal direction as to resist out-
ward expansion of the pillar. We can even see in the
right side of Fig. 5(b), in junction with Fig. 6, that as
the random and vertical dimer pillars are continually de-
formed, dimers rearrange so that those in contact with
the bar are mostly horizontal, while the strength of the
pillar continually increases. In fact, they are trending
toward the strength exhibited by pillars with horizontal
dimers to begin with. This result provides further moti-
vation to investigate the relationship between local struc-
tural and deformation features, which shall be discussed
in Sections III C, IIID, and III E.

B. Avalanches & Stress Relaxation

As previously mentioned in Section IIIA, the stress-
strain curve for each compression trial exhibits fluctu-
ations about an average strength during the regime of
large strain. The same trend is seen in other amorphous
systems, the mechanism of which can be owed to the
build up of local stresses, followed by a relaxation that is
associated with slip rearrangements [27, 33, 34, 36, 37].
In this section, we consider the sizes of stress relaxation
events, or avalanches, and their frequency as a function
of particle shape. Later, in Section IIID, we will consider
potential origins of the stress fluctuations at a more local
scale.
To be clear, when we refer to avalanches and their sizes,

we are exclusively referring to continuous drops in stress,
as illustrated in Fig. 4. Avalanches are generally pre-
ceded by a build-up of stress within the system, which the
avalanche at least partially relaxes away. It is worth not-
ing that the representative data in Fig. 4 includes stress
accumulations and avalanches that are roughly symmet-
ric with respect to strain. This aspect of symmetry is
likely due to the hardness of rods preventing elastic en-
ergy from being stored locally, along with the lack of a
confining boundary permitting the pillar to constantly di-
late globally. In each individual run, we locate intervals
over which the stress is decreasing, truncated by peaks,
valleys, and/or plateaus in σ. The dimensionless mag-
nitude of the stress difference of the entire interval is
defined to be S = ∆σ/(mgµ/D). In Fig. 8, we show the
distributions of S for the three particle shapes, measured
over all trials. The lower bound of the plotted range in
S is chosen to neglect a region where the distributions
are increasing, which coincides with avalanches that are
below the noise level in our stress measurements.
As we expect from other studies of avalanche distri-

butions within amorphous systems, we see that the dis-
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(a) (b) (c)
Random Horizontal Vertical

FIG. 7. Snapshots of pillars comprised of dimers undergoing deformation at the same strain (γ ∼ 0.1). Each picture corresponds
to a different orientational packing protocol: (a) random, (b), horizontal, and (c) vertical. Note the buckling behavior in (b),
as well as the smooth pillar boundaries in (c). Full movies including overlays with D2

min can be found in the Supplementary
Material [51].

FIG. 8. Distributions of avalanche sizes S = ∆σ/(mgµ/D)
across all trials for monomers, dimers, and trimers. An in-
creasing portion of the distributions, for values below the
noise level of stress, is not shown. It is difficult to assign
fits given the lack of range, though it seems all curves would
fit a power law with exponent −3/2 reasonably well. We also
see monomers have a smaller maximum S compared to dimers
and trimers.

tributions could be described by a power law. In fact,
the exponent for distributions over the range S > 1 is
approximately −3/2, which has been observed in other
amorphous systems [34, 53] and predicted by a coarse-
grained model [36]. We should note that, while we are
estimating −3/2 as the exponent, we cannot confidently
calculate this exponent given the narrow range of S. This
is due to both the noise level in measuring stress, as well
as substrate friction, as the maximum observed value for
all avalanche sizes is determined by the force required to
move O(10) particles. Furthermore, while the applicabil-
ity of power laws in other amorphous systems motivates
the conjecture of a −3/2 power law, we find that the com-

plementary cumulative distribution function of avalanche
sizes can be fit over its full range with a compressed ex-
ponential function, exp(−(S/S0)

β).
While the avalanche distribution for all shapes have ap-

proximately the same rate of decay, Fig. 8 shows unique
features of the distributions. Monomers exhibit smaller
avalanches, while the distributions for dimers and trimers
are similar. This is also reflected in compressed expo-
nential fits for the complementary cumulative distribu-
tion function. Monomers have β = 1.5 ± 0.2 and S0 =
0.89±0.05, dimers have β = 1.4±0.2 and S0 = 2.4±0.2,
and trimers have β = 1.4 ± 0.2 and S0 = 1.7 ± 0.1. In
Ref. [35], increased particle friction is observed to result
in larger upper thresholds in avalanche size. Since the
bumpy concave shapes of dimers and trimers effectively
increase particle friction, we observe a similar trend. We
do not show the avalanche distributions for the highly
ordered dimer packings, as they are virtually identical to
the avalanche distribution of randomly packed dimers.
Particle shape thus directly influences the global mate-

rial response, both in terms of averages and fluctuations
of stress. In Sections III C, III D, and III E, we further ex-
plore the effects of particle shape on both local structure
and dynamics.

