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We consider a collection of self-driven apolar particles on a substrate that organize into an ac-
tive nematic phase at sufficiently high density or low noise. Using the dynamical renormalization
group, we systematically study the 2d fluctuating ordered phase in a coarse-grained hydrodynamic
description involving both the nematic director and the conserved density field. In the presence of
noise, we show that the system always displays only quasi-long ranged orientational order beyond a
crossover scale. A careful analysis of the nonlinearities permitted by symmetry reveals that activ-
ity is dangerously irrelevant over the linearized description, allowing giant number fluctuations to
persist though now with strong finite-size effects and a non-universal scaling exponent. Nonlinear
effects from the active currents lead to power law correlations in the density field thereby preventing
macroscopic phase separation in the thermodynamic limit.

PACS numbers:

I. INTRODUCTION

Collections of self-propelled units that are driven out
of equilibrium by the consumption of free energy at the
microscopic level spontaneously organize in a variety of
active matter states [1, 2]. When elongated in shape,
such units form active liquid crystalline phases that may
have polar or nematic symmetry. An active nematic is
by far the simplest realization of an active system that
can display orientational order. Unlike its polar counter-
part, where the appearance of macroscopic polar order
results in collective directed motion or flocking [3, 4], the
active nematic involves driven apolar constituents, which
means on average the system goes nowhere [5] making its
properties far more subtle. Examples of active nemat-
ics include monolayers of melanocytes [6, 7], fibroblasts
[8], neural progenitors [9], myxobacteria [10, 11], swim-
ming filamentous bacteria [12–14], vibrated rods [15] and
microtubule-kinesin suspensions [16].

The theoretical study of active nematics began with
coarse-grained approaches [5, 17], followed by numeri-
cal agent-based [18, 19] or lattice gas simulations [20] of
minimal microscopic models. In two dimensions (2d),
numerical work by Ngo et al. [19] revealed an order-
disorder transition that involved three phases - (i) a ho-
mogeneous disordered gas at high noise and low density,
(ii) an intermediate locally banded, chaotic, macroscop-
ically isotropic but segregated phase, and (iii) a homo-
geneous but fluctuating (quasi)-ordered nematic phase
at low noise and high density. The segregated phase
is presumably a result of the instability of the homo-
geneous nematic phase to band formation close to the
mean-field transition [21–24]. The lines delimiting the
chaotic band phase determine the binodal lines. The lin-
ear instability of the ordered phase then corresponds to
the spinodal which falls well within the band forming

region. The inhomogeneous bands are themselves unsta-
ble to transverse fluctuations (in a large enough system),
leading to the intermediate chaotic and phase-separated
but isotropic phase between the binodals. This should be
contrasted with the polar case, where a spatially periodic
phase of coherently moving stable bands is seen just past
the flocking transition [25]. An analytical understanding
of the transition from the chaotic biphasic state to the
ordered nematic phase is unavailable, and strong density
fluctuations obscure its character even in numerical stud-
ies [19]. In “metric-free” models, in which the interaction
neighbourhood is the first Voronoi shell, numerical stud-
ies [19] find only two phases, both homogeneous : a quasi-
long-range ordered nematic and an isotropic phase, sep-
arated by a transition of Berezinskii-Kosterlitz-Thouless
type [26, 27]. There has also been a lot of previous work
at the continuum level (in the absence of noise) on “wet”
active nematic systems, i.e., including flow and hydrody-
namic interactions [28–34].

Giant number fluctuations (GNFs) [3–5, 15] are a ubiq-
uitous property of the orientationally ordered phases of
active systems. As emphasized in Ref. [12], it is impor-
tant to distinguish GNFs from regular phase separation,
generically present close to the transition, as well as from
the inhomogeneous structures that occur in fluctuation-
dominated transitions [35]. A study of the ideal phe-
nomenology of these anomalous fluctuations requires a
well developed ordered phase in a large enough system
which has a mean homogeneous density and is not phase
separated in the thermodynamic limit. Here we examine
the stability of any ordered active nematic phase to the
introduction of noise. A previous dynamical renormaliza-
tion group analysis of a 2d active nematic on a substrate
in the absence of a conserved density [36] showed that
anisotropic nonlinearities, including a contribution from
advection by active currents, are perturbatively irrele-
vant in the infrared, leading to an equilibrium XY model
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like description at long-distances, and hence quasi-long-
ranged order (QLRO) at low noise. Here we take on the
more ambitious program of reinstating the density field
in the RG analysis to establish the behavior of both ori-
entational and density fluctuations in the nematic phase.
The main results of our work are summarized as fol-

lows:

• Quasi-long range order (QLRO) in 2d active ne-
matics: We show that in a system of linear size L
and small-scale cutoff a the nematic order param-
eter 〈Ψ2〉 asymptotically decays as

〈Ψ2〉 ∼

(

L

a

)

−η(∆)

, (1)

where η(∆) = ∆/2πK is a nonuniversal exponent
varying continuously with the noise strength ∆ and
the nematic stiffness K. Thus the quasi-long-range
order found for active nematics in the absence of
number conservation [36] continues to hold upon
introduction of a locally conserved number-density
field. Note that in equilibrium both polar and ne-
matic liquid crystals behave at long wavelengths
like an XY model in 2d. Active polar and nematic
systems are, however, distinct. A 2d active polar
fluid exhibits LRO [37], while 2d active nematics,
like equilibrium ones, exhibit only QLRO. More-
over, the exponent η(∆) has the same form as that
of an equilibrium XY model with the noise ∆ tak-
ing the role of temperature.

• Giant Number Fluctuations (GNFs): The power-
law decay of the order parameter yields an associ-
ated power-law scaling of density fluctuations. As a
result, the standard deviation ∆N of particle num-
ber in a region containing on average N particles is
found to scale as

∆N ∼ N1−η(∆)/2 . (2)

Note that a mean-field analysis yields η(∆) = 0
in 2d [5]. This nonuniversal scaling is a result of
marginally, but dangerously [38], irrelevant nonlin-
earities in the active current, and offers a possible
explanation for the density fluctuation spectrum
observed in the numerical studies of Ngo et al. who
obtain η(∆) = 0.4 [19]. In our theory, however, the
weakened GNFs (2) are determined by the same
exponent as that governing quasi-long-range order
(1). Ngo et al. [19] report a greater suppression
of GNFs than can be accounted for by their small
observed values of the QLRO exponent. We have
no explanation at present for this disagreement be-
tween theory and observation.

• Strong finite-size effects at large activity: At high
effective activity QLRO as given in Eq. 1 is seen

only for L > ξ∗ ≃ a exp[λ̄
4/9
0 (πK0/∆)13/9] where

K0 is the bare nematic stiffness and λ̄0 is the bare

value of a non-dimensional active drive. There is a
broad range of system sizes, a ≪ L ≪ ξ∗, where the
effective stiffness grows as [ln(L/a)]4/13, and the ne-
matic order parameter thus decreases more slowly
than any power of L. Simulations or experimental
realizations probing a limited range of scales could
thus give the impression of long-range order.

• GNFs versus phase separation: We show explic-
itly that GNFs are distinct from phase separa-
tion, even when the latter is induced or domi-
nated by fluctuations [20, 35]. At large activities
and on scales smaller than ξ∗, we find, however,
∆N ∼ N(lnN)−5/13, which could mimic phase sep-
aration to some degree.

The remainder of the paper is organized as follows. In
Sec. II, we describe the continuum model for a general
2d active nematic on a substrate. The reduction of the
dynamics to just the slow fields, relevant to the ordered
phase is done in Sec. II A. In Sec. III we briefly discuss
the linearized hydrodynamic theory and assess the im-
portance of nonlinearities. In analogy with 3d fully de-
veloped Navier-Stokes turbulence [39], we find that the
ordered phase of an active nematic is controlled by an in-
finite spectrum of marginal operators perturbing the lin-
earized description. At the nonlinear level, in Sec. III A,
we analyze the constraints imposed by rotational symme-
try and parity at the level of the dynamical equations.
It is here that the nematic or apolar nature of the or-
der plays an important role, distinguishing itself from its
polar counterpart. In Sec. IV, we perform a low noise ex-
pansion about the homogeneous and uniformly ordered
state within the framework of the dynamical renormaliza-
tion group. We emphasize the crucial role of symmetries
in allowing us to systematically analyze the infinite tower
of nonlinear terms and show to leading order that nearly
all of them are marginally irrelevant. We also analyze
the flow diagram and show that at long wavelengths only
quasi-long ranged nematic order survives in the system,
though with possibly very strong finite size and crossover
effects. Finally in Sec. V, we address the nature of phase
separation in light of the modified giant number fluctua-
tion scaling.

