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Abstract 

The molecular rearrangements of most fluids under flow and deformation do not directly 

follow the macroscopic strain field. In this work, we describe a phenomenological method for 

characterizing such non-affine deformation via the anisotropic pair distribution function (PDF). 

We demonstrate now the microscopic strain can be calculated in both simple shear and uniaxial 

extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. 

Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis 

of small-angle scattering experiments and non-equilibrium molecular dynamics simulations of 

soft matter under flow. 
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I. INTRODUCTION 

Understanding the flow and deformation behavior of complex fluids is an important subject 

in soft matter research. When a macroscopic strain or stress is applied, the atoms in a complex 

fluid are displaced from their equilibrium positions. It has been widely recognized that such 

molecular rearrangements are complicated in nature and generally do not directly follow the 

macroscopic strain [1-23]. How to characterize the microscopic deformation of a fluid in the 

non-equilibrium state is, therefore, a central problem for experimentalists and theorists alike.  

As the pair distribution function (PDF) describes the local structure of a liquid, it offers a 

natural starting point for addressing the aforementioned challenge. Following the perturbation 

expansion strategy first outlined by Irving and Kirkwood [24], the anisotropic pair distribution 

function ݃ሺ࢘ሻ under flow and deformation has been expressed in terms of spherical harmonics 

by a number of researchers [1-13, 19-23, 25-28]. In particular, it has been shown that for weak 

shear flow [4, 8, 11, 20], 

 22 ( )( ) ( ) Wi ( , ) dg r
g g r Y r

dr
θ φ−− ∝ ⋅r , (1) 

where ݃ሺݎሻ is the isotropic PDF (radial distribution function) in the equilibrium state, ଶܻି ଶሺߠ, ߶ሻ 

is the real spherical harmonic function for ݈ ൌ 2  and ݉ ൌ െ2 , and Wi , the so-called 

Weissenberg number, is the product of shear rate ߛሶ  and some characteristic relaxation time ߬. 

This formula in principle allows one to determine the microscopic deformation by analyzing the 

anisotropic component of ݃ሺ࢘ሻ, from either scattering experiments (via Fourier transform) or 

computer simulation [1-13, 18-23].  

However, recent experimental and computational studies have demonstrated that the 

microscopic strain in complex fluids undergoing shear flow is generally not only non-affine, but 

also dependent on the molecular separation [14-23]. In other words, Eq. (1), which assumes a 
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radially uniform strain, does not apply to real fluids. In this work, we seek to generalize Eq. (1) 

by considering radially varying strain. The resulting formulas, given in both real and reciprocal 

spaces, serve as a useful tool for extracting microscopic deformation from small-angle scattering 

experiments and non-equilibrium molecular dynamics simulations of flowing soft matter. 

This paper is organized as follows: First, we demonstrate, with the case of shear flow, how 

to incorporate radially non-uniform strain in the Irving-Kirkwood perturbation expansion of the 

pair distribution function. We then proceed to the case of uniaxial extension, which is another 

common flow geometry. Lastly, we test the validity of the derived formulas by examining the 

affine deformation model of Gaussian chains and non-equilibrium molecular dynamics 

simulations of interacting particles.  

II. PERTURBATION EXPANSION FOR SHEAR FLOW 

A. Perturbation Expansion with Radially Varying Strain 

The pair distribution function ݃ሺ࢘ሻ is generally defined as: 

 
1( ) ( )iji j

g
N

ρ δ
≠

= −∑r r r , (2) 

where ߩ is the mean particle density, ܰ is the total number of particles, ࢘ ൌ ࡾ െ  ࡾ  withࡾ
and ࡾ being the position vectors of the i-th and j-th particles, respectively, ߜ is the Dirac delta 

function, and ڮۃ ۄ  in our current context stands for averaging in the configuration space. 