C. Local Structure

While the granular pillars are initially set with consis-
tent dimensions, there are bound to be heterogeneities
in the packing efficiency, much less additional structural
heterogeneities that are introduced as the pillar is com-
pressed. Furthermore, voids that form or collapse over
time are crucial componments of ductile failure. To quan-
tify these aspects of local structure, we use the dimen-
sionless quantity Qk, previously defined in Ref. [48], to
highlight anisotropies in the Voronoi tessellation of the
packing. In the simple case of monomers, we perform a
radical Voronoi tessellation of the particle positions using
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the software package voro++ [54], followed by a Delau-
nay triangulation. Then, we define a vector field C that
points from the rod center to the centroid of its own
Voronoi cell. Finally, we define Qk for a triangle k from
the divergence of this vector field,

Qk = ∇ ·Ck

Ak

〈A〉
, (1)

where Ak is the area of triangle k and 〈A〉 is the aver-
age area of all triangles. Scaling the divergence by area
sets 〈Qk〉 = 0, with some residual contribution from the
finite boundaries of the experimental data. To minimize
these boundary effects, we ignore all triangles that lie on
the boundary of the pillar. Qk is highly correlated with
relative free area fraction, where Qk < 0 corresponds
to under-packed regions, while Qk > 0 corresponds to
over-packed regions. Furthermore, the distribution of
Qk values measured for either experimental hard disks
or simulated soft disks is nearly Gaussian and centered
at Qk = 〈Qk〉 = 0, in sharp contrast to distributions
of local free volume. The deviation from Gaussianity in
the tail of Qk indicates a surplus of underpacked parti-
cles, with both standard deviation and skewness of Qk

exhibiting kinks at the jamming point φc [48].
Calculating Qk with the centroid positions of dimers

and trimers requires a small amount of adaptation in the
method, as performing the Voronoi tessellation of non-
spherical particles can often result in non-convex Voronoi
cells [55]. Fortunately, given that the dimers and trimers
both have circular curvature, we can rely heavily on the
initial Voronoi analysis. Starting with the Voronoi tes-
sellation for rods generated from voro++, we can simply
delete edges that cut across bonded particles. This leaves
a larger effective cell that now surrounds the entire dimer
pair or trimer group. A new triangular tessellation is
then computed, using knowledge of particles that share
Voronoi edges. Fig. 9 illustrates the two approaches that
can be used for computing Qk for a region of dimers.
While the triangulation of dimers and trimers is no longer
dual with its Voronoi diagram, this remains an effective
way to determine a packing tessellation with no gaps or
overlaps. Moreover, Fig. 10 indicates that Qk measured
in this “molecular” sense retains a Gaussian-like profile
on a linear scale. When characterizing local structure in
the dimer and trimer packings, we have actually found
both pictures can be enlightening: one where Qk is cal-
culated based on individual rod positions (“Atoms”) and
one where we instead use the centroid of the composite
shape (“Molecules”).
The “atomistic” Qk, illustrated on the left side of

Fig. 9, highlights absolute areas of vacancies and has
been shown to correlate well with local free area [48].
Fig. 11(a) shows the probability density functions for
Qk measured in regions that have been driven at least
one large monomer radius from its initial position. From
monomers to dimers to trimers, we see that using larger
shapes results in distinctly larger voids during deforma-
tion. At the same time, bonded rods also allow for ad-

"Atoms" "Molecules"