II. THE MODEL

We consider a 2d active nematic fluid on a frictional
substrate. Working at the continuum level, we only have
two relevant fields, one is the density (ρ) and the other is
the nematic alignment tensor Qij = S(n̂in̂j − δij/2). We
rule out topological defects by fiat and conduct only a
“spin-wave” analysis. This is not merely to avoid techni-
cal difficulties but also because the numerical studies of
Ngo et al. [19] find an active nematic phase free of defect
proliferation. The scalar order parameter S vanishes in
the disordered phase, while S 6= 0 in the ordered nematic
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with the direction of broken symmetry given by the di-
rector n̂. Particle number conservation implies that the
density obeys a continuity equation

∂tρ+∇ · j = 0 , (3)

with mass current j = ρu where u is the velocity field. As
the substrate is a momentum sink, j is itself a fast mode,
slaved to variations in ρ and Q. In general the fluctuat-
ing current j = −M∇µ+ jcurl + fρ, where for simplicity
we have taken a scalar mobility M , the scalar µ is an ef-
fective chemical potential, jcurl includes all non-potential
contributions to the mass current (∇ × jcurl 6= 0), and
fρ is a gaussian white noise accounting for fluctuations.
For a passive system that relaxes to thermal equilibrium
with probability distribution exp(−F/kBT ), µ = δF/δρ,
jcurl = ν∇ · σe (σe ≃ δF/δQ is the field thermodynami-
cally conjugate to the liquid crystal order parameter and
ν is a dissipative cross-coupling) and correlations of fρ
are related to M and the temperature by the fluctuation-
dissipation theorem [70]. Active contributions breaking
detailed balance arise in all three terms, with a non-
integrable addition to µ as in scalar active matter [40]
and to jcurl (relevant to active aligning matter), and a vio-
lation of the fluctuation-dissipation relation. The leading
terms in a gradient expansion are

µ = c0δρ+ c1δρ
2 + c2∇

2δρ+ 2c′2∇i∇jQij , (4)

M = (M1 +M ′

1δρ) , (5)

jcurl = α0∇ ·Q+ α1δρ∇ ·Q , (6)

where δρ = ρ−ρ0 is the deviation of the density from its
mean and I is the unit tensor. The most relevant active
contribution is the curvature induced current ∝ α0∇ ·Q
[5], that permits circulating probability currents even in
the steady state. All the terms included in µ are present
in equilibrium too. The simplest active contribution to
the chemical potential ∼ |∇δρ|2 is irrelevant (along with
other equilibrium terms like c2 and c′2 given above) at
long wavelengths. We also only consider systems that
are stable and non-phase separating in the absence of
activity, so c0 and M1 > 0.
The nematic alignment tensor is not a conserved field

and its dynamics is of relaxational form,

∂tQij =

(

a−
b

2
|Q|2

)

Qij +K∇2Qij + L1Qkℓ∇k∇ℓQij

+ L2∇kQkℓ∇ℓQij − 2λ

(

∇i∇j −
δij
2
∇2

)

δρ+ fQij ,

(7)

with the rotational viscosity set to unity by rescaling the
unit of time. The terms a, b account for symmetry break-
ing allowing for the mean field isotropic-nematic transi-
tion. To linear order a = a0+a1δρ and b = b0+b1δρ with
a0 > 0 and b0 > 0 well in the ordered nematic phase. The
form of the equation is the same for an equilibrium pas-
sive nematic liquid crystal, except that at equilibrium L1,

L2 and K (along with terms schematically of the form
∼ ∇Q∇Q with all possible index contractions) would
have been related via the free energy to the two indepen-
dent Frank elastic constants in 2d.
We digress briefly to dispose of a possible confusion.

For a passive system, the gaussian white noise fQ is
at the same temperature as fρ with cross-correlations
〈∇ · fρfQ〉 ∝ 2kBTν(∇∇)ST (made symmetric and trace-
less). Correspondingly the order parameter dynamics is
given by ∂tQ = −δF/δQ−ν(∇∇)STδF/δρ+fQ, with the
Onsager dissipative coefficient ν included. Apart from
relating K,L1, L2 to two Frank constants, we also have
λ = c′2 − νc0/2 [41]. So, even though the elastic stress
σe ≃ δF/δQ to lowest order in gradients, generates a
term [42, 43] in jcurl = ν[a0(ρ0 − ρc)− b|Q|2/2]∇·Q, the
coefficient in front being derived from the free-energy F
necessarily vanishes in the ordered phase [71]. In that
case, the free energy only penalizes gradients of the di-
rector, leading to an elastic stress that is O(∇2) and
hence subdominant in a gradient expansion. The cru-
cial distinction in the active nematic is that violating
detailed balance liberates the dynamics from free-energy
constraints and the fluctuation-dissipation theorem. The
activity α0 has no apriori reason to vanish or decrease
in correlation with increasing nematic order, with the
removal of this constraint being directly responsible for
large density fluctuations in the active nematic.

A. Driving of a conserved density field by the

Nambu-Goldstone mode

Having written down the most general set of equations
that governs any 2d active nematic on a substrate, we
now focus on the dynamics deep in the ordered phase. As
Q is symmetric and traceless, in two dimensions it only
has two independent components, which we can pack-
age into a single complex field χ = Qxx + iQxy [72]. In
terms of the angle θ of the director n̂ = (cos θ, sin θ),
χ = |χ|e2iθ, the factor of 2 due to the nematic symmetry
in the system. As an aside, it is worthwile to note that
in 2d, there is no difference between a polar (vectorial)
and apolar (nematic) field (at the level of the equations
themselves) as long as one does not mix spatial and field
indices. If such a separation is imposed the spatial rota-
tions and rotations of the order parameter field decouple
and become independent symmetry operations. The dif-
ference in the global structure of the order parameter
spaces in the two cases manifests itself only through the
character of the topological defects. If (as in our case and
as inevitable in a general liquid-crystal system) one does
have spatial indices contracted with field indices, then
only the combined simultaneous rotation of both spatial
coordinates and the order parameter field together be-
comes a symmetry operation, in which case the terms
permitted in the equations themsleves now do depend
explicitly on the nature of the field itself. In an active
polar fluid, this is manifest by the dual role played by
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the polar order parameter by also being a velocity that
transforms under rotations as the coordinate axes, cru-
cially allowing for the convective nonlinearity that leads
to long ranged polar order even in 2d [1]. For ease of
notation, we shall often switch between χ as a complex
field or a vector like object (its transformation under a
rotation is addressed in Sec. III A), the form determined
from context. Note, however, that while in a polar fluid
the vector order parameter χ is also a flow velocity, this
is not the case in the nematic. In terms of χ, neglect-
ing the elastic anisotropy for the time being, the order
parameter equation (Eq. 7) becomes

∂tχ = (a− b|χ|2)χ+K∇2χ− λΓδρ+ f , (8)

where f = fQxx + ifQxy is the corresponding noise and
Γ = Γ1+ iΓ2 is an anisotropic differential operator (Γ1 =
∂2
x − ∂2

y and Γ2 = 2∂x∂y).
Deep in the ordered state, for ρ = ρ0 we have a =

a0 > 0 and |χ| 6= 0. Setting |χ| = S0 + δS, where

S0 =
√

a0/b0 and δS is a small fluctuation in the scalar
order parameter, we can slave the fast amplitude fluctu-
ations to the remaining slow modes: the phase (being a
Nambu-Goldstone mode) and the density (being a con-
served field). Neglecting ∂tδS at long time gives

∂tδS = S0

[

(a1 − b1S
2
0)δρ− 2b0S0δS

]

−KS0|∇θ|2 ,

(9)

=⇒ δS ≃
a1 − b1S

2
0

2b0S0
δρ−

K

2b0S0
|∇θ|2 + · · · , (10)

As a1 = ∂a/∂ρ and b1 = ∂b/∂ρ, both evaluated at
ρ = ρ0, the coefficient in front of δρ above can be of
either sign and is non-vanishing in general. Including
the elastic anisotropies only leads to anisotropic terms in
θ of the same order as |∇θ|2. As we shall see, all gradi-
ent contributions to δS are irrelevant at long distances
by power counting. So keeping only the first term, we
include the most relevant contribution of the amplitude
fluctuation in the equations for the slow modes. Upon
doing so, the density equation now takes the form

∂tδρ = D∇2δρ+δDΓ·(χ̂δρ)−αΓ·χ̂−Dn∇·(v̂δρ)+σ∇2δρ2 .
(11)

Here α = α0M1S0 is the lowest order active current con-
tribution, D = c0M1 is a regular diffusion constant, δD
and Dn are anisotropic diffusion constants (in equilib-
rium δD = Dn, but active corrections ∝ α0, α1 make
them different) and σ = M1c1 + c0M

′

1/2 is a passive in-
teraction contribution to the diffusion flux. If we were to
write jcurl as the divergence of an active stress, then α > 0
would correspond to a contractile system and α < 0 to
an extensile one. We have neglected the conserving noise
fρ as its effects are subdominant at long wavelengths to
those of the orientational noise fQ entering via αΓ · χ̂.
Here χ̂ = (cos 2θ, sin 2θ) (or e2iθ in complex form) and
Γ = (∂2

x−∂2
y , 2∂x∂y) is the anisotropic differential opera-

tor introduced just after Eq. (8). We also have v = ∇·Q,
which in terms of χ is given by vx = ∇·χ and vy = ∇×χ

(v̂ is similarly given in terms of χ̂). Similarly, the equa-
tion for the director phase is given by (upto a rescaling
of variables)

∂tθ = K∇2θ + δKχ̂ · Γθ + g∇δρ · ∇θ + κδρ∇2θ

− λχ̂× Γδρ+Knv̂ · ∇θ + fθ . (12)

The nonlinear coupling g (depending on a, b) arises from
amplitude fluctuations of δS, K = (K1 + K3)/2 is the
average Frank elastic constant of the nematic, κ is the
leading density dependence of the average elastic con-
stant K and δK = L1S0 = (K3 − K1)/2 is the Frank
constant anisotropy (K1 and K3 being the splay and
bend elastic constants respectively). Kn = L2S0 is also
an independent elastic anisotropy related to δK only at
equilibrium. The cross coupling λ is a consequence of
flow alignment, corresponding to the rotation of the ne-
matic director in the presence of a mass flux. As fQ
is gaussian white noise, the noise in the director phase
fθ = (cos 2θfQxy − sin 2θfQxx)/2S is also gaussian with
a vanishing mean (〈fθ〉 = 0). The two point correla-
tion is given by 〈f2

θ 〉 = (cos2 2θ〈f2
Qxy〉 + sin2 2θ〈f2

Qxx〉 −

2 sin 2θ cos 2θ〈fQxxfQxy〉)/2S. As both fQxx and fQxy

are independent and identically distributed δ-correlated
random variables, the cross terms vanish and we get

〈fθ(r, t)fθ(r
′, t′)〉 = ∆δ(r − r

′)δ(t− t′) . (13)

Here we have absorbed factors of two and S0 into the
noise variance ∆ and neglected multiplicative noise cor-
rections in δS ∼ δρ.

