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We perform statistical mechanics calculations to analyze the global phase diagram of a fully-
connected version of a Maier-Saupe-Zwanzig lattice model with the inclusion of couplings to an
elastic strain field. We point out the presence of uniaxial and biaxial nematic structures, depending
on temperature T and on the applied stress σ. Under uniaxial extensive tension, applied stress
favors uniaxial orientation, and we obtain a first-order boundary, along which there is a coexistence
of two uniaxial paranematic phases, and which ends at a simple critical point. Under uniaxial
compressive tension, stress favors biaxial orientation; for small values of the coupling parameters,
the first-order boundary ends at a tricritical point, beyond which there is a continuous transition
between a paranematic and a biaxially ordered structure. For some representative choices of the
model parameters, we obtain a number of analytic results, including the location of critical and
tricritical points and the line of stability of the biaxial phase.

I. INTRODUCTION

Nematic elastomers are an interesting class of soft-
matter systems, with an interplay of the effects of ne-
matic order and of elastic properties of rubber materials
[1]. At fixed and sufficiently low temperatures, elastomer
systems display stress-strain curves with a plateau that
resembles a liquid-gas transition. Since the pioneering
work of de Gennes and collaborators [2–4], the couplings
between elastic and orientational degrees of freedom have
been recognized as the essential ingredient to account for
the behavior of elastomers. More recently, it has been ar-
gued that it is also important to introduce quenched ran-
dom fields, which are supposed to smooth the first-order
transition, and which are related to the phase history of
the cross-links of the polymer network [5–11]. In a re-
cent work, some of us performed mean-field calculations
for a basic Maier-Saupe lattice model, which was sup-
plemented by the addition of an elastic strain field and
of random fields [12, 13]. At the qualitative level, it has
been possible to account for many of the experimental
properties of uniaxial nematic elastomers. We were then
motivated to revisit this elementary lattice model, with
the addition of a simple form of elastic coupling, and with
no random fields. The fully-connected version of this
model system, as we define in Section 2, is amenable to
detailed and standard statistical mechanics calculations
[14, 15]. We show that the introduction of a coupling to
an external strain field is sufficient to provide a mecha-
nism to change and depress the standard first-order ne-
matic transition, and make contact with the plateaux in
the stress-strain curves of nematic elastomers. In Sec-
tion 3, we obtain a number of analytic results for the
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stress-temperature phase diagram of some simple repre-
sentative cases. We show the existence of a rich behavior,
including critical and tricritical points and the continu-
ous transition to a biaxial nematic structure.

As in the original phenomenological treatment of de
Gennes and collaborators [4], the external stress in the
elastic nematic model system plays a similar role as an
applied magnetic (electric) field in the corresponding uni-
axial nematic system. A magnetic field couples to the
nematic order via a constant χa that can be either posi-
tive or negative [3]. Positive values of this susceptibility
(χa > 0) correspond to positive tensions (extension) in
the elastic model. In the phase diagrams, either in terms
of stress or in terms of fields and temperature, there is a
line of first-order transitions that ends at a simple critical
point [16]. Negative values of the susceptibility (χa < 0)
lead to a field-induced biaxial phase.

It is interesting to remark that Ye, Lubensky and
coworkers have considered a minimal model [17, 18], at
the phenomenological level, which provides a robust de-
scription of the elastic semisoft response of nematic elas-
tomers. In addition to the uniaxial strain field, these
authors also add a transverse strain component, which
might as well be produced in the cross-linking Küpfer-
Finkelmann procedure of preparing elastomer samples
[19]. They point out that this minimal model is analogous
to the formulation of a nematic system in the presence
of crossed electric and magnetic field, which also leads to
a rich phase diagram, with critical and tricritical behav-
ior, and the possibility of existence of a biaxial phase. In
the present work, however, we consider a minimal lattice
model, and keep the restriction to an elastic strain field
along the uniaxial direction.