FIG. 9. Illustration of two approaches for probing the lo-
cal structure of the pillar, using data from a packing of
dimers. Voronoi tesselation and Delaunay triangulation
are drawn with respect to either (left) individual rod po-
sitions (“Atoms”) or (right) composite particle centroids
(“Molecules”). The “molecular” approach takes the same
Voronoi tessellation produced using the “atomistic” approach
and cuts out edges drawn across dimer and trimer bonds. In
both, the arrows C point from the center of the rod/particle
to the centroid of its Voronoi cell (magnified 10×).
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FIG. 10. Linear plot of the probability density functions of
Qk, defined as the weighted divergence of the particle center-
to-cell centroid vector field in Equation 1, derived from the
“molecular” approach, for deformed random packings of the
different particle shapes. A triangle over which Qk is calcu-
lated is considered deformed if at least one of its constituent
particles has moved at least one large monomer radius R.
A dashed line is drawn at Qk = 0, separating under-packed
(Qk < 0) and over-packed (Qk > 0). The solid line is an ideal
Gaussian curve for monomers, given the mean and standard
deviation of Qk. The semilog version of this plot is shown in
Fig. 11(b).

ditional regions that are overpacked, especially when a
triangle corresponds to a discrete trimer particle. These
effects are plainly visible by eye in the raw experimental
data and are quantified using this method of Qk mea-
surement.

However, relative structural anisotropies are less ap-
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parent when accounting for both the shape and orien-
tation of the discrete particles. While the dimers and
trimers create large voids, are they consistent with the
fact that dimers and trimers are themselves larger? An-
other question lies in whether similarities in the random
preparation protocol for all shapes can be captured in
a structural quantity. These questions can be addressed
by measuring the “molecular”Qk, illustrated on the right
side of Fig. 9, with distributions shown in Fig. 11(b). Re-
markably, despite the randomness of dimer and trimer
packings resulting in more physical void space, we see
that the Qk distributions are strikingly similar. All
the distributions are nearly Gaussian in the vicinity of
Qk = 〈Qk〉 = 0 and retain similar widths despite the
manifestation of distinct global dilation rates. The col-
lapse of these distributions suggests that Qk, as a metric
for local packing anisotropy, may serve well beyond char-
acterizing local free area in packings of circles. Rather,
Qk seems to demonstrate promise to characterize local
packing structure with arbitrary particle shape, and that
random close packings of symmetric and asymmetric par-
ticles can exhibit similar local structural fluctuations.

To quantify the collapse ofQk distributions that results
from moving from the “atomistic” picture to the “molec-
ular” picture, we compute the skewness and kurtosis of
Qk distributions shown in Table I. Indeed, similar values
are reported for monomers and the “molecular” dimers
and trimers. It is also worth noting the physical inter-
pretations of skewness and kurtosis in the context of Qk.
Skewness provides a measurement of the asymmetry of
a distribution, while kurtosis quantifies the presence of
tails, either fat or broad relative to a Gaussian distri-
bution. While Qk appears near Gaussian in the linear
plots shown in Fig. 10, there are necessary deviations in
its skewness and kurtosis. For one, there is a finite limit
to how closely hard particles, such as the ones used in
this study, can pack together, while void space in un-
derpacked regions is only restricted by the boundaries of
the system, which in this case are open. This allows a
wider accessible range in negative Qk values, resulting in
a negative skewness. Figs. 10 and 11(b) illustrate this
asymmetry, since the empirical data in the left tail for
monomers lies slightly above the ideal Gaussian curve,
while the right tail more closely follows the ideal curve.
In turn, the wider range of negative Qk values requires
its tail to decay slower than the Gaussian curve, which
is apparent throughout Fig. 11. Hence, the kurtosis of
Qk will be higher than that of a Gaussian. As expected,
these aspects of Qk are reflected in Table I for the col-
lapsed “molecular” distributions.

For a particular non-circular shape, Qk can also in-
dicate distinct structural characteristics. Fig. 11(c)-(d)
shows Qk distributions for the different dimer packings,
using the “atomistic” and “molecular” views ofQk for de-
formed regions. As previously suggested in Section IIIA,
horizontally ordered dimers strengthen the pillar, while
also giving way to additional local rupture. While or-
dered dimers are initially packed with similar global area

TABLE I. Skewness and kurtosis of Qk distributions shown
in Fig. 11(a),(b). All calculations are restricted to the range
−0.25 < Qk < 0.25, to highlight fluctuations in Qk near
〈Qk〉 = 0 and reduce the impact of low frequency outliers.
For reference, the skewness of a Gaussian distribution is 0
and its kurtosis is 3.