As we wish to perform a low noise expansion about the
ordered state, fluctuations in θ and δρ are consequently
small. Hence the entire analysis is essentially of a “spin-
wave” type. In equilibrium, both 2d polar and nematic
liquid crystals (even when compressible) have the same
long-distance description as that of the XY model [44],
in which the spin-wave theory is free and one requires
topological defects to proliferate and disorder the system
[26, 27, 45]. In the active nematic, the Nambu-Goldstone
mode interacts with itself due to the nematic anisotropy
(as would be in the case of unequal Frank constants [44]),
but also strongly with the density field, in which it en-
genders large fluctuations. As a consequence, infrared
singularities occur in both slow fields, making the ques-
tion of the stability of the ordered phase rather subtle.
What makes the ordered phase of the active nematic so
drastically different from its equilibrium counterpart is
this invasion of the broken-symmetry mode into the den-
sity dynamics.

III. LINEARIZED HYDRODYNAMICS AND

THE GAUSSIAN FIXED POINT

Starting with an ordered state in the x-direction, with-
out loss of generality, the linearized equations for small
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θ and δρ are given by

∂tδρ = D∇2δρ+ δDΓ1δρ− 2αΓ2θ , (14)

∂tθ = K∇2θ + δKΓ1θ − λΓ2δρ+ fθ . (15)

There are two primary consequences of activity. The
first is seen even at the linear level in the curvature
current ∝ α. The nonlinear effects of this term are

addressed in this paper. The second is the motion of
defects, i.e. the fact that +1/2 disclinations become
motile and self-propelled [15, 32]. This is necessarily
non-perturbative and far beyond the scope of the present
work, and will be addressed elsewhere. Fourier trans-
forming Φq,ω =

´

d2rΦ(r, t)e−iq·r+iωt with Φ = (θ, δρ),
the inverse propagator for the linearized gaussian theory
is given by

G−1(q, ω) =

(

−iω +Kq2 + δK(q2x − q2y) −2λqxqy
−4αqxqy −iω +Dq2 + δD(q2x − q2y)

)

, (16)

where q = |q|. The detailed angular dependence of the
eigenmodes is given in Ref. [5].

We require K,D > 0, |δK| < K, |δD| < D and αλ not
be too large for stability (for δD = δK = 0, the stability
line is given by αλ < KD/2, the general criterion be-
ing more involved). These stability lines correspond to
splay-bend instabilities that have a finite threshold due
to the presence of a frictional substrate and have been
extensively studied (see for instance Refs. [46, 47] and
reference therein), so we shall not discuss them any fur-
ther. Note that, as we are deep in the ordered phase, we
do not concern ourselves with the density banding insta-
bility which only occurs near the mean-field transition.

Within the gaussian theory, we can easily compute the
density and angle correlators. For simplicity, we shall
consider δK, δD and αλ ≪ D,K, in which case

〈|θq,ω|
2
〉 ≈

∆

ω2 +K2q4
, (17)

〈|δρq,ω|
2
〉 ≈

16∆α2q2xq
2
y

(ω2 +D2q4)(ω2 +K2q4)
. (18)

Going back to real space, the equal time two-point cor-
relator of the 2p-atic order parameter Ψ2p = e2ipθ (for
p = 1, Ψ2 = χ̂, the unit normalized complex nematic
order parameter we had before) is given by

〈Ψ∗

2p(r, t)Ψ2p(0, t)〉 =
( r

a

)

−ηp(∆)

, (19)

where a is some microscopic cutoff and ηp(∆) =
p2∆/2πK is a non-universal exponent (as it depends on
the strength of the noise and the elastic stiffness), that
governs the power-law decay of the order parameter. So,
the linearized equations only predict quasi-long-ranged
order (QLRO), just like in equilibrium (〈Ψ2p〉 = 0 in the
thermodynamic limit).

Though the active current, at the linear level so far,
does not alter the conclusion of quasi-long-range order
in 2d, it does leave a rather spectacular footprint on the
density fluctuation spectrum, which was shown [5] to di-
verge as q → 0. The equal time structure factor is given

by

S(q) = 〈δρq(t)δρ−q(t)〉

=
8∆α2

DK(D +K)

q2xq
2
y

q6
∼

1

q2
as q → 0 . (20)

As the number fluctuations in a volume V ∼ L2 scale
as

√

〈δN2〉 ∼
√

S(q → 0)V , this gives
√

〈δN2〉 ∝ N
[5]. Later in Sec. IV, we shall show how nonlinearities
modify this result and change the GNF exponent to a
non-universal number.
Note that even though we do not have long-ranged

orientational order, the structure factor in Eq. 20 is
markedly anisotropic. This is an artifact of having per-
formed a linearization around the x-axis θ = 0 state.
Fixing a global frame of reference, the above result is an
average within a restricted ensemble of a fixed refernce
state. Linearizing about a reference state at θ = θ0, we
instead obtain

S(q ; θ0) =
2∆α2

KD(K +D)q6
[2 cos 2θ0qxqy−sin 2θ0(q

2
x−q2y)]

2 .

(21)
The absence of long-ranged order means that the steady
state distribution of the reference angle is uniform over
the [0, π) interval. Using P (θ0) = 1/π, we average
S(q ; θ0) over θ0 to correctly recover isotropy in the den-
sity correlator,

S(q) = S(q ; θ0) =
∆α2

KD(K +D)

1

q2
. (22)

In order to assess the importance of the nonlinearities,
we perform the following scalings

t → bzt , r → br , (23)

δρ → bζρδρ , θ → bζθθ , (24)

where z is a dynamical exponent and ζρ and ζθ are
“roughness” exponents for the two fields. This gives the
following scaling dimensions

y∆ = z − 2ζθ − 2 , (25)

yD = yK = z − 2 , yδK = yδD = z − 2 , (26)

yα = z − 2 + ζθ − ζρ , yλ = z − 2 + ζρ − ζθ . (27)
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Hence at the linear fixed point, requiring that all the
linear terms and the noise variance ∆ not change under
this scaling fixes

z = 2 and ζρ = ζθ =
z − 2

2
= 0 . (28)

Above two dimensions, the linearized description is cor-
rect with all the non-linearities being irrelevant, but in
exactly two dimensions both the fields θ and δρ become
marginal and dimensionless. As the scale of density
fluctuations is the same as that in the phase, setting
ζρ = ζθ = ζ, a nonlinear term of the kind

∇2+2kδρnθm ∼ bz−2−2k+(n+m−1)ζ , (29)

present in either equation is marginal in the infrared for
k = 0 and all n,m > 1 for d = 2 dimensions. Higher gra-
dient terms with k > 1 are infrared irrelevant by simple
power counting at the gaussian fixed point. Hence, the
two dimensional active nematic has an infinite spectrum
of marginal operators at the linear fixed point, much like
the situation for regular three dimensional Navier-Stokes
turbulence [39]. In order to judge the (un)importance
of any of the marginal nonlinearities, one is immediately
forced to take recourse to a dynamical renormalization
group programme, but the fact that an infinity of them
have to be handled seems unsurmountable. This is where
the symmetries of this system provide a great simplifica-
tion.

A. Rotations and symmetries

The true symmetry of a nematic liquid crystal with
unequal Frank elastic constants is one in which both spa-
tial coordinates and the director field are rotated by the
same angle. In two dimensions, a rotation by an angle ϕ
is given by the following matrix

R(t) =

(

cosϕ − sinϕ
sinϕ cosϕ

)

. (30)

Hence, the symmetry transformation is then given by
x → x

′ = Rx, Q → Q′ = RQRT (θ → θ′ = θ + ϕ,
where θ is the angle of the director and ϕ the rotation
angle). For an infinitesimal rotation by ε, the derivatives
transform as ∂x → ∂′

x = ∂x−ε∂y and ∂y → ∂′

y = ∂y+ε∂x.
This in turn leads to the following transformations for the
anisotropic differential operator Γ.

Γ1 = ∂2
x − ∂2

y → Γ′

1 = Γ1 − 2εΓ2 , (31)

Γ2 = 2∂x∂y → Γ′

2 = Γ2 + 2εΓ1 . (32)

As χ̂ = (cos 2θ, sin 2θ) also transforms with θ → θ′ =
θ + ε, we immediately note that χ̂ · Γ and χ̂ × Γ are

invariant under this symmetry operation (along with the
obvious isotropic laplacian ∇2). Additionally, we have
v = ∇·Q = (∇·χ,∇×χ), which transforms as a vector.
So including v · ∇ and |v|2 (∇ ·v = Γ ·χ), we exhaust all
the scalar terms that are allowed by rotational symmetry.