In the elastic model of the present work, negative ten-
sions (compression) may lead to a stress-induced biaxial
phase. In figure 1a, for sufficiently weak and typical val-
ues of the coupling parameters, we draw a sketch of a rep-
resentative phase diagram of a uniaxial nematic system
in terms of applied stress (along the uniaxial direction)
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FIG. 1. Sketch of the stress-temperature phase diagram of a
uniaxial nematic system for small (a) and large (b) values of
the coupling parameters. Solid and dashed lines correspond
to first and second-order transitions. We indicate critical and
tricritical points.

and temperature. For larger values of the coupling pa-
rameters, the tricritical point collapses at the first-order
boundary, and the topology of this diagram may be dras-
tically changed (figure 1b).

II. THE ELASTIC MAIER-SAUPE MODEL

In the Maier-Saupe approach to the nematic transi-
tions, we consider a lattice of N sites and write the en-
ergy

HMS = −A
∑
(i,j)

∑
µ,ν=x,y,z

Sµνi Sµνj , (1)

where A > 0 is an interaction parameter, the first sum is
over nearest-neighbor pairs of lattice sites, and the local
“quadrupolar” degrees of freedom are given by

Sµνi =
1

2
(3nµi n

ν
i − δµν) , (2)

where −→n i is the unit director associated with a nemato-
genic molecule at site i = 1, 2, ..., N , and δµν is the Kro-

necker delta.
In the mean-field calculations of this work, we assume a

fully-connected version of this Maier-Saupe model, given
by the energy

EMS = −A
N

∑
1≤i<j≤N

∑
µ,ν=x,y,z

Sµνi Sµνj , (3)

where the first sum is over all pairs of lattice sites, and the
parameter A is suitably scaled to preserve the existence
of the thermodynamic limit. We further assume that the
local directors −→n i are restricted to the Cartesian axes,

−→n i =

 (±1, 0, 0) ,
(0,±1, 0) ,
(0, 0,±1) ,

(4)

which leads to a three-state statistical model. This choice
of discrete orientational degrees of freedom, which resem-
bles an approximation used by Zwanzig to treat the On-
sager model for the nematic transition, leads to a prob-
lem that is amenable to quite simple statistical-mechanics
calculations (and to simple simulations as well). More-
over, it is known that this elementary MSZ model leads
to essentially the same qualitative results as obtained
from slightly more involved calculations for the origi-
nal Maier-Saupe model with a continuous distribution
of orientational degrees of freedom [15, 20]. We should
keep in mind, however, that the continuous symmetry
may be strictly necessary to describe some special fea-
tures of these systems, as the soft transitions observed
in liquid-crystal elastomers [13]. It is possible that the
soft/semisoft response of nematic elastomers depletes the
biaxial nematic state.

According to the notation of our previous article [12],
the energy of a microscopic configuration of the elastic
Maier-Saupe lattice model is written as a sum of three
terms,

E = EMS + Eelastic + Ecoupling, (5)

where EMS is given by eq. (3). Here we ignore
the quenched random fields originating in the aligning
stresses that are generated at the time of cross-linking.
Hence, positive stresses lead to a nematic director that
is aligned with the axis of deformation.

The theory of rubber elasticity, as developed by
Warner and Terentjev [1], leads to the elastic free energy
per site of a lattice polymer,

frub =
1

2
µs

(
λ2 +

2

λ

)
, (6)

where µs > 0 is a linear shear modulus and λ is the distor-
tion factor of a uniaxial, volume-preserving, deformation.
In order to keep the calculations as simple as possible,
and restrict the analysis to an elementary model that is
still capable of qualitatively accounting for the effects of
strain, we expand frub about the minimum, λ = 1, and
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keep quadratic terms only. We then discard an additive
term, (3/2)µsN , and write the elastic energy,

Eelastic =
3

2
µsN (λ− 1)

2
. (7)

We now discuss the couplings between orientational
degrees of freedom and a uniform external strain along
a certain direction. According to previous work [12], we
introduce a global tensor,

Mµν =
1

2
(3mµmν − δµν) , (8)

which characterizes a global uniaxial deformation, where
the stress is applied along the unit vector −→m (which is
distinct from the local nematic directors). If we use the
Warner-Terentjev theory [1], and keep the dominant con-
tribution near the minimum λ = 1, the coupling term of
the energy is written as

Ecoupling = −B
N∑
i=1

∑
µ,ν

MµνS
µν
i , (9)

with

B = µsδ (λ− 1) , (10)

where the parameter δ gauges the strain anisotropy (and
is usually assumed to be positive).