Shape Skewness Kurtosis

Monomers −0.68 4.4

Dimers (“Atoms”) −0.36 3.3

Trimers (“Atoms”) −0.26 2.5

Dimers (“Molecules”) −0.63 4.6

Trimers (“Molecules”) −0.71 4.5

fractions, Fig. 11(c)-(d) indicates the formation of addi-
tional void space when dimers are initially packed hori-
zontally. Vertically packed dimers form voids at a more
gradual rate, while randomly packed dimers lie at a rate
between the two ordering procedures.
While the Qk distributions for different particle shapes

collapse very well in Fig 11(b), it is worth nothing that
some deviation is seen for highly under-packed regions,
where Qk

<
∼ −0.3. This kink is even exacerbated in the

case of horizontally ordered dimers, shown in Fig. 11(d).
To seek a dynamical explanation for this feature, we now
shift our attention to local deformation.

D. Local Dynamics

In addition to local structure, we can also quantify
local plastic strain within the pillar, another important
feature of ductile failure. In this study, we choose to
quantify local deformation by the deviatoric strain rate,
J2, which describes how the shape of a small region de-
forms. The procedure of calculating J2 is as follows.
Over a triangle that is derived from particle positions

and Delaunay triangulation, one of the same triangles
used in calculating Qk, we calculate J2 using the con-
stant strain triangle formalism [56]. We must first note
that for all results related to J2 discussed, unless speci-
fied, we are focusing on the “molecular” form of triangu-
lation as defined in Section III C. As such, we are treating
each point in the triangle as discrete particles, capable of
moving independent of each other. For the three particles
that make up the triangle, we note the velocity of each
particle, each having horizontal component vx and ver-
tical component vy . Subtracting off the average velocity
of the three particles, which is prescribed to the center of
mass of the triangle, we determine the local strain tensor
e,

(

vx(x, y)− vx,CM

vy(x, y)− vy,CM

)

=

(

e11 e12
e21 e22

)(

x

y

)

, (2)

where x and y are Cartesian coordinates relative to the
center of the triangle. One way to conceptualize this
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FIG. 11. Semilog plots of the probability density functions of Qk, defined as the weighted divergence of the particle center-to-cell
centroid vector field in Equation 1, for (a),(b) deformed random packings of the different particle shapes and (c),(d) deformed
dimer packings with different initial ordering protocols. The “atomistic” approach is used in (a),(c), while the “molecular”
approach is used in (b),(d). A triangle over which Qk is calculated is considered deformed if at least one of its constituent
particles has moved at least one large monomer radius R. In every plot, a dashed line is drawn at Qk = 0, separating under-
packed (Qk < 0) and over-packed (Qk > 0). Solid lines are ideal Gaussian curves for monomers in (a),(b) and random dimers
in (c),(d), given the mean and standard deviation of Qk.

formalism is to place pins at the particle centroid loca-
tions, with some sort of continuous triangular mesh in
the middle. We can deform the mesh by moving the pins
relative to each other, causing it to stretch, deform, ro-
tate, or some combination thereof. For this study, we
choose not to incorporate particle rotations, which are
certainly present, into the formulation of this strain ten-
sor, in part because they substantially complicate the
local strain tensor. Also, Fig. 12 indicates that particle
motion within dimer and trimer pillars is primarily at-
tributed to translational motion, so a simple strain based
on translations alone is likely sufficient to characterize lo-
cal deformations in this study. Given that acetal rods are
slippery compared to the acrylic substrate, grain-grain
friction is likely too small to induce rotational velocities
that are comparable to translational velocities. Further
studies could explicitly incorporate particle rotations as
a component of a more complex local strain, especially
in systems of highly frictional grains.

From the empirical local strain tensor e, we deduce the
symmetric strain tensor ε,

εij =
eij + eji

2
. (3)

This local linear strain tensor has a number of invari-
ant quantities that characterize the local relative motion
of the grains; for instance, the trace defines the dilation
rate. We choose to focus on the deviatoric strain rate,
J2, as a measurement of the amount of local plastic de-
formation,

J2 =
1

2

√

(ε11 − ε22)2 + 4ε2
12
. (4)