Apart from being apolar, a nematic liquid crystal is
also achiral. Specifically, choosing a local orthogonal
frame {∂x, ∂y} with the x-axis aligned along the local ori-
entation, in the absence of local enantiomorphy or molec-
ular chirality, we also require the invariance under local
parity reflections: y → −y (if the frame weren’t oriented
along the local director orientation, then additionally one
must also flip the director angle θ → −θ) [48]. Under
this action Γ1 → Γ1 and Γ2 → −Γ2, which immediately
shows that χ · Γ is even under reflections while χ × Γ is
odd. Hence we must additionally only include terms in
the equation that preserve the parity of the variables (ρ
being parity even and the phase θ parity odd).

Expanding in small fluctuations of θ, δρ, these symme-
tries provide powerful constraints on the possible nonlin-
ear mode-coupling terms that can be present. In partic-
ular, the full rotational symmetry of the model is non-
linearly realized in the broken symmetry mode θ, so one
must treat all terms related by a symmetry transforma-
tion on an equal footing. As we show in Sec. IV and the
Appendix A, all the terms that are explicitly anisotropic
(linear or nonlinear) are marginally irrelevant at lead-
ing order just as a consequence of rotational symmetry.
This allows us to directly disregard most of the nonlin-
ear couplings involving Q that one would write down.
Hence only a small fraction of these anisotropic terms
have to be considered, with the most important nonlin-
earities arising from expanding mode-coupling terms in
Eqs. 11 and 12 that also contribute at the linear level. For
example the active current term αΓ · χ̂ ≃ 2αΓ2θ−2αΓ1θ

2

(θ ≪ 1) is present in the linear equations (Eq. 14)
and also generates a nonlinear interaction term −2Γ1θ

2

among others, with the exact same coefficient α. Such
relations being a consequence of symmetry must be pre-
served under renormalization. A well known example of
singular fluctuation corrections arising from symmetry-
required nonlinearities is the elasticity and hydrodynam-
ics of an equilibrium smectic liquid crystal [49–53]. In
addition to a plethora of anisotropic terms, there are also
isotropic nonlinearities one has to keep track of, for exam-
ple the terms σ∇2δρ2, κδρ∇2θ and g∇θ · ∇δρ in Eqs. 11
and 12 respectively. These terms come with independent
coefficients unrelated to any other coupling constants and
don’t affect the linear hydrodynamic description.

So anticipating ourselves, we neglect all higher order
anisotropic nonlinearities (like Kn, Dn), while only re-
taining the symmetry required and isotropic ones, the
assumption of irrelevance being justified a posteriori.
Keeping this in mind, the full set of dynamical equations
for small fluctuations in δρ and θ is given by
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∂tδρ = D∇2δρ+ δD
[

Γ1δρ+ Γ2(2θδρ)− Γ1(2θ
2δρ)

]

− α

[

Γ2(2θ)− Γ1(2θ
2)−

4

3
Γ2(θ

3)

]

+ σ∇2δρ2 , (33)

∂tθ = K∇2θ + δK
[

Γ1θ + 2θΓ2θ − 2θ2Γ1θ
]

+ g∇δρ · ∇θ + κδρ∇2θ − λ
[

Γ2δρ− 2θΓ1δρ− 2θ2Γ2δρ
]

+ fθ . (34)

IV. PERTURBATIVE DYNAMICAL

RENORMALIZATION

Following Forster et al. [54], we perform a 1-loop com-
putation of the renormalization flow equations perturba-
tively in the nonlinearities. As each loop correction comes
with an accompanying factor of the noise variance ∆, the
loop expansion corresponds precisely to a systematic and
controlled low noise expansion. Fixing an ultraviolet cut-
off in fourier space |q| < Λ(= 1/a), we split the fields into
slow and fast modes (θ = θ< + θ>, δρ = δρ< + δρ>) and
coarse-grain out short scale fluctuations in a momentum
shell Λ/b < |q>| < Λ, which after appropriate rescal-
ing of the coordinates and the fields gives an equation of
the same form as we have written above (Eqs. 33, 34),
though now with modified coefficients. Finally letting
ln b = ℓ ≪ 1, we obtain differential flow equations that
govern the long-wavelength behaviour of the theory as we
iterate the coarse-graining procedure out to the largest
scales of interest. The renormalized propagatorGR(q, ω)
satisfies the following Dyson equation

G−1
R (q, ω) = G−1(q, ω)− Σ(q, ω) , (35)

where Σ(q, ω) is the “self-energy” that includes all the
diagrammatic contributions. The details of this long set
of computations is given in Appendix B, and we shall
only briefly sketch and analyze the main results here.
For small ∆, using the result of the linearized analysis,

one can obtain the leading fluctuation corrected linear
theory due to the interaction with the Nambu-Goldstone
mode θ. We shall illustrate this here for the diffusive
anisotropy δD. Considering α, λ, δK, δD, g, κ and σ to all
be sufficiently small, to leading order the joint probability
distribution of δρ and θ essentially factors (as the cross
couplings α and λ are small). In this limit, corrections
to K,D and ∆ are negligible and we can estimate the
effect phase fluctuations have on the anisotropic terms.
Averaging just over θ, for the diffusive anisotropy, we
have

δD [Γ1(δρ cos 2θ) + Γ2(δρ sin 2θ)] ≈ δD〈cos 2θ〉Γ1δρ ,
(36)

where we have used the linear theory result 〈sin 2θ〉 = 0
and 〈cos 2θ〉 = (L/a)−η(∆) (η(∆) = ∆/2πK) is a system
size L dependent constant, leading to a renormalized dif-
fusion anisotropy δD(L) = (L/a)−η(∆)δD. This immedi-
ately tells us that the fluctuations of the director phase
cause anisotropic terms such as the one above to become
length scale dependent, driving them to zero as a power
law in larger and larger systems. In Appendix A, we sys-

tematically show that this leading behaviour is a conse-
quence of rotational symmetry of the model and is hence
true for all anisotropic terms, be they linear or nonlinear
(i.e. any term involving a contraction of order parameter
and spatial indices). This point is crucial as it allows us to
immediately treat an infinite number of anisotropic non-
linearities, showing them to be marginally irrelevant at
least at leading order and justifies their neglect in Eqs. 33
and 34. Hence the only important anisotropic terms will
have to be the ones present in the linearized equations.
This is precisely why we only kept those nonlinearities
that are related by symmetry to linear terms and dis-
regarded all the higher order anisotropies (like Kn, Dn).
Note that this argument does not work for the isotropic
nonlinearities, which still do need to be treated by the
full renormalization group analysis.

At this order, as K,D and ∆ remain unrenormalized
and are not modified by fluctuations, we see that the
orientational order remains quasi-long ranged, but the
density fluctuations now become anomalous. As the ac-
tive current involves a contraction of order parameter
and spatial indices, α is also an anisotropic coupling
and it runs with scale in the same fashion as above -
α(q) ∼ qη(∆) having switched to a wavevector represen-
tation. Using this renormalized activity, as q → 0, we
find

〈|δρq(t)|
2〉 ∼

∆α(q)2q2xq
2
y

KD(K +D)q6
∝ L2−2η(∆) , (37)

with 2π/q = L as the longest wavelength in a system of
linear size L. The anisotropy here is still a consequence
of a restricted ensemble average and not of long-ranged
order. A complete ensemble average recovers isotropy in
the density correlator as discussed before (see Eq. 22).

Even though the strength of the active drive gets renor-
malized to zero, one does not recover an equilibrium sys-
tem. Hence activity is dangerously irrelevant [38], leaving
a strong imprint on the fluctuations even as it vanishes
at large scales. This is similar in spirit to dangerously
irrelevant hexagonal symmetry breaking perturbations
controlling the divergence of the longitudinal suscepti-
bility in an ordered ferromagnet [55]. Here instead, the
active drive is a (marginally) irrelevant detailed-balance-
breaking perturbation and its consequences remain non-
negligible even for asymptotically small activity. With
this modification to the structure factor, we find that the
giant number fluctuations continue to persist, but with
a modified non-universal scaling exponent, suppressed
from its linearized prediction by a noise dependent num-
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ber η(∆),

√

〈δN2〉 ∝ N1−η(∆)/2 . (38)

An informal shortcut to this result is to note that the
active current ∼ ∇i∇jQij in the density equation is pro-
portional to the nematic order parameter Q. Grafting
this onto the linearized calculation [5] of Sections IIA and
III shows that GNFs are mitigated by the same power of
system size as the order parameter, i.e., the QLRO expo-
nent η(∆). This directly gives an improved estimate for
the density fluctuation variance as ∝ L2−2η(∆), which is
the same as that given above in Eq. 37.
As the density fluctuation δρ is a conserved variable, all

the nonlinear interaction terms have to be the divergence
of some current. From Eq. 33, if we set σ = 0 we see that
nonlinear terms involving either α or δD are anisotropic
total derivatives and hence give rise to only anisotropic
corrections in Σρρ ∝ q2x−q2y, thereby leaving the isotropic
diffusion constant unrenormalized to all orders in pertur-
bation theory. For σ 6= 0, the most relevant contribution
to the diffusion propagator is Σρρ ∼ ∆σαδDq2, which
corrects D by a small amount (including Dn 6= 0, there
are smallO(∆D2

n) corrections as well which are irrelevant
as Dn itself is irrelevant). As we assume all the couplings
and noise (except for K,D) to be small, this correction is
already far smaller than the leading corrections we shall
be interested in (noise times two coupling constants). So
to this level of approximation within perturbation the-
ory, the diffusion constant D is nearly unrenormalized,
hence,

dD

dℓ
= D(z − 2) . (39)

