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Confining a liquid crystal imposes topological constraints on the orientational order, allowing
global control of equilibrium systems by manipulation of anchoring boundary conditions. In this
article, we investigate whether a similar strategy allows control of active liquid crystals. We study a
hydrodynamic model of an extensile active nematic confined in containers, with different anchoring
conditions that impose different net topological charges on the nematic director. We show that the
dynamics are controlled by a complex interplay between topological defects in the director and their
induced vortical flows. We find three distinct states by varying confinement and the strength of
the active stress: a topologically minimal state, a circulating defect state, and a turbulent state.
In contrast to equilibrium systems, we find that anchoring conditions are screened by the active
flow, preserving system behavior across different topological constraints. This observation identifies
a fundamental difference between active and equilibrium materials.

I. INTRODUCTION

Boundary conditions and topological constraints en-
able long-ranged control over the structural order of equi-
librium (passive) liquid crystal systems. This under-
standing has led to numerous practical applications, most
notably liquid crystal display devices and more recently
self-assembly of colloids [1–4]. A similar potential should
exist in active liquid crystal systems, which are collec-
tions of rodlike particles continuously driven away from
equilibrium by energy input at the scale of the particles
[5–7]. Indeed, experiments and theory have shown that
introducing boundaries into active systems can generate
system-spanning effects [8–21]. However, in contrast to
equilibrium materials, the constituent units of an active
material generate hydrodynamic flows that can couple
to or compete with the structural order and topological
constraints imposed by a boundary. It is unclear how
the interplay between flow and boundary-imposed order
controls the emergent spatiotemporal behaviors of active
materials. This limitation prevents rational design of ac-
tive devices that might be used, for example, to extract
work [22, 23] or drive assembly.

In this article we theoretically study the interplay be-
tween the topological and hydrodynamic aspects of con-
finement on a class of active materials, extensile ac-
tive nematics. While previous numerical studies of con-
fined active nematics have led to important insights,
[12, 15, 17, 18, 24], the dependence of their dynamics
on container boundary conditions has not yet been stud-
ied. Here, we investigate active nematics under circular
confinement in containers with four different anchoring
conditions, which lead to three different topological con-
straints on the enclosed nematic director.

Remarkably, in contrast to the case of passive nemat-
ics, we find that topological constraints weakly impact
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the structure of active flows. In all containers, the in-
terplay between topological defects, their self-generated
flows and boundary constraints leads to a rich, but sim-
ilar, set of spatio-temporal dynamics. As confinement is
increased or active stress strength decreased, the system
transitions from a turbulent state to a static configura-
tion resembling a confined passive nematic. In between,
the system exhibits a unique dynamical steady state char-
acterized by a pair of co-rotating + 1

2 defects which un-

dergo spontaneous and continuous flow, with − 1
2 defects

relegated to the boundary. This insensitivity to topolog-
ical constraints distinguishes active from passive liquid
crystals.

(A)                                      (B)

FIG. 1. (A and B) Fluorescence microscopy images of the
kinesin-microtubule system described in the text that moti-
vate our theoretical investigation, with microtubules fluores-
cently labeled and confined to SU8 holes with radii of (A)
50µm (see movie S1) and (B) 250µm (movie S2). Defects are
labeled with magenta arrows (+ 1

2
) and blue points with three

spokes (− 1
2
).

II. MODEL

Our study is motivated by experiments on a widely
studied model active nematic system comprising micro-
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FIG. 2. (A) Director and order (top), and vorticity and
streamlines (bottom) corresponding to the three dynamical
steady states observed in the FEM simulations: (i) dipolar
state (DS, movie S3), (ii) circulating state (CS, movie S4)
and (iii) turbulent state (TS, movie S5). Results are shown
for parallel anchoring. (B) Time-averaged, excess defect den-
sity ρ∗Σ = (NΣ − 2) /πR2 (where NΣ is the total number of
± 1

2
defects) as a function of disk radius R and active length

scale α−1/2[15, 25, 26]. We subtract 2 to offset by the number
of topologically required + 1