With J2 defined, we should note that there exist other
metrics that can fill the role of quantifying local plastic
deformation in a similar fashion, e.g., D2

min [52]. For this
study, we choose to focus on J2 for a few reasons. First,
as we shall soon discuss, we would like to make direct
comparisons with stress, which is a single measurement
made at each time point. Thus, we would like to select a
kinematic quantity that can also be prescribed to a sin-
gle time. By definition, D2

min requires the choice of a
substantial time interval over which to measure plastic
displacements. J2 is calculated from velocities obtained
through differentiation over a small time interval as de-
scribed in Section II, so it can naturally coincide with
the same time point of a stress measurement. Second,
D2

min requires the choice of an interaction cutoff length,
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Dimers

Trimers

FIG. 12. Cumulative distribution functions of the ratio of tan-
gential rotational velocity to translational velocity for dimers
and trimers. For each dimer, r is the diameter of one of its
constitutive rods; for each trimer, r is (1 + 2/

√
3) times the

radius of one its constitutive rods. ω is the rotational velocity
of a particle at a particular time, while v is its translational
velocity at the same time. Only particles that have moved at
least one monomer radius R from its initial position are con-
sidered. For a large majority of dimers and trimers, motion is
primarily associated with translations rather than rotations.
Rotational motion is not measured for monomers.

while J2, derived from Delaunay triangulation, requires
no such cutoff. Third, while calculated over the area sur-
rounding a single grain, D2

min is assigned to each indi-
vidual grain. J2 is rather assigned to a region connected
to three grains, so it is a slightly coarse-grained measure-
ment, in line with the approach of established avalanche
models [36].

Note that J2 is a strain rate, so it has dimensions of in-
verse time. J2 is thus scaled relative to the inverse time
required to compress the pillar by one large monomer
radius, vc/R. This is done for all grain shapes, which
have distinct sizes but are all undergoing the same global
strain rate. For the sake of comparisons with the global
measurement of stress, we take the ensemble average 〈J2〉
as a way to quantify the total amount of plastic deforma-
tion throughout the system. We exclude stationary tri-
angles, those that have moved less than a large monomer
radius, from the ensemble average 〈J2〉. To further con-
firm the utility of J2 in quantifying plastic strain, we
consider its relationship with stress fluctuations discussed
previously in Sections III A and III B.

In Fig. 13(a), we see that peaks and troughs of σ and
〈J2〉 over the course of a single dimers trial generally cor-
relate with each other. We explore the relationship be-
tween σ and 〈J2〉 further in Fig. 13(b)-(d), by plotting the
two quantities from all trials directly against each other.
We see that in the case of monomers, in Fig. 13(b), there
is a general positive correlation between the two quanti-
ties. This is indicative of particle rearrangements within

these pillars as significantly contributing to the presence
of avalanches. That is, as the pillar is driven, stress builds
up for some period of time. These periods of large σ
tend to be associated with large 〈J2〉, suggesting that
built up levels of stress are subsequently relaxed away
by particle rearrangements within the pillar. Fig. 13(c)
shows that the correlation between σ and J2 for dimers
is less pronounced. In Fig. 13(d), we see that trimers do
not exhibit much of a correlation between σ and 〈J2〉.
The Pearson correlation coefficient ρ of the three sets of
data shown in Fig. 13(b-d) are as follows: monomers,
ρ = 0.66, dimers, ρ = 0.33, and trimers, ρ = 0.087. Since
the dimers and trimers are incrementally more massive
than the monomers, the shifts in correlation may be due
to the fact that stick-slip motion between individual par-
ticles and the substrate becomes more prevalent due to
body friction. Still, the fact that we see correlations for
monomers, and even dimers to a degree, is indicative
that avalanches, derived from either global stress or local
strains, can be applied to systems of either symmetric or
elongated particles.

E. Structure-Dynamics Connections

Finally, we discuss connections that can be made be-
tween our previous results to quantify both local struc-
ture and local dynamics. As Qk quantifies local under-
and over-packing relative to the surrounding neighbor-
hood of a localized region, we can also measure the devi-
atoric strain rate J2 in a way to highlight regions that are
deforming relative to its surroundings [49]. In this way,
we emphasize rearrangements that are highly localized
as well as rigid areas that are adjacent to shear bands.
J2,rel, a relative deviatoric strain rate, for a given trian-
gle is defined by the difference of its J2 and the average
of its neighbors,

J2,rel = J2 − 〈J2,neighbors〉. (5)