Fixing the dynamical exponent z = 2, we can keep D
fixed at its bare microscopic value, which we set to unity
(D = 1) from now on, without loss of generality.
Given the large number of parameters, for the purposes

of this discussion we restrict ourselves to the case of van-
ishing elastic and diffusive anisotropies (δK = δD = 0)
and g = κ = 0. This corresponds to an invariant sub-
space of the flow equations given in Appendix B. This is
sufficient to elucidate the main consequences of activity
at the nonlinear level, as this surface is stable and at-
tracting, with small deviations from it being irrelevant
(see Appendix B for more details). This simplification
decouples most of the flow equations, leaving us with
only two coupled ones.

dK

dℓ
= KcK λ̄ , (40)

dλ̄

dℓ
= −λ̄

(

∆

πK
+ bK λ̄

)

, (41)

where λ̄ = αλ∆/[πK2(1+K)] is a non-dimensional active
coupling. In this limit of δK = δD = g = κ = 0, the
noise variance ∆ also remains unrenormalized at leading
order, fixed at its microscopic value. Both cK and bK are

FIG. 1: The low noise renormalization group flow diagram
in the case of vanishing anisotropy (δD = δK = 0) and g =
κ = 0. The noise variance is fixed at ∆ = 0.8. The red stars
at λ̄ = 0 correspond to a line of fixed points in K. For a
large elastic stiffness K, and λ̄ > 0, it takes a large number
of renormalization group iterations in order to reach the fixed
point, with a relatively large intermediary regime in which the
elastic constant grows logarithmically with scale (Eq. 46). For
most λ̄ < 0, the flow is unstable with decreasing K, possibly
going to a strong coupling fixed point not accessible within
perturbation theory.

positive, monotonic functions of K that remain finite in
both the limits K → 0 and K → ∞,

cK =
1 + 3K + 4K2

(1 +K)2
, bK = 1+ cK

(

2 + 3K

1 +K

)

. (42)

As K → 0, cK ∼ 1 and bK ∼ 3, while as K → ∞,
cK ∼ 4 and bK ∼ 13. The renormalization group flow di-
agram within the {K, λ̄} subspace for a fixed ∆ is shown
in Fig. 1. At a given noise variance ∆, for low enough
activity, we can neglect the second λ̄2 term in Eq. 41.
Treating cK to be essentially constant, we can then inte-
grate the flow equations approximately to get,

dK

dλ̄
= −

πcK
∆

K2 =⇒
1

K(ℓ)
−

1

K0
=

πcK
∆

(

λ̄(ℓ)− λ̄0

)

.

(43)
Setting ℓ = ln(Λ/q) with Λ = 1/a being the ultraviolet
cutoff, as q → 0, we have

K∞−K(q) ∝
( q

Λ

)x(∆)

and λ̄(q) ∝
( q

Λ

)x(∆)

, (44)

where K0, λ̄0 are the microscopic parameters we be-
gin with at short scales, K∞ = K0∆/(∆ − πcKK0λ̄0)
is the final asymptotic nematic stiffness and x(∆) =
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∆/πK0 − cK λ̄0 is a non-universal exponent. This so-
lution is only valid as long as x(∆) > 0. The sign of
λ̄0 depends on both the microscopic activity α and the
flow-alignment like parameter λ. If we suppose λ > 0 for
elongated nematogens, then the renormalized elastic stiff-
ness K∞ > K0 for a contractile system and K∞ < K0 for
an extensile system. Coarse-graining microscopic models
of an active nematic [23, 24], or a self-propelled rod sys-
tem [56, 57], where the notion of contractile or extensile
stresses may not be so obvious, though always give λ̄ > 0
leading to a stiffer system at large scales. As K∞ is still
finite in the thermodynamic limit we end up only with
quasi-long ranged nematic order. Once again as we saw
earlier, the active coupling is irrelevant at large scales,
but dangerously so as its effects on the density fluctua-
tions do not consequently vanish. For λ̄0 < 0, from Fig. 1,
we see that there is a small region close to the λ̄ = 0 line
of fixed points where noise nonlinearly stabilizes the sys-
tem, but elsewhere, K decreases continuously, possibly
vanishing or even going negative at some strong coupling
fixed point. This would signal a modulational instability,
possibly giving rise to a smectic array of bend-splay dis-
tortions, about which one would have to reorganize the
low noise fluctuation expansion, far beyond the scope of
this paper. Note that unlike the linear Lifshitz instability
prediction for an overdamped 2d active nematic without
a conserved density at the mean field level [47], here the
theory is linearly stable to begin with and only destabi-
lized nonlinearly in the presence of noise.
For larger values of the active drive with λ̄0 > 0, x(∆)

can be negative and the bK λ̄2 nonlinearity in Eq. 41 be-
comes important. As ∆ < πcKK0λ̄0, taking bK to be
nearly constant, we have approximately

dλ̄

dℓ
≃ −bK λ̄2 =⇒ λ̄(ℓ) ∝

1

bKℓ
(as ℓ → ∞) . (45)

For λ̄ > 0, K increases slowly with scale. Replacing
bK ∼ 13 and cK ∼ 4 for large K, we find the growth of
the elastic stiffness to be

d lnK

dℓ
≃ 4λ̄ =

4

13ℓ
=⇒ K(ℓ) ∝ ℓ4/13 (as ℓ → ∞) .

(46)
With ℓ = ln(Λ/q), the Frank elastic constant grows log-
arithmically slowly K(q) ∝ ln(Λ/q)4/13 for q ≪ Λ. This
logarithmic breakdown of hydrodynamics is typical when
nonlinearities are marginal by power counting, as is also
similarly encountered in 2d thermal fluids [54], solids and
hexatic liquid crystals [58] in equilibrium. Here, though,
in the thermodynamic limit the slow growth of K(q)
is actually arrested as it saturates at a large but finite
value. This is because in Eq. 41, bK λ̄ ≪ ∆/πK eventu-
ally beyond an exponentially large crossover length scale

ξ∗ ∼ a exp[λ̄
4/9
0 (πK0/∆)13/9], above which one recovers

the kind of behaviour shown in Eq. 44, only now with
K0 and λ̄0 now evaluated at ℓ∗ = ln(ξ∗/a). Numerically
integrating the flow Eqs. 40 and 41, we find the same
behaviour described above for sufficiently low noise, as
shown in Fig. 2.

FIG. 2: Comparing the growth of K(ℓ) for different values
of the noise ∆. The initial parameter values are K0 = 1
and λ̄0 = 1. The red line (ℓ4/13) is just given as a guide-
line. Note that ℓ = ln(L/a) at the scale of the system size,
it only changes by O(1) under finite size scaling. The large
logarithmic scale shown here in ℓ is just to compare the ap-
proximate analytical prediction to the numerical solution of
the differential equations.

Hence when the active drive is stronger than the noise
variance for λ̄ > 0, there is a possibly large range of
system sizes with L < ξ∗ where one would not see
conventional quasi-long ranged order with 〈Ψ2p(r, t)〉 =

(L/a)−ηp(∆). Instead, as

〈θ(r, t)2〉 =

ˆ

d2q

(2π)2
∆

2K(q)q2

=
∆

36πK0λ̄0

[

13λ̄0 ln

(

L

a

)]9/13

, (47)

the order parameter decreases as a stretched exponen-
tial of the logarithm of the length scale L as long as
a ≪ L < ξ∗. Though 〈θ2〉 is not finite implying the ab-
sence of true long-ranged order, the decay 〈Ψ2p(r, t)〉 =

exp[−p2∆(13 ln(L/a))9/13/9πK0λ̄
4/13
0 ], slower than any

power of L, might be mistaken in small systems to be
indicative of long ranged order. Our analysis however
shows that the 2d active nematic is always quasi-long
ranged ordered in the thermodynamic limit.
One can also provide general arguments to show that

the 2d active nematic can only truly support quasi-long
ranged order in the asymptotic limit. In crucial dis-
tinction from the active polar flocking case, where the
convective nonlinearity is relevant in d = 2 [37, 59], all
the nonlinear terms in the active nematic model are only
marginal in two dimensions (be they active or equilibrium
in origin). Marginal terms can only produce logarithmic
corrections to scaling simply because they are dimension-
less to begin with, leading to the renormalization recur-
sion relations not having a linear term in the coupling.
Additionally, in the absence of density fluctuations, we
know from the result of Ref. [36], that we recover an
equilibrium XY like description at long distances, which
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is not surprising as the only nonlinear terms present are
anisotropic terms that we have shown to be generally ir-
relevant to leading order as a consequence of rotational
symmetry of the model. Including the active currents
coupling to the conserved density field, the new non-
equilibrium terms are once again irrelevant to leading or-
der, being anisotropic in nature (∼ ∇∇ : Q). Note that
all the (possibly worrisome) isotropic nonlinearities are
present even at equilibrium and cannot conspire by them-
selves to give rise to long-ranged order, for if that were
the case, upon taking the equilibrium limit, the same
mechanism must continue to work violating the Mermin-
Wagner theorem [60]. This is true even upon including
multiplicative noise. So the only way the nonlinearities
might give rise to long-ranged order is by mixing with
operators that violate detailed balance (coming from ac-
tivity), but every such active term being anisotropic is
irrelevant. Hence all anisotropies and nonlinearities be-
ing marginal and irrelevant to leading order, the 2d active
nematic is always doomed to have a finite elastic stiffness
in the thermodynamic limit, without any singular correc-
tions, leading inevitably to only quasi-long ranged order.
So activity is only dangerously irrelevant with regard to
density fluctuations but doesn’t affect the phase fluctua-
tions much, except for inducing strong finite size effects
as discussed above. As the ordered nematic phase of a
self-propelled rod system also has only two slow modes
(δρ and θ), with the velocity always decaying on a finite
time scale, the long distance hydrodynamic description
of such a phase is identical to the one discussed here. One
would have to verify if the long-ranged order claimed in
such systems [12, 61] is actually a finite size effect in the
sense of Eq. 47, as the phase fluctuations though not fi-
nite, grow slower than a logarithm below the crossover
scale ξ∗, with only much larger systems eventually recov-
ering true QLRO.