We emphasize that rubber elasticity is a primarily
entropic phenomenon. Polymer chains optimally ar-
range themselves according to high-entropy configura-
tions instead of configurations that lower an interatomic
or molecular potential. Therefore, the elastic and cou-
pling terms in equation (5) come from a degeneracy fac-
tor associated with the configurations of the polymer net-
work, and should be regarded as effective energy terms
[12, 13]. Also, the linear chain modulus is usually taken
as proportional to temperature, so in this work we as-
sume that

µs = nskBT, (11)

where T is the temperature, kB is the Boltzmann con-
stant, and ns is the relative number of polymer strands.

The thermodynamic properties of this elastic MSZ
model can be obtained from a canonical partition func-
tion in the stress ensemble, which is given by

Y = Y (T, σ,N, {Mµν}) =

∫
dλ exp [Nβσλ]×

×
∑
{−→n i}

exp [−β (EMS + Eelastic + Ecoupling)] , (12)

where β = 1/kBT , σ is the global engineering stress, and
the sum is over all configurations of the local nematic
directors. Taking into account equations (3), (7), and (9),

and discarding irrelevant terms in the thermodynamic
limit, we write

Y =

∫
dλ exp

[
Nβσ − 3

2
Nβµs −

3

2
Nβµs (λ− 1)

2

]
×
∑
{−→n i}

exp [−βEeff ] , (13)

with

Eeff = − A

2N

∑
µ,ν

(
N∑
i=1

Sµνi

)2

−B
N∑
i=1

∑
µ,ν

MµνS
µν
i , (14)

where A > 0 is a constant dimensional parameter, and
the expression of B is given by eqs. (10) and (11),

B = nskBTδ (λ− 1) . (15)

We now resort to well-known techniques of statistical
mechanics. If we use a set of Gaussian identities to deal
with the quadratic terms, and change to more convenient
variables, it is straightforward to write∑

{−→n i}
exp [−βEeff ] =

∫
[dQµν ]

× exp

[
−
∑
µ,ν

βAN

2
Q2
µν

]
(Z1)

N
, (16)

with the short-hand notation∫
[dQµν ] (...) =

∏
µ,ν

∫ (
βAN

2π

)1/2

dQµν (...) , (17)

where Z1 is a single-particle partition function,

Z1 =
∑
−→n

exp

{
β
∑
µ,ν

[AQµν +BMµν ]Sµν

}
. (18)

Performing the sum over the nematic directors according
to the six possibilities of eq. (4), we finally have

Z1 = 2 exp

[
−βA

2

∑
µ

Qµµ

]∑
µ

exp

[
3

2
βAQµµ

+
3

2
βBMµµ

]
. (19)

We now use these expressions to write

Y =

∫
dλ

∫
[dQµν ] exp [−βNgf ] , (20)

where the free-energy functional is given by

gf = −σλ+
3

2
µs +

3

2
µs (λ− 1)

2
+

1

2
A
∑
µ,ν

Q2
µν

+
1

2
A
∑
µ

Qµµ −
1

β
ln 2− 1

β
ln

{∑
µ

exp

[
3

2
βAQµµ +

3

2
βBMµµ

]}
. (21)
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It should be remarked that gf is a function of temper-
ature T , global external stress σ, and the components
of the tensor Mµν , as well as of the strain distortion λ
and the components of the tensor order parameter Qµν .
The thermodynamic free energy per site, g = g (T, σ),
comes from a saddle-point calculation, which amounts to
a minimization of gf with respect to λ and {Qµν},

g = g (T, σ) = min
λ,{Qµν}

gf (T, σ;λ, {Qµν}) . (22)

From the saddle-point equations, we have

Qµµ =
1

2

(
3eµ∑
ν eν
− 1

)
, (23)

where

eµ = exp

[
3

2
βAQµµ +

9

4
βBm2

µ

]
, (24)

and mµ is a component of the unit vector −→m associated
with the global tensor Mµν . It is easy to see that Qµν = 0
for µ 6= ν, and that Qµν is a traceless tensor,∑