Neighboring triangles are defined to be those which share
at least one vertex, i.e., particle, with a given triangle.
In Fig. 14, we show the raw bivariate histograms for

values of Qk and J2,rel, highlighting the amount of spread
in J2,rel at each value of Qk. In general, one should
expect under-packed regions are more likely to undergo
strain than over-packed regions, since a void region with
open space can collapse more easily. Meanwhile, over-
packed regions are more constrained by its neighbors, so
those can be expected to be less likely to strain. However,
one must note that individual structural metrics can be
poor predictors of particle rearrangements [47]. Indeed,
it is difficult to observe any trend in Fig. 14, although a
slight negative correlation between J2,rel and Qk may be
visible.
To specify an overall trend of J2,rel versus Qk, we bin

the data in Fig. 14 by intervals in Qk and take averages
of corresponding values of J2,rel to generate Fig. 15(b).
Here, the trend of J2,rel with Qk is much more apparent.
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(a)

(b) Monomers

(c) Dimers

(d) Trimers

FIG. 13. (a) For the same trial of dimers as Fig. 4, a plot
of both stress σ and the average deviatoric strain rate 〈J2〉
throughout the pillar. Note that many of the peaks and
troughs of 〈J2〉 correspond to those of σ. (b)-(d) σ plot-
ted versus 〈J2〉 using data from all recorded trials, demon-
strating varying levels of correlation between the global ma-
terial response and local deformation profile for the different
shapes. In (b) and (c), we see a general positive correlation
for monomers and dimers, suggesting that local deformations
are a primary mechanism for stress relaxation. In (d), we see
this trend is mostly absent for trimers, suggesting that the
particles are now so large that stick-slip motion due to body
friction between particles and the substrate is contributing
more to fluctuations in stress.

The vertical error bars represent standard deviation of
the mean J2,rel within each Qk bin. Given that bins
near Qk = 0 contain O(105) data points, these error bars
are vastly suppressed compared to the actual spread in
raw data.
Indeed, we observe a negative correlation between

these two quantities, which is approximately linear in the
region around Qk = 0. This is in line with the expected
trend of how likely under- and over-packed region are ex-
pected to deform. That is, voids are readily collapsing,
while constrained regions are persisting. The linear de-
pendence is more pronounced among monomers, likely
due to the absence of geometrical constraints such as
elongation and bumpy surfaces. However, we note two
important deviations from this general behavior that oc-
cur at the opposite extremes in Qk.
At highly positive Qk, we see a dramatic upturn in

J2,rel for monomers and trimers, indicative of the onset
of Reynolds dilatancy [57]. The acetal rods are quite
hard, so there is a finite limit to how closely they can be
packed until they must deform locally. However, dimers
do not demonstrate such a dramatic increase, capturing
the ability of many dimer pairs to interlock and actually
form rigid structures, as demonstrated in Fig. 7(b). The
second notable deviation we see is at highly negative Qk

values, which indicate large voids in the packing, we see
a dip in J2,rel toward zero for dimers, indicating that
the void regions that form in dimers can actually per-
sist for some time, unlike large voids in monomers and
trimers that readily collapse. The dip in J2,rel for dis-
crete dimers in present in Fig. 15(b), but is especially
apparent when measured using the “atomistic” approach
shown in Fig. 15(a). This deviation in the dynamical be-
havior of dimer “molecules” in Fig. 15(b) coincides with
a kink in the dimer Qk distribution shown in Fig. 11(b)
over the same highly negative Qk region, starting near
Qk ∼ −0.3.
To interpret these results, we note that highly packed

regions and large voids are actually quite inter-related.
When a large void opens up in the packing, for any par-
ticle shape, it is always surrounded by a ring of tightly
packed grains. As such, the persistence of a void region
requires similar persistence of neighboring over-packed
regions.