V. GNF VERSUS PHASE SEPARATION

It is essential to distinguish giant number fluctua-
tions from phase separation which also trivially exhibits
〈δN2〉 ∝ N2 behaviour due to the formation of clusters in
a disordered gas. The linear hydrodynamic treatment of
the active nematic also predicts number fluctuations pro-
portional to the mean. The question thus arose whether
this was phase separation even deep in the ordered phase
[20]. Note that a possible phase separated phase in the
ordered state is distinct from the inhomogeneous chaotic
phase present close to transition which has density bands
and clusters, but is orientationally disordered. It was sug-
gested in Ref. [20] that the giant number fluctuations in
the ordered nematic phase realize a peculiar and deli-
cate form of phase separation, where, instead of forming
a single macroscopic dense liquid cluster in a gas, the
system perpetually transitions amongst many configura-
tions with a finite number of macroscopic clusters. This
phenomenon, christened fluctuation-dominated phase or-

dering, is ubiquitous in models involving particles sliding
on randomly fluctuating surfaces [35], where a particle
current ∝ ∇h (h being the height of the surface) drives
clustering even in the absence of attractive interactions.
The question was investigated only in the context of ad-
vection of tracer particles by active directed motion due
to orientational curvature [20].
Our results provide the first analytical calculation at

the nonlinear level that can address and disentangle these
phenomena. In Ref. [62], the relation between the struc-
ture factor and the scaling of number fluctuations is ad-
dressed numerically in detail. The constraints imposed
by rotational symmetry of the model force the scaling of
the giant number fluctuations to be modified from the
linearized prediction,

√

〈δN2〉 ∝ N1−η(∆)/2 , (48)

for sufficiently small activity compared to the noise. If
the active drive is stronger than the noise (λ̄ ≫ ∆/K),
then using the flow equations (Eq. 40, 41), we find

√

〈δN2〉 ∝

{

N (lnN)−5/13 , LN < ξ∗
N1−η(∆)/2, LN > ξ∗

, (49)

where LN is the linear size of a region containing N par-
ticles on average. So the number fluctuations are still
“giant”, but for sufficiently large averaging volumes they
are always parametrically smaller than the linear predic-
tion. The corresponding angle averaged structure factor
looks like

〈δρ(r, t)δρ(0, t)〉 ∼
1

r2η(∆)
, r → ∞ , (50)

for widely separated points, implying that the fluctua-
tions do average out in the thermodynamic limit leaving
us with a homogeneous system of finite mean density.
Hence the system is not phase separated in the ther-
modynamic limit, even though on scales smaller than
the crossover length (LN < ξ∗) one does see dynamic
hierarchical clusters violating Porod’s law and a cusp
in the equal time density correlator [20], two hallmarks
of fluctuation-dominated phase ordering. Eventually a
large enough sytem will instead self-organize into a sort
of critical phase with power law correlations in both
the density and the order parameter. In contrast to
generic scale invariance obtained for conserved dynam-
ics in an anisotropic nonequilibrium steady state [63], no
anisotropy survives at long distances here and the mech-
anism for self-organized criticality in the active nematic
is different.
The presence of highly correlated fluctuations leads to

non-standard scaling of the density distribution. The
higher moments of the number fluctuations can be shown
to scale as 〈δNk〉 ∝ Nk(1−η(∆)/2) (i.e. there is no multi-
scaling). However, in the language of lattice-gas models,
if we discretize and write si = 0, 1 as an occupation num-
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ber within a small sub-volume indexed by i, then we have

z =
Lη(∆)

∆1/2





1

L2

L2

∑

i=1

si − ρ0



 , (51)

with ρ0 being the mean density, as the relevant scal-
ing variable with a non-trivial limiting distribution (the
probability distribution of ρ =

∑

i si/L
2 itself is sharply

peaked around ρ0 and not broad in the thermodynamic
limit). As L → ∞, Prob(z) approaches a non-gaussian
distribution whose cumulant generating function is

lim
L→∞

ln〈ekz〉 = k2µ2 + k3µ3∆
1/2+ k4µ4∆+ o(∆) , (52)

where µ2, µ3 · · · are finite constants independent of L and
∆. So for low enough noise, the appropriately scaled
density distribution is always unimodal in the thermo-
dynamic limit, ruling out phase separation, even the un-
conventional one of Das and Barma [64]. The fact that
the active current jcurl = α0∇·Q is non-vanishing in the
ordered phase and is not a pure gradient [73], unlike the
case of passive sliders on a fluctuating surface, is crucially
responsible for this behaviour.

VI. DISCUSSION

Continuum models have long provided universal and
generic descriptions of active systems and are in principal
powerful enough to capture many of the dramatic con-
sequences of activity, ranging from long-ranged 2d polar
order in moving flocks [37] to motility induced phase sep-
aration in scalar non-aligning active matter [40]. The use
of renormalization group and field theoretic techniques
allows us to systematically address the effect of fluctua-
tions and noise in active systems, bringing the paradigm
of universality to bear upon these non-equilibrium sys-
tems. Unlike dynamical critical phenomena in equil-
brium, where mode coupling nonlinearities do not affect
equal-time correlators in the steady state [65], the break-
ing of detailed balance in an active system encoded in the
non-variational nature of the dynamics leads to a whole
slew of rich phenomena, some of which we have tried to
address in this paper.
In 2d at equilibrium, both polar and nematic liquid

crystals or magnets have the same long-wavelength static
description, that of the XY model. When active, the ne-
matic system is distinctly different from its polar counter-
part. Analyzing the symmetry in detail, we write down
the leading order nonlinearities that are important and
find them to all be marginal at the linear fixed point.
The fields themselves being marginal, we find an infi-
nite spectrum of marginal nonlinear terms, with most of
them involving anisotropic couplings. The true symme-
try of a nematic liquid crystal being a combined rotation
of both the director and the spatial coordinates forces
all anisotropic couplings, linear and nonlinear, to be
marginally irrelevant. Though all the anisotropic terms

(including the active terms) flow to zero, we do not obtain
an equilibrium nematic. Instead we find that the active
current is dangerously irrelevant, by virtue of which the
giant number fluctuations so engendered just get sup-
pressed in a non-universal fashion, still violating the cen-
tral limit theorem. This direct consequence of rotational
symmetry of the model constrains the long-distance be-
haviour of the structure factor, forcing it to decay as a
power law in distance, thereby ruling out the possibility
of phase separation in the thermodynamic limit.
The absence of long-distance anisotropy also leads to

the 2d active nematic only displaying quasi-long ranged
order in the thermodynamic limit, making the bulk or-
dered state a critical phase with power law correlations
in both the density and the nematic order parameter.
Despite this disappointing result, we show that one can
expect strong finite size effects when the active drive is
stronger than the noise. In this case the nematic order
parameter decays more slowly than a power law upto a
crossover length scale, above which we recover QLRO
once again. We also argue that the ordered nematic
phase in both 2d active nematic and self-propelled rod
systems must have the same universal description, and
hence one cannot have long-ranged nematic order in any
locally driven 2d nematic (in the absence of long ranged
interactions or hydrodynamics). Reconciling this result
with previous numerical and experimental findings of
long-ranged nematic order in self-propelled rod systems
[12, 61] remains a theoretical challenge. By conventional
expectations of universality and hydrodynamics, a simple
resolution to this question, other than a long crossover,
seems to be ruled out at least at the perturbative level.
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Appendix A: Leading correction to anisotropic

couplings

Considering just the interaction of the Nambu-
Goldstone mode, we extend the simple analysis done in
the main text and show how all the anisotropic terms
have the same leading fluctuation correction. Taking as
before α, λ ≪ K, we can neglect cross correlations in
θ and δρ, resulting in a factored gaussian distribution
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at the linear fixed point. We expand the trigonometric
functions for small θ ≪ 1,

cos 2θ = 1− 2θ2 +O(θ4) , (A1)

sin 2θ = 2θ −
4

3
θ3 +O(θ5) . (A2)

Systemizing the procedure, we first look at the diffusion
anisotropy δDΓ · (χ̂δρ) which was described in the main
text as well,

δDΓ · (χ̂δρ) = δD
[

Γ1δρ+ Γ2(2δρθ)− Γ1(2δρθ
2) + · · ·

]

.
(A3)

As both the fields θ and δρ essentially behave as indepen-
dent gaussian random variables at this order of approx-
imation, we split the Nambu-Goldstone mode into slow
and fast components θ = θ< + θ> and average over the
short scale fluctuations,

〈θ2>〉 =
∆

4πK
ln b . (A4)

Here the average is performed in a thin momentum shell
Λ/b < |q>| < Λ and δD, δK only provide higher order
corrections to the average. Using Wick’s theorem and
some simple combinatorics, we then get

〈Γ1(δρθ
2)〉> = 〈θ2>〉Γ1δρ , (A5)

〈Γ2(δρθ
3)〉> = 3〈θ2>〉Γ2(δρθ<) . (A6)

One can similarly work out a similar calculation for the
full trigonometric function, though we get the correct
result from just looking at the first two terms as well.