2
defects. The three cases shown

in (A) are indicated with white circles. The inset of (B) plots
the threshold activities for the transitions from DS to CS (α†)
and CS to TS (α∗) as a function of R−2.

tubule bundles driven by ATP-powered kinesin motor
proteins [27–30]. Recently this system has been stud-
ied under hydrodynamic and topological confinement by
placing the suspension in microfoabricated SU8 wells that
are O (100µm) in diameter and enforce parallel anchor-
ing of microtubules. Examples of configurations observed
in these experiments are shown in FIG. 1 and the cor-
responding dynamics are shown in movies S1 and S2; a
future work will explore the experimental system in more
detail.

As a minimal representation of this system, we
use a single-fluid continuum model whose state is de-

scribed by the dimensionless nematic order tensor Q =
sρ [n⊗ n− (1/2) I] and fluid flow field u. Q describes
both the local orientation n and degree of order s of the
nematic and is scaled by the nematic density ρ such that

(ρs =
√

2 Tr Q2). The coupled dynamics are given by

∂tQ +∇ · (uQ) = (QΩ−ΩQ) + λEτ + γ−1H (1)

Kinematic terms and free-energy relaxation both con-
tribute to the dynamics of Q. The kinematic terms de-
pend on the local fluid flow velocity and gradients, with
Ωij = 1

2 (∂iuj − ∂jui) as the antisymmetric vorticity ten-

sor and Eij = 1
2 (∂iuj + ∂jui) as the symmetric strain

rate tensor. The operation AT denotes the traceless ver-
sion of a second order tensor Aτij = Aij − 1

2δijAkk. The
relaxational terms are proportional to variations of the
system free energy, with Hij = −δF/δQij and γ−1 as
the dissipation rate. The total free energy of the system
is given by F = FLDG + FND where the first term

FLDG =

∫
Ω

d2r

{
C

(
−β1

2
Tr
(
Q2
)

+
β2

4
Tr
(
Q2
)2)

+
1

2
L1 |∇Q|2 +

1

2
L2 (∇ ·Q) · (∇ ·Q)

}
, (2)

is the bulk Landau-deGennes free energy [31]. The
dimensionless functions β1 (ρ) = ρ − 1 and β2 (ρ) =
(ρ+ 1) /ρ2 control the transition from an isotropic fluid
(ρ < 1) to a nematic phase (ρ > 1); in this work we set
ρ = 1.6 to focus on the nematic phase far away from the
phase transition. The second free energy term

FND =

∮
∂Ω

dr
1

2
EA Tr

(
(Q−W)

2
)
, (3)

is the Nobili-Durand boundary anchoring energy [32]
with the director and order along the boundary given
by the tensor W; a similar form of the anchoring en-
ergy has been used previously in the study of active
nematic suspensions [33]. For example, parallel an-
choring on a circular boundary with boundary tangent
t (θ) = {− sin (θ), cos (θ)} gives W = s∗ρ [t⊗ t− (1/2) I]

where s∗ =
√

2 is the degree of order associated with a
nematic in the limit ρ → ∞ [34]. The gradient descent
dynamics are therefore given by

γ−1Hij = Dr (β1 − β2QklQlk)Qij + 2DE∂k∂kQij

−DA (Qij −Wij) |∂Ω, (4)

where DE = (L1 + L2) /2γ, DA = EA/γ and Dr = C/γ.
Momentum conservation in the Stokes limit along with

incompressibility constraint ∇ · u = 0 governs the fluid
flow

η∇2u−∇P − α∇ ·Q +∇ · σp = 0 (5)

with pressure P , dynamic viscosity η, strength of activ-
ity α, and passive elastic stress tensor σp = −λsH +
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FIG. 3. (A) Simulation results showing the director and degree of order (top) and flow field and vorticity (bottom) during the
transition from the DS to the CS; α = 5 and R = 6.5, the same as FIG. 2.A.ii (movie S4). The stills show the process in six
steps: (1) The dipole configuration similar to that shown in FIG. 2.A.i. (2) Two + 1

2
defects with a nascent ± 1

2
pair (purple

region of disorder). (3) The ejection of a + 1
2

defect (circled in red to distinguish it from the other + 1
2

defects). (4 & 5) The

annihilation of one of the original DS + 1
2

defects. (6) The beginning of the CS. (B) Total system viscous dissipation (blue),
FLDG (magenta) and circulation (black) as a function of time during the transition from the DS to the CS shown in FIG. 3
(R = 6.5 and α = 5). The dashed lines show results when we impose left-right symmetry, suppressing the CS and thus forcing
the system to remain in the DS.