Following the perturbation expansion approach by Irving and Kirkwood [24], we seek to derive 

the anisotropic PDF ݃ሺ࢘ሻ from the isotropic PDF ݃ሺݎሻ  in the quiescent state. Since we are 

interested in the microscopic deformation, we will explicitly use the equivalent strain ߛ  to 

describe the average relative molecular displacements, instead of the Weissenberg number Wi, 
which is the traditional language Hanley, Evans, Hess and coworkers adopted when considering 

non-equilibrium fluids [4-12]. The main idea here is to use a “solid-like” treatment to express 
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“equivalent” deviations from the equilibrium structure for a liquid. Moreover, we allow the 

microscopic strain to be dependent on the molecular separation and further assume that it is a 

function of only the inter-particle distance ݎ ൌ ห࢘ห. We can thus define a local deformation 

gradient tensor ۳ for each pair of particles ݅ and ݆, 

 
1 ( ) 00 1 00 0 1ijrγ⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

E . (3) 

which describes the transformation of ࢘ under flow: ࢘ᇱ ൌ ۳ ·  . Hence, the anisotropic PDF࢘

in the non-equilibrium state can be expressed as [24, 29]: 

 
1 1( ) ( ) ( ( ) )ij ij iji j i j

g
N N

ρ δ δ
≠ ≠

′= − = − − − ⋅∑ ∑ E Ir r r r r r , (4) 

where ۷ is the isotropic tensor. Perturbation expansion of ߜሺ࢘ െ ࢘ െ ሺ۳ െ ۷ሻ ·  :ሻ gives࢘

 
{ } { }

{ }

δ δ δ δ

δ

′ ⎡ ⎤ ⎡ ⎤− − − = − − ⋅ ⋅∇ − + − ⋅ ⋅∇ − −⎣ ⎦ ⎣ ⎦

⎡ ⎤+ − − ⋅ ⋅∇ − +⎣ ⎦

K

K

21( ) ( ) ( ) ( ) ( ) ( )21 ( ) ( )!
ij ij ij ij ij ij

n

ij ijn

E I E I

E I

r r

r

r r r r r r r r r r

r r r
. (5) 

Equation (5) is a general Taylor expansion of the difference between two delta functions, which 

follows the original derivation of Irving and Kirkwood [24]. In the case of shear, when ۳ does 

not depend on the molecular separation, i.e., ߛሺݎሻ is a constant, Eq. (5) leads to an elegant 

formula that links the non-equilibrium PDF ݃ሺ࢘ሻ to the PDF ݃ሺݎሻ in the quiescent state: 

 
[ ]{ } [ ]{ }

[ ]{ }

− = − − ⋅ ⋅∇ + − ⋅ ⋅∇ −

+ − − ⋅ ⋅∇ +

K

K

21( ) ( ) ( ) ( ) ( ) ( )21 ( ) ( )! n

g g r g r g r

g r
n

E I E I

E I

r r

r

r r r

r
. (6) 
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However, when the molecular strain is radially dependent, Eq. (6) is no longer valid. We 

need to re-examine the derivation leading up to Eq. (6). Starting from Eqs. (4) and (5), we see 

that: 

{ }1 2 1 2 11 1( ) ( ) ( , , ) ( ) ( )! n

N N ij iji j n
g g r d d d

N n
ψ δ

ρ ≠

∞

=
⎡ ⎤− = − − ⋅ ⋅∇ −⎣ ⎦∑ ∑∫ ∫ ∫ E IK K rr R R R R R R r r r ,(7) 

where we explicitly write out the configuration space averaging as the integral with the 

distribution function ߰ሺࡾଵ, ,ଶࡾ ڮ  ேሻ. Using the following identities for the Dirac delta functionࡾ

[24]: 

 δ δ∂ ∂− = − −
∂ ∂

( ) ( 1) ( )n n
n

ij ijn n
ij

x x x x
x x

, (8) 

 δ δ⎡ ⎤ ⎡ ⎤∂ ∂= −⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∫ ∫( ) ( ) ( 1) ( ) ( )n n

n
n nx f x dx x f x dx
x x

, (9) 

we can show that for each integral in Eq. (7): 

 

{ }1 2 1 2
1 2 1 2

1 2 1 2
1 2

1( , , ) ( ) ( )!1 ( 1) ( , , ) ( ) ( )!1 ( , , ) ( ) ( )!1 ( 1) (!