δD〈Γ · (χ̂δρ)〉> = δD(1− 2〈θ2>〉)Γ · (χ̂<δρ) , (A7)

where χ̂< = (cos 2θ<, sin 2θ<). So we immediately find,
as mentioned in the main text, that the impact of the
short scale director phase fluctuations is to renormalize
the anisotropic coupling as

α′ = α(1 − 2〈θ2>〉) =⇒
dα

dℓ
= −η(∆)α , (A8)

where η(∆) = ∆/2πK. Similarly, doing the same for
both δKχ̂ · Γθ and λχ̂× Γδρ, we get the same result.

δK ′ = δK(1− 2〈θ2>〉) , (A9)

λ′ = λ(1 − 2〈θ2>〉) . (A10)

For the active current term αΓ · χ̂, expanding for small
θ ≪ 1, we have

αΓ · χ̂ = α

[

Γ22θ − Γ12θ
2 −

4

3
Γ2θ

3 +
4

6
Γ1θ

4 + · · ·

]

.

(A11)
Proceeding as before, we can replace 〈θ3〉> → 3θ<〈θ

2
>〉

and 〈θ4〉> → 4C2 θ2<〈θ
2
>〉 (where we have disregarded ad-

ditive constants as all the angle terms come under deriva-
tives). Working out the numbers, once again we get

α′ = α(1 − 2〈θ2>〉) . (A12)

These were all the anisotropic terms that contribute at
the level of linear hydrodynamics. We can follow the
same procedure to show that the argument works even
for higher order anisotropic nonlinearities, for example
Knv̂ · ∇θ. This term generates the KPZ like anisotropic
nonlinearity ∼ ∂xθ∂yθ at lowest order.

Kn [(∇ · χ̂)∂xθ + (∇× χ̂)∂yθ] =

2Kn

[

2∂xθ∂yθ − ∂xθ
2∂xθ + ∂yθ

2∂yθ + · · ·
]

. (A13)

As before upon averaging we have, 〈θ3〉> → 3θ<〈θ
2
>〉,

and

Kn〈v̂ ·∇θ〉> = Kn(1−2〈θ2>〉)(2∂xθ<∂yθ<+ · · · ) , (A14)

implying as before that the coupling constant gets renor-
malized as K ′

n = Kn(1 − 2〈θ2>〉). The argument also
applies to the advective coupling Dnv̂ · ∇δρ term in the
density equation, the calculation being entirely analo-
gous. Note that unlike the regular KPZ nonlinearity
|∇θ|2 which is marginally relevant in two spatial dimen-
sions [66], the anisotropic version present here is always
marginally irrelevant due to rotational symmetry. The
usual KPZ nonlinearity is also forbidden in the density
equation as it is not a total divergence and in the phase
equation as it violates parity. A similar term |∇δρ|2 is
also forbidden in both equations for the same reasons.
There are many other anisotropic nonlinearities that also
occur in an equilibrium lyotropic nematic, and hence
such terms will automatically be generated after an iter-
ation of the coarse-graining procedure. Once generated
though, these terms will be subject to the same analysis
done above in subsequent iterations of the renormaliza-
tion group flow. So if we begin with all these higher order
anisotropic nonlinearities being small, they remain so at
least to leading order, flowing to zero for any non-zero
noise.

Appendix B: Renormalization group flow equations

Using a diagrammatic approach, the propagators and
the noise vertex are drawn in Fig. 3 and the list of leading
order interaction vertices as given in Eqs. 33 and 34 are
drawn in Fig. 4 (the cubic vertex ∼ σ∇2δρ2 is not shown
as it turns out to not contribute at lowest order). Upon
including the interactions, the renormalized propagator
GR satisfies the Dyson equation

G−1
R (q, ω) = G−1(q, ω)− Σ(q, ω) , (B1)

where Σ(q, ω) is the interaction “self-energy” given by
the sum of all one-particle irreducible diagrams (1PI).
To first order in the noise variance (O(∆)), only cubic

and quartic vertices contribute to the self-energy. Having
split the fields into slow and fast components (δρ = δρ<+
δρ> and θ = θ< + θ>) and averaging over δρ> and θ>
using the noise, we can write down the corrected linear
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q, ω
Gθθ(q, ω)

q, ω
Gρρ(q, ω)

q, ω
Gθρ(q, ω)

q, ω
Gρθ(q, ω)

q, ω -q, -ω ∆

FIG. 3: The field propagators and noise vertex

couplings as follows

K ′

3 = K3 −
1

2
lim
q→0

lim
ω→0

∂2

∂q2x
Σθθ(q, ω) , (B2)

K ′

1 = K1 −
1

2
lim
q→0

lim
ω→0

∂2

∂q2y
Σθθ(q, ω) , (B3)

λ′ = λ+
1

2
lim
q→0

lim
ω→0

∂2

∂qx∂qy
Σθρ(q, ω) , (B4)

α′ = α+
1

4
lim
q→0

lim
ω→0

∂2

∂qx∂qy
Σρθ(q, ω) , (B5)

D′ + δD′ = D + δD −
1

2
lim
q→0

lim
ω→0

∂2

∂q2x
Σρρ(q, ω) , (B6)

D′ − δD′ = D − δD −
1

2
lim
q→0

lim
ω→0

∂2

∂q2y
Σρρ(q, ω) . (B7)

K3 = K + δK and K1 = K − δK are the bend and
splay elastic constants respectively. The correction to
the noise vertex is given by the sum over bubble diagrams
Πθθ(q, ω),

∆′ = ∆+ lim
q→0

lim
ω→0

Πθθ(q, ω) . (B8)

With this we can proceed to compute the full renormal-
ization group flow equations. After a total of about 20
loop integrals for the self energy and 4 for the noise vertex
corrections, both Σ(q, ω) and Πθθ(q, ω) to lowest order
in wavevector q and at zero frequency (ω = 0) are found
to be

Σρρ(q, ω = 0) =
∆

2πK
ln b

{

−
ακ

K
+ δD

[

1 +
αλ

K(1 +K)
+

(

δK

K

)2
]}

(q2x − q2y) , (B9)

Σθθ(q, ω = 0) =
∆

2πK
ln b

{

−

[

δK2(K3 + 5K2 − 5K − 1) + 4αλK(1 + 3K + 4K2)

2K(1 +K)3

]

q2

+

[

δK + gα
1 + 3K + 4K2

K(1 +K)3
−

2K2ακ

(1 +K)3

]

(q2x − q2y)

}

, (B10)

Σθρ(q, ω = 0) =
∆

2π
ln b

[

−2
λ

K
−

δKκ

2K2
−

2KδDκ

(1 +K)3
+

g

2K2

(

2KδD(1 + 3K + 4K2)

(1 +K)3
− δK

)

+
ακ

4K2(1 +K)3

(

(1 + 4K −K2)(κ− g) +
g(K − 1)(1 + 3K)2 + κ(1 + 5K + 11K2 −K3)

1 +K

)]

qxqy ,

(B11)

Σρθ(q, ω = 0) = −
α∆

2πK
ln b

[

1 +
2(1 +K)2δK2 + 4K(1 +K)αλ+K(1 + 4K)δKδD +K2δD2

2K2(1 +K)2

]

4qxqy , (B12)

Πθθ(q = 0, ω = 0) =
∆2

2π
ln b

[

2
δK2

K3
+ δKα(κ− g)

1 + 2K

K3(1 +K)2
+

α2(g2 + λ2)

K3(1 +K)3
(1 + 3K +K2)

]

. (B13)

As mentioned in the main text, the leading correction to
the diffusion constant D comes from the σ∇2δρ2 term,
contributing only at order O(∆σαδD), which is subdom-
inant to lower order corrections in other terms and is it-
self irrelevant as it involves both α and δD. So we keep
D = 1 fixed by setting z = 2. σ also renormalizes only
rather weakly with the leading vertex correction being
O(∆σ2α2) and hence we don’t worry about it any further
by setting σ = 0. The only other computation left is that
of the vertex correction to g and κ. To lowest order this
involves five diagrams. The vertex itself is constrained
by rotational symmetry and is generally given as