QH − HQ. The active stress, −αQ corresponds to an
extensile dipole force density and is the leading order ac-
tive term that can arise from a nematic fluid; gradients
in the director and order, ∇ · Q, impart force into the
fluid [5, 7, 35]. Including an active stress term of this
form is motivated by the observed extensile nature of the
microtubule system, FIG. 1 [27, 30].

We non-dimensionalize the system using the time scale
T = D−1

r and length scale L =
√
DE/Dr (equivalently,

L =
√

(L1 + L2) /2C) and introducing dimensionless op-

erators (∂̄t = ∂t/Dr, ∂̄i = ∂i/
√
DE/Dr). This gives the

dimensionless system

∂̄tQ + ∇̄ · (ūQ) =
(
QΩ̄− Ω̄Q

)
+ λ̄Ēτ + H̄,

H̄ij = (β1 − β2QklQlk)Qij + 2∂̄k∂̄kQij

−D̄A (Qij −Wij) |∂Ω,

∇̄2ū− ∇̄P̄ − ᾱ∇̄ ·Q + ∇̄ · σ̄p = 0 (6)

with variables (ū = u
√
DrDE and P̄ = P/Drη and pa-

rameters D̄A = DA/Dr, λ̄ = λ/Dr, ᾱ = α/ηDr. Outside
of this section, reference to the active stress strength will
always refer to the dimensionless quantity ᾱ.

We solve eqns. (6) in a circular domain of radius R.
We assume no-slip boundary conditions on the fluid flow
(ū|∂Ω = 0) and arbitrarily fix pressure to P̄ = 0 at a
point along the container wall. We intialize the flow field
at rest, ū = 0, and the director is set to a small random
perturbation of 5% around a uniform field. We assume
that the active stress and viscous dissipation dominate
the force balance and therefore neglect passive elastic

stresses (by setting σ̄p = 0). As we will show, defect
densities scale as expected from theories which include
these additional forces, and our phase diagram (FIG. 2)
is similar to that from a recent numerical study on con-
fined active nematics that includes these additional terms
[20].

To integrate the equations of motion, we used the fi-
nite element analysis software COMSOL by inputting the
equations directly using the weak form. We removed sec-
ond order derivatives using integration by parts, creating
natural boundary conditions ū|∂Ω = 0 and ∇Q|∂Ω = 0.
The former was explictly overwritten with the no-slip
condition, while the boundary energy term ∝ D̄A con-
tributes to the latter. We used quadratic elements for
Q and ū, and linear elements for the pressure/continuity
equation [36]. The element size was ∆x ∼ 0.1. The
largest system we considered (R = 15) produced a sys-
tem with ∼ 105 DOF, which was completed in a few
hours on a desktop computer. We tracked defects in the
simulation results using the same software developed to
study experimental systems in DeCamp et al. [27].

III. RESULTS AND DISCUSSION

A. Parallel Anchoring

Previous works have yet to study the boundary
conditions that most closely represent the experimen-
tal system: no-slip hydrodynamic boundary conditions
(u|∂Ω = 0) and parallel anchoring of the nematic w =
{− sin (θ), cos (θ)} such that the net topological charge
is +1. Here, we begin by focusing on these boundary
conditions, which represent a topologically incommen-
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surate confinement in that a defect-free nematic can-
not be formed. We consider a range of domain sizes
(R = 4.5− 15) and active stress strengths (α = 0− 12).
Experimentally these parameters are controlled by, re-
spectively, varying the microfluidic well radius, and mo-
tor protein concentration. In principle the nematogen
density ρ can also be varied, but this is harder to con-
trol experimentally and so we leave it fixed at ρ = 1.6.
Moreover, for the model considered here which does not
lead to concentration gradients, increasing density maps
to increasing α (to leading order for ρ > 1). Finally, we
fix the boundary relaxation term to DA = 3 for all simu-
lations and assume our material to be flow aligning with
λ = 1.