µ

Qµµ = 0. (25)

The derivative with respect to λ leads to the remaining
saddle-point equation,

− σ

µs
+ 3 (λ− 1)− 3

2
δ
∑
µ

m2
µQµµ = 0. (26)

At this point the problem is formulated in quite gen-
eral terms. We use equations (23) and (26) for obtain-
ing the nematic order parameter Qµµ and the distortion
λ in terms of temperature T , external stress σ, global
strain Mµν , and the parameters of the model. If there
are multiple solutions, we have to search for the abso-
lute minima of the functional gf (T, σ, {Mµν} ; λ, {Qµν}).
Several choices of parameters and particular cases can be
analyzed rather easily.

III. CALCULATIONS FOR SOME SPECIAL
CASES

We now use the standard representation of the nematic
tensor order parameter,

Q =

 − 1
2 (S + η) 0 0

0 − 1
2 (S − η) 0

0 0 +S

 . (27)

Also, we assume that the global external strain is applied
along the z direction,

−→m = (0, 0, 1) . (28)

From the saddle-point equations, (23) and (26), it is
straightforward to write the mean-field equations of state

S = 1− 3

2 + exp (9β (B + S)/4) sech(3β η/4)
, (29)

η =
3 tanh (3β η/4)

2 + exp (9β (B + S)/4) sech (3β η/4)
, (30)

and

σ

µs
= 3 (λ− 1)− 3

2
δS, (31)

where B is given by equation (15), and we are setting A =
1 to simplify the notation. The free energy functional can
be written as

gf = −σλ+
3

2
µs +

3

2
µs (λ− 1)

2
+

1

2

(
3

2
S2 +

1

2
η2
)

− 1

β
ln 2 +

3

4
µsδ (λ− 1)−− 1

β
ln

[
2 exp

(
−3

4
βS

)
× cosh

(
3

4
βη

)
+ exp

(
3

2
βS +

9

4
βB

)]
. (32)

From equation (31), we have

(λ− 1) =
σ

3µs
+

1

2
δS. (33)

Therefore, the coupling parameter B to the strain field
is given by

B = µsδ (λ− 1) =
1

3
σδ +

1

2
µsδ

2S, (34)

so that the strength of this coupling depends on the
stress. For δ > 0 and σ sufficiently large, the system
prefers to align uniaxially (there is a stable uniaxial so-
lution, S 6= 0 and η = 0). For negative and suffi-
ciently large values of the stress σ, with positive strain
anisotropy, δ > 0, we anticipate the possibility of a biax-
ial arrangement (S 6= 0 and η 6= 0).

A. Uniaxial transitions

In zero stress, σ = 0, we have B = µsδ
2S/2, so that

S = 0 (with η = 0) is a solution of the saddle point
equations. At low temperatures, however, this fully dis-
ordered solution is unstable, and there appears a thermo-
dynamic stable, uniaxially ordered solution, S 6= 0 and
η = 0. For σ 6= 0, however, the solution S = 0 is no
longer acceptable.

In the stress-temperature phase diagram, assuming
δ > 0, we anticipate the existence of a line of coexistence
of two distinct and uniaxially ordered phases. Along this
first-order line, as the temperature increases, there is a
decrease of the difference ∆S between the scalar order
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parameters associated with the coexisting phases, which
finally vanishes at a simple critical point. This depres-
sion of ∆S is one of the hallmarks of the behavior of
elastomers [1]. Given the parameters of the model, we
can draw a number of graphs of the solution S versus
temperature T for various values of the external stress σ
(see figures in the article by Liarte, Yokoi, and Salinas
[12]). Also, we can draw graphs of stress σ versus strain
e = λ − 1, at constant temperature, which are shown
to display characteristic plateaux, as it is experimentally
observed in nematic elastomers.