Vθρθ(q1,q2) = −2λ(q21x − q21y)− gq1 · q2 − κ|q2|
2

−γ1(q
2
2x − q22y)− γ2(q1xq2x − q1yq2y)− γ3q2xq2y ,

(B14)

for vanishing outgoing frequencies (ω1,2 = 0) and with q1

and q2 as the outgoing wavevectors in the density and
phase modes (see Fig. 5). The γ1,2,3 couplings are permit-
ted by symmetry and will in general be generated upon
renormalization. These terms are all anisotropic in na-
ture and arise from the density dependence of the Frank
constant anisotropy (γ1δρΓ1θ) or from the KPZ like ad-
vective nonlinearityKnv ·∇θ which when expanded leads
to both γ2(∂xδρ∂xθ − ∂yδρ∂yθ) and γ3∂xθ∂yθ terms.
Using the argument in Appendix A used for all the
anisotropic terms, we conclude γ1,2,3 to all be irrelevant
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q, ω ≡ −2α(q2
x
− q2

y
)

q, ω ≡ −4δDqxqy

q, ω ≡ −
8

3
αqxqy

q, ω ≡ 2δD(q2
x
− q2

y
)

q, ω ≡ −2δK (pxpy + (qx − px) (qy − py))

q, ω ≡ −2λ
(

(qx − px)
2
− (qy − py)

2

)

q, ω ≡
2

3
δK

[

p2
1x

− p2
1y

+ p2
2x

− p2
2y

q, ω ≡ −4λpxpy

p, Ω

p, Ω

p1, Ω1

p2, Ω2

p, Ω

+(q−p1−p2)
2

x
− (q−p1−p 2)

2

y

]

−gp · (q− p)− κ|p|2

FIG. 4: The interaction vertices

q1+q2, ω1 + ω2

q2, ω2

q1, ω1

FIG. 5: The cubic vertex Vθρθ involving the isotropic non-
linearities g and κ. The incoming straight line is a director
fluctuation which decays into a density mode (the wavy line)
with wavevector q1 and another director fluctuation mode
with wavevector q2.

and do not consider them any further. The leading cor-
rection of the cubic vertex gives the recursion relations
for g, κ and λ. Importantly, as required by rotational
invariance, no corrections ∝ |q1|

2 or q1xq1y arise in Vθρθ,
with the corresponding loop integral contributions can-
celling only after summing over all the leading diagrams.
Having already computed the loop correction to λ from
the renormalization of the Gθρ propagator, the two flow

equations must coincide as the the coefficient in the cu-
bic vertex is related to the linear coupling by rotational
symmetry. This requirement will allow us to fix the value
of the yet unknown scale factor ζθ for the slow angle field
θ<. The corrections to g, κ and λ from the vertex are

g′ = g − 4δDλ∆
1

2π
ln b

1 + 3K + 4K2

K(1 +K)3
, (B15)

κ′ = κ− 2δDλ∆
1

2π
ln b

1 + 3K + 4K2

K(1 +K)3
, (B16)

λ′ = λ−
∆

2πK
ln b

[

λ− gδD
1 + 3K + 4K2

2(1 +K)3
+

gδK

4K

+
δDκK2

(1 +K)3
+

δKκ

4K

]

. (B17)

Having integrated out a thin shell of short scale fluctu-
ations (δρ>, θ>), we now rescale back both space and
time (r → rb, t → tbz) along with the slow fields
(δρ< → δρ<b

ζρ and θ< → θ<b
ζθ ) in order to restore

the cutoff back to Λ. Having already set z = 2, writing
ℓ = ln b ≪ 1, we obtain differential recursion relations
for the various coupling constants.

dδD

dℓ
=

1 +K

2
κ̄− δD

λ̄

2
−

∆δD

2πK

[

1 +

(

δK

K

)2
]

, (B18)

dK

dℓ
= K

{

cK λ̄+ dK
∆

4πK

(

δK

K

)2
}

, (B19)

dδK

dℓ
= −

∆

2πK
δK +K

(

−ḡ
cK
2

+ κ̄
K2

(1 +K)2

)

, (B20)

d∆

dℓ
= ∆

{

−2ζθ + (κ̄− ḡ)δK
(1 + 2K)

2K(1 +K)
+

∆

πK

(

δK

K

)2
}

, (B21)
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dλ

dℓ
= λ

(

ζρ − ζθ −
∆

2πK

)

+
g∆

8πK2

(

2δD
KcK
1 +K

− δK

)

−
κ∆

8πK2

(

4δD
K3

(1 +K)3
+ δK

)

, (B22)

dα

dℓ
= α

{

ζθ − ζρ − λ̄−
∆

2πK

[

1 +
δD2

2(1 +K)2
+ δDδK

(1 + 4K)

2K(1 +K)2
+

(

δK

K

)2
]}

, (B23)

dg

dℓ
= gζρ − 2∆δDλ

cK
πK(1 +K)

, (B24)

dκ

dℓ
= κζρ −∆δDλ

cK
πK(1 +K)

. (B25)

In order to simplify the notation we have used

dK =
(K − 1)(1 + 6K +K2)

(1 +K)3
, (B26)

along with cK = (1 + 3K + 4K2)/(1 + K)2 as given
in the main text, and ḡ = αg∆/[πK2(1 + K)] and
κ̄ = ακ∆/[πK2(1 + K)] are defined similar to λ̄. As
mentioned before, comparing the recursion relations for
λ independently obtained from both Eq. B11 and Eq. B17
we obtain ζθ = 0 to lowest order.
One can easily check that δK = δD = g = κ = 0

provides an invariant subspace in {K, λ̄} with the noise
variance ∆ unrenormalized. Looking at small deviations
from this subspace, we linearize the recursion relations
around a particular {K(ℓ), λ̄(ℓ)} trajectory. To linear
order in δK, δD, g and κ, the flow of K,∆ and λ̄ remains
unchanged, so Eqs. 40 and 41 continue to hold even for
small transverse deviations from the invariant submani-
fold. The linearized flow equations are

dδD

dℓ
=

κ̄

2
− δD

[

η(∆) + λ̄

(

KcK
1 +K

+
1

2

)]

, (B27)

dδK

dℓ
= −

cK
2
ḡ +

κ̄K2

(1 +K)2
− δK

(

η(∆) + cK λ̄
)

,

(B28)

dḡ

dℓ
= −λ̄

2∆cK
πK

δD − ḡ
(

η(∆) + bK λ̄
)

, (B29)

dκ̄

dℓ
= −λ̄

∆cK
πK

δD − κ̄
(

η(∆) + bK λ̄
)

. (B30)

Once again bK = 1 + cK(2 + 3K)/(1 + K) and η(∆) =
∆/2πK as given in the main text. We also normalize
the diffusion and elastic anisotropies as δD = δD/(1 +
K) and δK = δK/K. Writing the above equations as
dΦ/dℓ = LΦ where Φ = {δD, δK, ḡ, κ̄}, we treat K,∆
and λ̄ as essentially constant at a given point on the
renormalization flow trajectory. Diagonalizing the linear
matrix L, the corresponding eigenvalues yi (i = 1 to 4)
control the scaling dimensions and (ir)relevance of the
various couplings. The first two eigenvalues are

y1 = −(η(∆) + bK λ̄) , (B31)

y2 = −(η(∆) + cK λ̄) , (B32)

both of which are always negative for λ̄ > 0. We will
primarily focus only on the first quadrant of the {K, λ̄}

plane, though the basin of stability of the line of fixed
points on the K-axis, extends to a small region of λ̄ < 0,
which becomes vanishingly small for large K and small
∆. Outside this region (i.e. for λ̄ < 0), the flow is per-
turbatively unstable even within the {K, λ̄} plane, and
we don’t address it any further. As both y1,2 < 0, both
these directions are stable and flow to zero at a fixed
point with finite K and ∆. The other two eigenvalues of
L are a complex conjugate pair,

y3,4 = −η(∆)−A0
λ̄

2
±

1

2

√

λ̄2A2
1 − λ̄

2cK∆

πK
. (B33)

A0,1 = bK ± [KcK/(1 +K) + 1/2] are complicated func-
tions of K, that remain bounded for all 0 ≤ K ≤ ∞.
Importantly A0 > 0 for all K ≥ 0 and hence for small

λ̄, Re(y3,4) < 0 and Im(y3,4) = ±
√

η(∆)cK λ̄ + O(λ̄).
Even for larger λ̄, one can show that Re(y3) < 0 for all
λ̄ > 0 as long as K > −1/3. Hence in these directions
as well, the flow is stable, though oscillatory. With this
we conclude that the {K, λ̄} subspace is linearly stable
and attracting in the top right quadrant, with deviations
from it being irrelevant. Of course, all of this is only a
perturbatively valid statement and for larger λ̄ > 0, one
could have a phase transition to a strong “activity” fixed
point. Such a scenario though is currently inaccessible
within a perturbative treatment.
Though our analysis was performed strictly in two di-

mensions, for d = 2 + ε, we can also formally extend the
recursion relations for small ε by just accounting for the
dimensional change in couplings while keeping the loop
corrections the same as for d = 2. Doing so for the simple
case when δK = δD = g = κ = 0, we find

dT

dℓ
= −T (ε+ cK λ̄) , (B34)

dλ̄

dℓ
= −λ̄(ε+ T + bK λ̄) , (B35)

where T = ∆/πK is just a scaled noise variance. For
ε > 0, we immediately find that both the effective noise
and the activity are driven to zero very quickly, making
all the nonlinearities irrelevant. For ε < 0, there is a
fixed point in (T, λ̄) of O(ε), but the only physical di-
mension below two is d = 1, in which a nematic doesn’t
break a continuous symmetry. So above d = 2, activity
is always irrelevant (dangerously though as it still causes
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large number fluctuations) and we recover the linearized description of an active nematic.
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