We observe three dynamical steady states as confine-
ment and activity are varied: (i) At high confinement
(small R) and low α, we observe a stationary state that
is topologically identical to the equilibrium configuration.
For parallel anchoring, this consists of two static + 1

2 de-
fects located at antipodal positions, and directed radially
outward (FIG. 2A.i); we refer to this as the dipolar state
(DS). Although the director is static, the active stress
generates a quadrapolar flow with four equally-sized vor-
tices. In this regime, the director relaxation dominates
over flow-alignment.

(ii) As the activity level or container size are increased
past threshold values, the system transitions to a state
in which the two + 1

2 defects circulate in closed orbits
(FIG. 2A.ii); we refer to this configuration as the cir-
culating state (CS). Importantly, while the rearrange-
ment of the director configuration and defect orienta-
tions between the DS and CS appears small, the scale
and structure of vorticity has changed dramatically. The
four equally sized vortices of the DS are replaced by two
smaller vortices with the same sense of rotation, and a
single large vortex with opposite sign. Vortex coarsening
and circulation have been observed in systems such as the
microtubule-kinesin system (FIG. 1), swimming organ-
isms [13, 16, 37, 38], crawling cells [39–41] and previous
numerical studies of confined active nematics with dif-
ferent boundary conditions [12, 17, 18]. We show below
that this state is highly robust to boundary conditions.
Consistent with earlier findings using natural boundary
conditions on Q[12], the threshold activity α† for tran-
sitioning from stationary to persistent defect circulation
depends on domain size according to α† ∼ R−2 (inset of
FIG. 2.B).

Additionally, we identified striking, symmetry-
breaking dynamics during the development of the CS,
FIG. 3A and movie S4. By starting with initial condi-
tions close to the DS configuration, we observed how the
director and flow fields evolve during the dynamical tran-
sition into the CS. The resulting trajectories show that
the system momentarily creates a region of disorder in the
form of a new ± 1

2 pair. The − 1
2 defect created during this

event rapidly annihilates with one of the original dipolar
+ 1

2 defects, creating the co-rotating defect configuration.
Based on observations of simulation trajectories, we con-

jecture that the DS→CS transition requires creating a
region of local disorder, such as an additional ± 1

2defect
pair. While the simulation trajectories show that there is
sufficient active energy to produce excess defects within
the DS, the system no longer produces excess defects once
the transition to the topologically equivalent CS is com-
plete. While the mechanism for stability is unexplored,
this observation suggests that the hydrodynamics of the
CS inhibit the continued formation of defects.

To quantify the differences between the CS and DS, we
plot the free energy FLDG, total system dissipation, and
the total circulation

∮
∂Ω

u · eθdx in FIG. 3B. To com-
pare the CS and DS states at the same parameter values,
we present results from an additional set of simulations
that enforced left-right symmetry (thus suppressing the
CS and retaining the DS, dashed lines in FIG. 3B). We
see that FCS

LDG > FDS
LDG. While the director fields for

the CS and DS are similar, the CS is, in fact, more de-
formed. Additionally, during the transition (t = 5 − 6)
the free energy of the CS exceeds its steady value when
the additional pair is created, indicating the presence of
an activation barrier for the process. The dissipation in
the CS is also greater than in the DS. This can be under-
stood by noting that the force imparted by the nematic
into the fluid ∝ ∇·Q; thus, to leading order more distor-
tions lead to more energy imparted into the flow, which
subsequently must be dissipated.
(iii) Above a threshold radius/activity, defects prolif-

erate and the system transitions into a turbulent state
(TS) that qualitatively resembles the behavior of an un-
confined active nematic [25, 34, 42] (FIG. 2A.iii). We
define NΣ as the average number of both ± 1

2 defects;

the excess defect density is then ρ∗Σ = (NΣ − 2) /πR2.
Beyond the transition, ρ∗Σ scales linearly with the offset
activity α − α∗ as it does in the bulk [25]. We therefore
define α∗ as the point at which bulk defect density scale
begins; α∗ ∝ R−2 (see inset of FIG. 2.B). The phase dia-
gram presented is consistent with earlier findings [18, 20].