n

N N ij ij

n
n

N N ij ij ij

n

N N ij ij ij
ij

n
N

d d d
n

d d d r y
n x

d d d r y
n x

d d d
n

ψ δ

ψ γ δ

ψ γ δ

δ

⎡ ⎤− − ⋅ ⋅∇ −⎣ ⎦

∂⎡ ⎤= − −⎢ ⎥∂⎣ ⎦

⎡ ⎤∂= −⎢ ⎥∂⎢ ⎥⎣ ⎦

= −

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

E IK K

K K

K K

K

rR R R R R R r r r

R R R R R R r r

R R R R R R r r

R R R r 1 2) ( ) ( , , )1 ( 1) ( ) ( )!
n

n
ij ij ij N

ij

n
n n n

ijn

y r
x

y r
n x

γ ψ

γ ψ

⎛ ⎞∂ ⎡ ⎤− ⎜ ⎟ ⎣ ⎦⎜ ⎟∂⎝ ⎠
∂ ⎡ ⎤= − ⎣ ⎦∂

Kr R R R

r

, (10) 

where ߰ሺ࢘ሻ is the distribution function of i-th and j-th particles in the quiescent state, defined 

as: 

 1 2 1 2( ) ( ) ( , , ) ( )ij N ij Nd d d g rψ δ ψ ρ≡ − =∫ ∫ ∫K Kr R R R r r R R R . (11) 
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Therefore, the final general expression for ݃ሺ࢘ሻ െ ݃ሺݎሻ in shear flow is: 

 1 1( ) ( ) ( 1) ( ) ( )! n
n n n

nn
g g r y r g r

n x
γ∞

=

∂ ⎡ ⎤− = − ⎣ ⎦∂∑r . (12) 

Notice that when ߛሺݎሻ is a constant, Eq. (12) reduces to the classical Irving-Kirkwood formula 

[Eq. (6)]. Mathematically, it is convenient to set the following change of variables: ߛሺݎሻ ൌݑߣሺݎሻ, where the constant ߣ is the largest microscopic strain of the system. Eq. (12) can thus be 

rewritten as: 

 λ∞

=

∂ ⎡ ⎤= + − ⎣ ⎦∂∑ 1 1( ) ( ) ( 1) ( ) ( )! n
n n n n

nn
g g r y u r g r

n x
r . (13) 

The equation expresses the anisotropic PDF in terms of a power series of ߣ and derivatives of ݃ሺݎሻ, with the zeroth order term being the quiescent ݃ሺݎሻ.  

B. First-Order Expansion 

In order to apply Eq. (12) (or equivalently Eq. (13)) to extract the radially dependent strain ߛሺݎሻ  from small-angle scattering experiments or non-equilibrium molecular dynamics 

simulations, it is helpful to expand the anisotropic PDF ݃ሺ࢘ሻ and structure factor ܵሺࡽሻ as a 

linear combination of real spherical harmonics ܻሺߠ, ߶ሻ: 

 θ φ=∑ ,( ) ( ) ( , )m m
l ll m

g g r Yr , (14) 

 θ φ=∑ ,( ) ( ) ( , )m m
l ll m

S S Q YQ . (15) 

The real and reciprocal space expansion coefficients are related through the spherical Bessel 

transformation: 

 
π ρ

= ∫ 22( ) ( ) ( )2 l
m m
l l l

i
g r S Q j Qr Q dQ , (16) 

 π ρ= ∫ 2( ) 4 ( ) ( )m l m
l l lS Q i g r j Qr r dr . (17) 
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where ݆ሺݔሻ is the spherical Bessel function of the first kind.  

Using the real spherical harmonic expansion approach, we avoid dealing directly with the 

vector-variable functions ݃ሺ࢘ሻ and ܵሺࡽሻ. Instead, all the analyses center around the expansion 

coefficients ݃ሺݎሻ and ܵሺܳሻ. In computer simulation, where the information about positions of 

all particles is readily available, ݃ሺݎሻ and ܵሺܳሻ can be straightforwardly computed: 

 
π π

θ φ θ φ θ φ θ
π

= ∫ ∫
20 01( ) ( , , ) ( , )sin4m m

l lg r d d g r Y , (18) 

 
π π

θ φ θ φ θ φ θ
π

= ∫ ∫
20 01( ) ( , , ) ( , )sin4m m

l lS Q d d S Q Y . (19) 

In the case of small-angle scattering experiments, one probes the cross-sections of ܵሺࡽሻ on 

certain planes. The method for obtaining ܵሺܳሻ from the two-dimensional anisotropic spectra 

has been discussed in detail elsewhere [30]. 