The formulation of this problem is so simple that we
can resort to an earlier analysis for the field-behavior of
the Landau expansion [21] in order to analytically locate
the critical point in the σ − T phase diagram. Accord-
ing to the usual assumptions of the mean-field approach,
the scalar order parameter S in the neighborhood of the
critical point may be written as

S = Sc + s, (35)

where Sc is the value of S at the critical point and s is
a small quantity. We then insert this form of S in the
equation of state (with η = 0, since there is no biaxial
phase), and obtain the expansion

a+ b s+ c s2 + c s3 + ... = 0, (36)

where the coefficients, a, b, ..., are functions of σ, T , and
the parameters of the model. At the critical point, that
is, with δσ = δσc and T = Tc, we should have

a = b = c = 0; d 6= 0. (37)

From these equations, we obtain the critical parameters,
Sc, σc and Tc.

We now sketch these calculations. From the equation
of state, with η = 0, we write

S =
−1 + exp (M)

2 + exp (M)
, (38)

where

M =
9

4
β

[
1 +

1

2
nsTδ

2

]
S +

3

4
βδσ, (39)

and we remark that we are assuming a positive
anisotropy, δ > 0, and the number of polymeric strands
per molecule, ns > 0, is also a characteristic positive
parameter. We then have the equation of state

9

4
β

[
1 +

1

2
nsTδ

2

]
S +

3

4
βδσ = ln

1 + 2S

1− S
. (40)

Inserting the form of S, given by equation (35), and ex-
panding in powers of ∆S, we have

9

4
β

[
1 +

1

2
nsTδ

2

]
Sc +

9

4
β

[
1 +

1

2
nsTδ

2

]
s+

3

4
βδσ

= ln
1 + 2Sc
1− Sc

+

[
2

1 + 2Sc
+

1

1− Sc

]
s+

+
1

2

[
− 4

(1 + 2Sc)
2 +

1

(1− Sc)2

]
s2 +O

(
s3
)
. (41)

At the critical point, we write

a =
9

4
βc

[
1 +

1

2
nsTcδ

2

]
Sc +

3

4
βcδσc

− ln
1 + 2Sc
1− Sc

= 0, (42)

b =
9

4
βc

[
1 +

1

2
nsTcδ

2

]
−
[

2

1 + 2Sc
+

1

1− Sc

]
= 0 (43)

and

c = −1

2

4

(1 + 2Sc)
2 +

1

2

1

(1− Sc)2
= 0. (44)

From eq. (44), we have

Sc =
1

4
. (45)

We then use eq. (43), and write the critical temperature,

Tc =
27

32

[
1− 27

64
nsδ

2

]−1
. (46)

This critical temperature increases with the parameter
ω, given by

ω = nsδ
2,

which gauges the strength of the coupling, and diverges
for ω → 64/27 = 2.3703..., which is an indication that
the contact with the experimental situation is restricted
to relatively small values of ω. We can also write an
expression for the stress at the critical point,

δσc =
4

3
Tc

[
ln 2− 2

3

]
= (0.03531...)Tc,

which is a linear function of Tc. We remark that this is a
positive and relatively small stress field, and that it does
not make physical sense for ω > 64/27.

As it is pointed out by Warner and Terentjev [1], the
engineering shear modulus of polymeric chains, at room
temperatures, is of the order of 104 to 106 GPa, which is
at least five orders of magnitude smaller than the corre-
sponding shear modulus of usual solids. Therefore, tak-
ing into account that 0 < δ < 1, at least for prolate
elastomers, we claim that physically realistic and acces-
sible results will be restricted to quite small values of the
parameter ω = nsδ

2. In some recent numerical simula-
tions for a uniaxial nematic elastomer on a lattice, Pasini
and coworkers [22] assumed that ns ≈ 0.3. In the next
Section, we use a typical small value, ω = 0.2, to draw
some graphs to illustrate our main findings.