B. Other topologies

We now explore the effects of container-imposed topo-
logical constraints on system behaviors by considering
anchoring conditions that favor aster, neutral, or sad-
dle director configurations at equilibrium. Respectively,
these conditions correspond to net topological charges of
−1, 0, and +1, and we construct them by specifying an
anchoring director w along the boundary given in carte-
sian vectors by {cos θ,− sin θ}, {1, 0}, and {cos θ, sin θ}.
We note that independent control of the boundary condi-
tions for the flow field and director can only be achieved
with “wet” nematic models such as used here. Over-
damped or “dry” models simplify the governing equa-
tions by assuming u ∝ ∇·Q [27, 34, 42–46]; however, this
assumption precludes prescribing the no-slip boundary
condition for arbitrary boundary geometry and topology.
Previous theoretical works have explored the transition
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between these limits in boundary-less systems[15, 47];
here, we focus on the wet limit for simplicity. Because
our results with parallel anchoring show that increasing
activity can be mapped to decreasing radius, we fix the
container radius at R = 6.5 and vary activity α.

For all topologies, we observe the same three classes of
steady states described for parallel anchoring (FIG. 4).
At low activity (i.e. high confinement) we observe the
topologically minimal state for each container, consistent
with its equilibrium configuration. Above a threshold
activity α†, whose value depends only weakly on topol-
ogy, the system transitions to a circulating state with
two co-rotating + 1

2 defects and sufficient − 1
2 defects to

fulfill the topological constraint. While the − 1
2 defects

contribute to the flow, their influence decays rapidly in
space [48] and they tend to reside along the boundary.
The system-sized vortex structure is therefore preserved
across topologies. Above a higher threshold activity α∗,
which also depends only weakly on topology, the system
transitions to the TS, with the defect number propor-
tional to α as discussed above for parallel anchoring. The
most significant difference between topologies occurs be-
tween the onset of the CS and the transition to the TS.
The neutral topology admits a second sub-turbulent state
with two additional + 1

2 defects with more complex, but
still regular defect trajectories (movie S8); the dynamics
strongly resemble the “dancing defect” state observed in
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FIG. 5. (A) Spatial distributions of + 1
2

(magenta), − 1
2

(blue),
and all (gray) defects normalized by the total, average defect
concentration for the same conditions in the TS (α = 12,
R = 15). (B) Spatial distribution of defect nucleation rates
(black) and annihilation rates (red) normalized by the system
average. To illustrate the extent to which annihilation rates
follow the law of mass action, the product of the spatial dis-
tributions of ± 1

2
defects (scaled by a factor of 4 to make the

trend the same order of magnitude as the creation/destruction
rates) is also plotted (blue). (C) and (D) plot the normalized
orientation distributions for each defect type at the radial
points corresponding to their respective maxima (i) and (ii).

topologically neutral channels [17]. This additional state
suggests the possibility of finely-tuned non-trivial active
states in the range α† < α < α∗ for these and other
topologies not considered here.