With the expansion coefficients ݃ሺݎሻ and ܵሺܳሻ in hand, we can then proceed to the 

analysis of the microscopic deformation by using Eq. (13). The first order term in Eq. (13) is: 

 [ ] [ ] [ ]λ θ φ φ γ θ φ γ−∂− = − = −
∂

2 221( ) ( ) sin cos sin ( ) ( ) ( , ) ( ) ( )15d d
y u r g r r r g r Y r r g r
x dr dr

. (20) 

Therefore, it is easy to see from Eq. (18) that 

 [ ]γ− = −22 1( ) ( ) ( )15 d
g r r r g r

dr
. (21) 

Solving Eq. (21) yields: 

 γ γ
− ′ ′= −

′∫ 0
20 20 ( ) ( )15( ) ( ) ( ) ( ) r

D

g D g r
r D dr

g r g r r
, (22) 

where ܦ is the diameter of the particle. Eqs. (21) and (22) can be used as the working formulas 

for characterizing the radially dependent microscopic strain ߛሺݎሻ , particularly for computer 



8 
 

simulations. For small-angle scattering experiments, it is more convenient to perform analysis in 

the reciprocal space. From Eqs. (17) and (21), one finds that: 

 [ ]πρ πργ γ
∞ ∞− ⎡ ⎤= = −⎢ ⎥

⎣ ⎦∫ ∫2 32 20 04 4 sin( )( ) ( ) ( ) ( ) ( ) ( ) cos( )15 15d Qr
S Q j Qr r r g r dr r g r r r Qr dr

dr Q
. (23) 

In principle, one can experimentally determine the isotropic PDF ݃ሺݎሻ by Fourier transform of 

the structure factor ܵሺܳሻ  in the quiescent state. ܵଶି ଶሺܳሻ  can be obtained from analyzing the 

anisotropic two-dimensional spectra of the velocity-velocity-gradient and velocity-vorticity 

planes, i.e., the so-called 1-2 and 1-3 planes [22, 30]. Therefore, ߛሺݎሻ can be found by fitting the 

integral equation [Eq. (23)].  

C. Second-Order Expansion 

Now let us consider the second-order term in Eq. (13): 

 
( )

λ

θ φ θ φ γ θ φ γ

∂ ⎡ ⎤⎣ ⎦∂
⎧ ⎫

⎡ ⎤ ⎡ ⎤= − +⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭

22 2 22 22 2 2 2 2 2 2 2 22
1 ( ) ( )2 1 sin sin 1 sin cos ( ) ( ) sin cos ( ) ( )2

y u r g r
x

d d
r r g r r r g r
dr dr

. (24) 

Combining this result with the analysis in Section II.A and B, it can be shown (by using Eqs. (13) 

and (18)) that the expansion up to the second order in ߣ  involves only the following real 

spherical harmonics: ܻ, ଶܻି ଶ, ଶܻ, ସܻ, and ସܻସ, with 

 
20 2 2 20 22 1( ) ( ) ( ) ( ) ( ) ( )15 30d d

g r g r r r g r r r g r
dr dr

γ γ⎡ ⎤ ⎡ ⎤− = +⎣ ⎦ ⎣ ⎦ , (25) 

 
20 2 2 22 25 1( ) ( ) ( ) ( ) ( )42 21 5d d

g r r r g r r r g r
dr dr

γ γ⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦ , (26) 

 
20 2 2 24 21 1( ) ( ) ( ) ( ) ( )210 210d d

g r r r g r r r g r
dr dr

γ γ⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦ , (27) 



9 
 

 
24 2 2 24 21 1( ) ( ) ( ) ( ) ( )6 35 6 35d d

g r r r g r r r g r
dr dr

γ γ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ . (28) 

Note that the expression for ݃ଶି ଶ is already given by Eq. (21), as the second-order term in ߣ does 

not contribute to this symmetry. 

Eqs (25) through (28) can also be used, in addition to Eq. (21), for analysis of ߛሺݎሻ for the 

expansion to the second order. Focusing on ݃ሺݎሻ and defining ܪሺݎሻ ؠ  :ሻ, we haveݎሻ݃ሺݎଶሺߛ

 
24 3 2 002( ) ( )4 30 ( ) ( )d H r dH r

r r r g r g r
dr dr

⎡ ⎤+ = −⎣ ⎦ , 

 4 2 00( ) 30 ( ) ( )d dH r
r r g r g r

dr dr
⎡ ⎤ ⎡ ⎤= −⎣ ⎦⎢ ⎥⎣ ⎦

, 

 0 2 004 4( ) 30 ( ) ( )r

D

dH r c
r g r g r dr

dr r r
′ ′ ′⎡ ⎤= + −⎣ ⎦∫ , (29) 

where ܿ ൌ ସܦ ௗுሺሻௗ ቚୀబ. Carrying through the integration, we obtain the expression for ߛଶሺݎሻ: 