It is certainly interesting to make contact with the phe-
nomenological expansions of the free energy, which have
been written by several authors, as Selinger, Jeon, and
Ratna [7, 8]. Let us then consider the special uniaxial
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situation, and write an expansion of the functional gf ,
given by eq. (32), with η = 0, as a power series in the
scalar order parameter,

gf = gf (0) +A1 S +A2 S
2 +A3 S

3 + ...., (47)

where the coefficients A1, A2, ..., depend on the ther-
modynamic field variables, T and σ, and on the model
parameters. It is straightforward to write the expressions
of these coefficients. For example, A1 is given by

A1 =
3

8
µsδ

2 − 3

2

−1 + exp
(
3
4δσ

) (
1 + 3

4µsδ
2
)

2 + exp
(
3
4βδσ

) . (48)

From this equation, we see that A1 = 0 for σ = 0, re-
gardless of the value of the distortion, which confirms the
existence of a disordered phase at sufficiently high tem-
peratures. It is not difficult to relate the coefficients of
the Landau expansion (47) with the corresponding co-
efficients of eq. (36). In particular, A3 6= 0 indicates
the characteristic first-order nature of the nematic tran-
sition. Also, we can use the Landau expansion to check
and confirm the location of the critical point in the σ−T
phase diagram.

B. Biaxial transitions

If the external stress is sufficiently large, and negative,
with the usual positive strain anisotropy, δ > 0, the ne-
matic directors tend to be parallel to the x − y planes,
which gives rise to biaxial ordering. In the σ − T phase
diagram, we then predict the existence of a line of second
order transitions to a low-temperature biaxial phase.

This second-order line in the σ−T plane can be located
from an analysis of the general equations of state for small
values of the order parameter η. Taking into account
equations (29), (30), and (31), we write the expansions

S = S0 + S2η
2 +O

(
η4
)
, (49)

and

1 = E1 + E2η
2 +O

(
η4
)
, (50)

where the coefficients S0, S2, E1, E2, ...., depend on
stress, temperature, and the parameters of the model
system.

The line of stability of the biaxial solution, η2 6= 0,
comes from the equation

1 = E1, (51)

which leads to the expressions

9

4
β − 2 =

2S0 + 1

1− S0
, (52)

and

2S0 + 1

1− S0
= exp

[
9

4
βS0 +

3

4
βδσ +

9

8
nsδ

2S0

]
, (53)

where we have set A = 1 and assumed that the shear
modulus depends linearly on temperature. It is then
straightforward to obtain the limit of stability of the bi-
axial solution,

(σδ)crit =
4T

3
ln

(
9

4T
− 2

)
−
(

1 +
1

2
nsδ

2T

)
× (3− 4T ) . (54)

At this line, we have η = 0 and S = S0, with

S0 = 1− 4T

3
. (55)

Note the asymptotic value σδ → −∞ for T → 9/8 =
1.125.

We now look at the condition E2 = 0, which is associ-
ated with a quartic term of a Landau expansion, so that
the second-order biaxial transition is unstable for E2 < 0.
In the σ − T phase diagram, the quartic line E2 = 0 is
given by

(δσ)stab =
4T

3
ln

[(
1− 3

8T

)
1(

1 + 1
2nsδ

2T
)]

−
(

1 +
1

2
nsδ

2T

)
(3− 4T ) . (56)

Conditions E1 = 1 and E2 = 0, which correspond to the
intersection of curves (σδ)crit and (δσ)stab versus temper-
ature, determine the location of a tricritical point, which
comes from the equation

9− 8T =
8T − 3

2
(
1 + 1

2nsδ
2T
) , (57)

so that we have the physical solution

Ttri =
9ω − 24 +

√
576 + 240ω + 81ω2

16ω
(58)

where ω = nsδ
2.

In figure 2, we draw (σδ)crit and (σδ)stab as a function
of temperature for ω = nsδ

2 = 0.2, which is a typi-
cal small value of the parameter ω. The intersection of
the critical line (E1 = 1, green) with the limit of sta-
bility of the biaxial solution (E2 = 0; blue, dot-dashed)
defines a tricritical point. A number of calculations [23–
25], including our own work for the Maier-Saupe-Zwanzig
lattice model [16], indicate that the qualitative features
of the stress-temperature phase diagram, for sufficiently
small values of the coupling ω, are also present in the
field-temperature phase diagram of a uniaxial nematic
system.