IV. DISCUSSION

In this article, we presented an experimental study into
how a granular pillar, acting as a model disordered solid,
deforms under uniaxial compression with varying particle
shapes created from bonded groups of circular rods. We
see that dimers constitute the strongest pillars, the addi-
tional strength originating from dimers that align and in-
terlock perpendicular to the compression direction. The
capability of horizontally oriented dimers to bear sub-
stantial loads can be seen in pillars in which the initial
configuration contains dimers that are preferentially or-
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FIG. 14. Bivariate histograms of J2,rel, defined in Equation 5, versus Qk for (a) monomers, (b) dimers, and (c) trimers. The
plots are colored by the log (base 10) of counts within each bin.

dered horizontally. While dimers are clearly capable of
interlocking as a form of inter-particle friction, it would
be interesting to investigate elongated convex shapes,
such as ellipses, to determine whether pillar strengthen-
ing, in addition to other results presented, can be repro-
duced regardless of convexity. For example, simulated
systems with a similar geometry have seen increased ma-
terial strength that results from increased contact area
yielding additional sliding contacts [58], so it would be
informative to perform experimental tests. Furthermore,
when convex shapes are used, perhaps rotational frustra-
tion will play a larger role in determining the response of
the pillar.

As is the case in other driven amorphous systems, the
stress response of our granular pillars exhibits stress re-
laxations, or avalanches, over time. Furthermore, we see
that particle shape does not affect the exponent of the
power law distribution that tends to be representative of
avalanche sizes within a wide range of amorphous sys-
tems. We do see that the more frictional shapes, dimers
and trimers, allow for larger avalanches. While the lo-
cal mechanisms for avalanches are seemingly unaffected,
particle shapes do affect the local threshold stress that
precedes local deformation, possibly by way of increased
interparticle friction for our concave shapes.

We also characterize local structure within the pillar
using the previously defined structure metric Qk [48] to
highlight local packing anisotropies, which manifest as
both voids and compacted regions. When Qk is com-
puted based on the positions of composite dimers or
trimers, rather than component circular rods, we see
that the Qk metric retains its Gaussian-like character-
istic. This indicates promise in the utility of Qk as a
randomly distributed measure of local free area in disor-
dered packings of arbitrary particle shape and size. As
previously stated, convex shapes would also prove to be
a valuable test for Qk, since voronoi tessellation would
require curved facets and a more complex computation
of local free area [55].

Finally, we measure local strain rates within the pillar
and draw correlations with local structural anisotropies.

For all shapes we note a general average trend that under-
packed regions tend to be more likely to rearrange or un-
dergo strain. Meanwhile, an over-packed region is less
likely, on average, to deform, up to the limit where max-
imally packed grains must undergo dilatancy [57]. While
this trend is generally true for all shapes, there is a clear
deviation for highly under-packed dimers, which are not
as likely to deform. This feature captures the observa-
tion that dimers can readily form voids that remain even
for large strains. We expect that the aggregation of local
rigidity can also play a key role in the global strengthen-
ing of the pillar.

Using some of the techniques described in this ar-
ticle, in junction with the machine learning approach
introduced in Ref. [47], we are interested in pursuing
studies that further connect local structural defects with
particle-scale rearrangements of asymmetric particles. A
probabilistic description of the likelihood of a region
within a material to fail, in junction with structure func-
tions that account for grain shape, may then illuminate
strategies to prevent vulnerable local structures from
forming in a wide range of disordered solids. While
this study focuses mostly on particle trajectories and lo-
cal structural features, further studies that include force
measurements between grains would elucidate local stress
capacities and add another consideration that influences
whether a region is likely to deform locally. Further-
more, measuring forces between grains would allow for
direct experimental comparisons to established models
of ductile failure, with uniquely direct knowledge of the
material microstructure. As mentioned in Section I, duc-
tile failure occurs due to local plastic flow and/or the
growth and coalescence of voids [3], both of which are
present in the deformation of our pillars. Ductile failure
can be modeled using the constitutive GTN model [4–
6] and modifications thereof. However, these models are
governed by a balance between locally applied stresses
and yield stresses, both of which are currently inacces-
sible in the present study. Still, these prospective stud-
ies show promise for a more thorough understanding of
material failure in disordered solids, and can illuminate
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FIG. 15. Binned averages of J2,rel versus Qk for all particle
shapes as measured in (a) “atoms” and (b) “molecules.” The
error bars are standard errors of the mean of J2,rel values
within each Qk bin. In general, there is a negative correlation
between the two, aside from dilatancy effects at maximally
packed regions (max Qk > 0) for monomers and trimers.
However, dimers do not exhibit this dilatancy effect, while
regions of dimers that are highly under-packed (Qk

<∼ −1.0
in (a), Qk

<∼ −0.3 in (b)) show a lower likelihood to deform
compared to monomers and trimers.

methods for mitigating or avoiding catastrophic failure
events.
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