 0 0
2 32 2 00 0 0 03 3 40

3 ( ) ( ) 30 1( ) ( ) ( )3 ( ) 3 ( ) ( ) r t

D D

D D g D c c
r dt r g r g r dr

D g r r g r g r t
γγ + ′ ′ ′ ′⎡ ⎤= − + −⎣ ⎦∫ ∫ . (30) 

Similarly, applying Eq. (17) to Eq. (25), we have: 

 

πρ

πρ πρ γ

πρ γ

∞ ∞

∞

−

⎡ ⎤= −⎣ ⎦

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤⎛ ⎞= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

∫ ∫

∫

00
0 20 0

4 4 20 10 0
22 320

( ) ( )4 ( ) ( ) ( )
2 ( ) 2( ) ( ) ( ) ( )15 152 2 2( ) ( ) cos( ) sin( )15

S Q S Q

g r g r j Qr r dr

d dH r d
r j Qr dr Q r j Qr r g r dr

dr dr dr

r r
Q r g r Qr r Qr dr

Q Q

. (31) 

As in the case of Eq. (23), Eq. (31) can be used to determine ߛଶሺݎሻ from small-angle scattering 

experiments as well as computer simulations. 
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D. A Few Remarks 

At this point, it is helpful to make a few remarks about our derivations so far. First, when the 

microscopic strain is radially uniform, i.e., ߛሺݎሻ is a constant, Eqs. (21), (23), (25), and (31) can 

be simplified, yielding elegant expression for ߛ in both real and reciprocal spaces: 

 
2215 ( )( )g r

dg r
r
dr

γ
−

= − , (32) 

 
2215( )S

dS Q
Q

dQ

γ
−

= , (33) 

 
002 22 2

30 ( ) ( )( ) ( )4g r g r

d g r dg r
r r

dr dr

γ
⎡ ⎤−⎣ ⎦=

+
, (34) 

 
002 22 2

30 ( ) ( )( ) ( )4S Q S Q

d S Q dS Q
Q Q

dQ dQ

γ
⎡ ⎤−⎣ ⎦=

+
. (35) 

In particular, Eqs. (32) and (33) have been found by the previous studies [4, 8, 11, 20]. 

Second, as revealed by Eq. (25), the approximation ݃ሺݎሻ ൌ ݃ሺݎሻ is valid up to the first 

order expansion in ߣ. Additionally, with the condition: 

 ( ) ( ) ln ( ) ln ( )( ) ( )d r dg r d r d g r
g r r

dr dr dr dr
γ γγ<< ⇒ << , (36) 

Eq. (21) can be rewritten as: 

 γ
− −

− ≈ −
2 22 200

15 15( ) = ( ) ( )g g
r

dg r dg rr r
dr dr

, (37) 

which is the formula used to fit radially dependent strain in a previous study [20]. However, Eq. 

(21) in general should work better than Eq. (37), as it does not require these additional conditions. 
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III. PERTURBATION EXPANSION FOR UNIAXIAL EXTENSIONAL FLOW 

A. Perturbation Expansion with Radially Varying Strain 

Having made the analysis with simple shear, we now turn our attention to uniaxial extension, 

which is another important flow geometry in rheology. Once again, we will apply the Irving-

Kirkwood perturbation expansion technique, with the consideration of radially varying 

microscopic strain. Denoting the microscopic stretching ratio and engineering strain by ߣሺݎሻ 

and ߝሺݎሻ, respectively, we have: 

 

1 ( )0 0 1 0 0( ) 2 ( )10 0 0 1 02( ) 0 0 1 ( )0 0 ( )
ij

ij

ij
ij ij ij ij

ij

ij
ij

r
r

r

r
rr

ε
λ

ε
λ

ελ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ −⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟′ = ⋅ = ⋅ ≈ − ⋅⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ +⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Er r r r . (38) 

Similarly, the starting point for the derivation is Eq. (7). For each integral in the summation: 

 