Deep in the turbulent regime (α = 12 and R = 15)
we find that defects exhibit non-trivial spatial distribu-
tions and orientations near the boundary. FIG. 5A shows
the time-averaged spatial distributions of defects for the
parallel anchoring container; both defect types accumu-
late near the boundary, but at different radial positions
respectively labeled by i and ii. The − 1

2 defects are lo-
cated close to the wall; the radial position of this maxima
is anchoring condition dependent but scales like the ac-
tive length scale α−1/2. In contrast, + 1

2 defects are dis-
placed further from the wall, toward the center. Because
of these displaced and non-uniform distributions, the net
topological charge of the container (+1 in this case) is
distributed unevenly throughout the system. There is an
‘interior region’ where there are equal populations of ± 1

2 ;
since it is topologically neutral we consider the interior
region to be bulk-like. This is surrounded by a ‘topo-
logical boundary layer’ containing the displaced peaks of
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± 1
2 , and a net topological charge of +1.
In FIG. 5B we examine the spatial distribution of anni-

hilation and nucleation and consider whether they are the
cause of the of the spatially nonuniform defect densitities,
FIG. 5A. We see that nucleation rates are nearly uniform
throughout the domain, indicating no spatially preferred
sites of defect generation. Annihilation rates are peaked
in the boundary layer; however, FIG. 5B shows that the
distribution of annihilation rates is roughly proportional
to the product of defect densities, ρ2

±(r) = ρ+(r)ρ−(r).
This suggests that defect annihilation simply follows the
law of mass action for a bimolecular reaction; thus, the
spatial dependence of defect annihilation rates is a con-
sequence (rather than a cause) of the nonuniform defect
density. Taken together, these trends suggest that the
spatially nonuniform defect distributions arise because
the inner and outer boundary regions act as attractors
for + 1

2 and - 1
2 defects.

Defect dynamics are complex because defects with dif-
ferent charges have qualitatively different hydrodynam-
ics [48]; this leads us to hypothesize that the different
locations of stability for ± 1

2 defects reflect differences in
anisotropic hydrodynamic wall interactions of the defect
species. In particular, − 1

2 defects are stable in orienta-
tions for which their active flow pushes them toward the
wall, while + 1

2 defects are unstable in such orientations.
In support of this hypothesis, FIG. 5.C and D. show
the orientational distributions of ± 1

2 defects, measured
at their respective locations of maximal density. We see
that − 1

2 defects have a strong tendency to orient with
one of their “points” facing inward, normal to the wall.
Near the wall, the three-fold symmetry of the flow is bro-
ken, leading to a net active flow which drives the defect
further into the wall. In contrast, + 1

2 defects tend to ori-
ent tangentially to the wall, such that their active flow
drives them to process around the container. In the fi-
nal section, we perform an axillary analysis to confirm
the stability of these orientations for both defects in the
absence of other forces.

This behavior persists regardless of topology. FIG. 6
compares defect orientions at two annuli for the aster
(+1) boundary condition and once again finds a hydro-
dynamic region (a) with peaks identical to FIG. 5. Only
close to the wall (b) are orientations perturbed by an-
choring, FIG. 6. Additional topologies are presented in
FIG. 7.

C. Hydrodynamic Stability of Defects Near Walls

To assess the orientational hydrodynamic stability of
± 1

2 defects near a wall, we solve the Stoke’s equation
(Eqn. 7), in the presence of an imposed force distribu-
tion that represents an idealized defect. We perform the
calculation separately for the two defect charges; in each
case the force is imposed over a discrete region. We then
find the net vorticity on the defect resulting from the
imposed force, ω̄ =

∫ r0
0
rωdr. This approach only eval-
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and are used to calculate orientation probability distributions
of +/ − 1

2
(bottom left/right) at regions dominated by hy-

drodynamic wall interactions (i) and anchoring energy (ii),
respectively.

uates the orientational stability of a defect with respect
to hydrodynamic forces.

Details of the calculation are as follows. The Stokes
equation is written as:

∇2u−∇P + Θ (r − r0) f0v± 1
2

(ψ) = 0, (7)

with the third term approximating a defect with regions
of uniform force density. For more detail on the flow cre-
ated by single defects we refer the reader to FIG. 2 of
Giomi et al. [48]. For a + 1

2 defect, the force is defined as
a disk of radius r0 (black circle) (where Θ is the Heavi-
side step function) with a force per unit area of uniform
magnitude f0, in the direction v+ 1

2
(ψ) (where ψ is the

polar angle defined in FIG. 8):

v+ 1
2

=

{
− sinψ
cosψ

}
(8)