In figure 1a, we have drawn the stress-temperature
phase diagram for sufficiently small values of the coupling
ω. As this coupling parameter increases, the triple and
tricritical points approach each other, until they coalesce
at ω = ωtop. We can describe this topology change by
considering the free energy, given by eq. (32), as a func-
tion of S, at the tricritical point. In figure 3, we show a
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FIG. 2. Critical line (E1 = 1, green) of the biaxial solution,
and limit of stability of the biaxial solution (E2 = 0; blue,
dot-dashed) for a typical paramater value, ω = nsδ

2 = 0.2.
The intersection defines the tricritical point.
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FIG. 3. Free energy as a function of the nematic order param-
eter S at the tricritical point, for ω between 0.1 (top curve)
and 0.58 (bottom curve). The vertical axis is shifted so that
g(S0) = 0.

plot of S versus the free energy g, for ω between 0.1 (top
curve) and 0.58 (bottom curve), with the vertical axis
shifted so that g(S0) = gtri = 0. Note that the solution
S = S0 in eq. (55) becomes metastable at the threshold
coupling ω = ωtop. The value of the threshold coupling
ωtop comes from the solutions of equations g(S) = g(S0)
and the equation of state (38), for S (6= S0) and ω, at
the tricritical point. Our numerical calculations yield
ωtop ≈ 0.59 and Stop ≈ 0.72. For ω > ωtop, the stress-
temperature phase diagram consists of just a first and a
second-order transition lines. The first-order transition
ends at a simple critical point, and the second-order crit-
ical line ends at this first-order border (see (figure 1b)).

The existence of a biaxial phase as well as the asymp-
totic limit of the second-order transition to a paranematic
region can be easily checked in the infinite stress limit.
From the equations of state, for σδ → −∞, with T 6= 0,

we obtain the limiting values

S →
− exp

(
− 3

4βS
)

cosh
(
3
4βη

)
2 exp

(
− 3

4βS
)

cosh
(
3
4βη

) = −1

2
(59)

and

η →
3 exp

(
− 3

4βS
)

sinh
(
3
4βη

)
2 exp

(
− 3

4βS
)

cosh
(
3
4βη

) =
3

2
tanh

(
3

4
βη

)
. (60)

This second equation already indicates the characteristic
up-down symmetry of the biaxial phase in this discrete
model system. There is a second order transition at the
temperature Tc = 9/8 = 1.125, which is the previously
found asymptotic value of the critical temperature. Using
the standard notation for the nematic order parameter,
as in equation (27), we have

Q =

 − 1
2 (S + η) 0 0

0 − 1
2 (S − η) 0

0 0 S


=

 1
4 −

1
2η 0 0

0 1
4 + 1

2η 0
0 0 − 1

2

 , (61)

which is a biaxial tensor except at the trivial limits η = 0
(at the second-order transition) and η = ±3/2 (at the
ground state).

IV. CONCLUSIONS

We have analyzed the global phase diagram of a
fully-connected version of a Maier-Saupe-Zwanzig lattice
model with the inclusion of couplings to an elastic strain
field. This is perhaps the simplest model system to be
amenable to standard statistical mechanics calculations
to investigate elastic effects on a nematic phase transi-
tion. We show the presence of uniaxial and biaxial ne-
matic structures, depending on temperature T and on the
applied stress σ. If the applied stress favors uniaxial ori-
entation, we obtain a first-order boundary, along which
there is a coexistence of two uniaxial nematic phases, and
which ends at a simple critical point. We locate this criti-
cal point in terms of the model parameters. This picture
is in qualitative agreement with the experimental find-
ings for the behavior of the nematic order parameter of
elastomers in a stress field. However, in the presence of
a compressive stress, which favors biaxial orientation, we
show the existence of a biaxially ordered region. Depend-
ing on the strength of the couplings, there is a first-order
boundary, but it ends at a tricritical point, beyond which
there is a continuous transition to a biaxially ordered
structure. We point out the analogy with the behavior
of a nematic system in the presence of an applied mag-
netic (electric) field, depending on the strength of the
field and on the sign of the anisotropy. Some of our an-
alytic results, for the critical and tricritical points, for
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example, may turn out to be a helpful guide to experi-
mental work. In the future, we plan to perform Monte
Carlo simulations to make contact with published numer-
ical work [22], and to investigate the persistence of these
qualitative results in a scenario of short-range interac-
tions.
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