{ }1 2 1 2
1 2 1 2

1 2 1 2

1( , , ) ( ) ( )!1 1 1( 1) ( , , ) ( ) ( )! 2 21 1 1( , , ) ( )! 2 2

n

N N ij ij

n

n
N N ij ij ij ij ij

N N ij ij ij i
ij ij

d d d
n

d d d r x y z
n x y z

d d d r x y z
n x y

ψ δ

ψ ε δ

ψ ε

⎡ ⎤− − ⋅ ⋅∇ −⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂= − − − + −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

∂ ∂= − − +
∂ ∂

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

E IK K

K K

K K

rR R R R R R r r r

R R R R R R r r

R R R R R R

1 1 2
1 2

1

( )
1 1( 1) ( )! 2! ( 2 ) ( ) ( , , )! ! !1 1 !( 1) ( 2 ) ( )! 2 ! ! !

n

j ij
ij

n
n

N ij

n
n

ij ij ij ij N
n ij ij ij

n n
n n

z

d d d
n

n
x y z r

x y z

n
x y z r

n x y z

α β γ
α β γ

α β γ

α β γ
α β γ

δ

δ

ε ψ
α β γ

ε ψ
α β γ

−

+ + =

−

⎡ ⎤⎛ ⎞∂ −⎢ ⎥⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∂ ⎡ ⎤× −⎣ ⎦∂ ∂ ∂

∂⎛ ⎞= − −⎜ ⎟ ∂ ∂ ∂⎝ ⎠

∫ ∫ ∫

∑

K

K

r r

R R R r r

R R R

( )ij
nα β γ+ + =

⎡ ⎤⎣ ⎦∑ r

,(39) 

where 0  ,ߙ ,ߚ ߛ  ݊. Therefore, the final expression for perturbation expansion in the case of 

uniaxial extension is: 
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 11 1 !( ) ( ) ( 1) ( 2 ) ( ) ( )! 2 ! ! !n n
n n

n
n

n
g g r x y z u r g r

n x y z
α β γ

α β γ
α β γ

λ
α β γ

∞ −
=

+ + =

∂⎛ ⎞ ⎡ ⎤= + − −⎜ ⎟ ⎣ ⎦∂ ∂ ∂⎝ ⎠
∑ ∑r , (40) 

where ߝሺݎሻ ൌ  .ሻݎሺݑߣ

B. First- and Second-Order Expansions 

We now proceed to the analysis of the first- and second-order expansion terms using the 

derived general expression [Eq. (40)]. For the ݊ ൌ 1 term, we have:  

 

[ ]

( ) [ ]

[ ]

2
02

2 ( ) ( )2 1 1 3cos 3sin cos ( ) ( )2 1 ( ) ( ) ( , )5

x y z u r g r
x y z

r r g r
r

d
r r g r Y
dr

λ

θ θ θ ε
θ

ε θ φ

⎛ ⎞∂ ∂ ∂+ −⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂⎡ ⎤= − +⎢ ⎥∂ ∂⎣ ⎦

= −

. (41) 

Therefore, 

 [ ]02 1( ) ( ) ( )5 d
g r r r g r

dr
ε= − , (42) 

 0
00 20 ( ) 5 ( )( ) ( ) ( ) ( ) r

D

g D g r
r D dr

g r g r r
ε ε ′ ′= −

′∫ . (43) 

In the reciprocal space: 

 [ ]0 32 20 04 4 sin( )( ) ( ) ( ) ( ) ( ) ( ) cos( )5 5d Qr
S Q j Qr r r g r dr r g r r r Qr dr

dr Q
πρ πρε ε

∞ ∞ ⎡ ⎤= = −⎢ ⎥⎣ ⎦∫ ∫ . (44) 

As in the case of shear flow, Eqs. (43) and (44) can be used to analyze the microscopic strain in 

the real and reciprocal spaces, respectively.  