Similarly, a − 1
2 defect is represented as a sum of three

discrete regions, each with an inward facing force oriented
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FIG. 7. Orientation distributions for ± 1
2

defects (magenta/blue) in the turbulent regimes (α = 12, R = 15) for 3 different
topological boundary conditions; from left to right: natural boundary condition n ·Q|∂Ω = 0 (no topological preference), saddle
(-1), neutral (0). Rows are different radial bins (see FIG. 6). In bin (i), defect orientations are dominated by hydrodynamic
wall effects, and are therefore similar for all anchoring conditions. In bin (ii), the importance of the anchoring condition near
the wall is revealed by differences in orientation distributions for different topological boundary conditions.

120◦ with respect to its neighbors:

v− 1
2

=

3∑
i=1

Θi (θ, ψ)

{
sin (ψ + δi)
− cos (ψ + δi)

}
(9)

where the step-functions define the three angu-
lar sectors around the defect center Θi (θ, ψ) =
Θ
(
θ −

(
π
6 + δi

)
− ψ

)
− Θ

(
θ −

(
5π
6 + δi

)
− ψ

)
, and the

angle δi = (i− 1) 2π
3 defines the angle shift between sec-

tors.
FIG. 8 shows an example of the flow and vorticity fields

(left column) created by each of the defects near a wall;
the right column plots the resulting net vorticity on the
defect region as a function of orientation angle ψ. Each
defect has multiple stationary orientations (correspond-
ing to zero net vorticity), but only some of these con-
figurations are stable. For example, the + 1

2 defect can
be oriented normal to the wall directed inward ψ = 0◦

or facing away ψ = 180◦, but since ∂ω̄
∂ψ |ψ=0 > 0, per-

turbations will result in a rotation away from ψ = 0.
Since the stable orientation for + 1

2 defects faces away
from the boundary, they will tend to both reorient and
propel away from boundaries. In contrast, for − 1

2 defects
∂ω̄
∂ψ |ψ=0, 2π3 ,

4π
3
< 0, so vorticity will restore the defect to

orientations ψ = 0, 2π
3 and 4π

3 . Unlike the stable config-

uration of + 1
2 , in these configurations, the flow continues

to drive the defect into the wall.
The consequences of hydrodynamic wall interactions

with different anchoring conditions are shown in FIG. 5
and FIG. 6; an exhaustive accounting of the behaviour of
all topologies explored is given in FIG. 7. In all cases, the
annular region closest to the wall is dominated by FLDG.
Throughout the rest of the domain, hydrodynamics dom-
inate and system behaviors are topology-independent.
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FIG. 8. (Left) Flow field and vorticity for +(−) 1
2

defects near
a wall at angle ψ. The area over which the force is imposed
is circumscribed by a black circle in each plot. (Right) The
total vorticity integrated over the defect area as a function
of orientation ψ, revealing both fixed points (roots) and sta-
bility (slope). Filled (open) circles denote stable (unstable)
stationary defect orientations. The red circle in each plot
corresponds to the configuration in the left column.

IV. CONCLUSION

In a confined passive liquid crystal, the director field is
globally determined by the topology imposed by chem-
istry and geometry of the boundary. Our results show
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that in an active liquid crystal, defect hydrodynamics
relegate any net topological charge required by the con-
tainer’s geometry and boundary conditions to a small
layer along the boundary; this creates a topologically
neutral, bulk-like interior. The overall spatiotemporal
dynamics are therefore insensitive to boundary condi-
tions on the director field. Remarkably, this insensitivity
persists even under sufficiently high confinement to es-
tablish the minimal motile configuration, the circulating
state, whose flow consists of the coarsest possible vor-
tex geometry. In all topologies that we explored, the
active flows created by the two co-rotating +1

2 defects
dominate the flow. While the inability of anchoring to
affect system behaviors suggests that passive liquid crys-

tal control strategies cannot be directly applied to active
systems, the persistence of the circulating state in differ-
ent container topologies (including those without explicit
topological constraints [12, 18]) suggests robustness that
could be leveraged to design microfluidic systems con-
taining active nematics.
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