For the ݊ ൌ 2 term, the effective differential operator on ݑଶሺݎሻ݃ሺݎሻ is: 
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( ) ( )

2 2 2 2 2 22 2 22 2 2
222 2 2 42

4 2 4 4
3cos 1 2 15cos 9cos 6
x y z xy xz yz

x y z x y x z y z

d d
r r
dr dr

θ θ θ

∂ ∂ ∂ ∂ ∂ ∂+ + + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − + + − +

. (45) 

Here, the differential operators associated with ߠ and ߶ are omitted, as ߝଶሺݎሻ݃ሺݎሻ depends only 

on ݎ. Thus, the ݊ ൌ 2 term is: 

 ( ) ( )
222 2 2 4 221 3cos 1 2 15cos 9cos 6 ( ) ( )8 d d

r r r g r
dr dr

θ θ θ ε⎡ ⎤
⎡ ⎤− + + − +⎢ ⎥ ⎣ ⎦

⎣ ⎦
. (46) 

Combining this result with the first-order term, one can show that the expansion up to the second 

order in ߣ involves only three real spherical harmonics: ܻ, ଶܻ, and ସܻ, with 

 
20 2 20 21 13 3( ) ( ) ( ) ( )10 20 4d d

g r g r r r r g r
dr dr

ε⎛ ⎞
⎡ ⎤− = + +⎜ ⎟ ⎣ ⎦

⎝ ⎠
, (47) 

 [ ]
20 2 22 21 17 1( ) ( ) ( ) ( ) ( )7 5 28 5 5d d d

g r r r r g r r r g r
dr dr dr

ε ε⎛ ⎞
⎡ ⎤= + −⎜ ⎟ ⎣ ⎦

⎝ ⎠
, (48) 

 
20 2 24 23 3( ) ( ) ( )35 35d d

g r r r r g r
dr dr

ε⎛ ⎞
⎡ ⎤= −⎜ ⎟ ⎣ ⎦

⎝ ⎠
. (49) 

As in the case of shear flow, we can focus on ݃ሺݎሻ and integrate Eq. (47) to obtain an 

explicit expression for the microscopic strain: 

 0 02 41 25 3/2 5 3/21 1( ) ( ) ( )( ) ( ) ( ) ( )r r

D D

c c
r t f t dt t f t dt

r g r r g r r g r r g r
ε = + − +∫ ∫ , (50) 

where ݂ሺݐሻ ൌ ଶ ሾ݃ሺݐሻ െ ݃ሺݐሻሿ. In the reciprocal space, we have: 

 
20 2 2 20 0 20( ) ( ) ( ) 2 13 15 ( ) ( )5 d d

S Q S Q j Qr r r r r g r dr
dr dr

πρ ε
∞ ⎛ ⎞

⎡ ⎤− = + +⎜ ⎟ ⎣ ⎦
⎝ ⎠

∫ . (51) 

Similarly, when ߝሺݎሻ is a constant, Eqs. (42), (44), (47), and (51) can be simplified: 



14 
 

 
025 ( )( )g r

dg r
r
dr

ε = − , (52) 

 
025 ( )( )S Q

dS Q
Q

dQ

ε = , (53) 

 
002 22 2

20 ( ) ( )( ) ( )2 13 15 ( )g r g r

d g r dg r
r r g r

dr dr

ε
⎡ ⎤−⎣ ⎦=
+ +

, (54) 

 
002 22 2

20 ( ) ( )( ) ( )2 3S Q S Q

d S Q dS Q
Q Q

dQ dQ

ε
⎡ ⎤−⎣ ⎦=

+
, (55) 

where Eqs. (52) and (53) are the formulas used in previous studies [3, 19]. 

IV. TESTS OF FORMULAS 

A. Justification of Perturbation Expansion Approach 

In this section, we test the formulas developed in the preceding discussions. First, we would 

like to verify that it is indeed feasible to apply the perturbation expansion approach to analyze 

the anisotropic PDF or structure factor, i.e., higher order terms can be neglected when the 

deformation is small. For this purpose, we numerically study the single-chain structure factor of 

a Gaussian chain. Under affine shear deformation, the anisotropic ܵሺࡽሻ is: 

 ( )22( ) 1xS e x
x

−= + −Q , (56) 

where ( )2 2 2 2 2 21 sin sin2 sin cosgx Q R γ θ φ γ θ φ= + + , with ܴ  being the equilibrium radius of 

gyration. In the isotropic case, i.e. ߛ ൌ 0, Eq. (56) reduces to the well-known Debye function. 

The spherical harmonic expansion coefficients ܵሺܳሻ can be straightforwardly computed by 
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carrying out weighing integrals with Eq. (19). The maximum relative errors of strain estimated 

from Eqs. (33) and (35) are defined as: 

 ( )2 22 2max /γ γ γ γ− −Δ = − , (57) 

 ( )0 00 0max /γ γ γ γΔ = − , (58) 

where ߛଶି ଶ and ߛ are: 

 2 22 2 ( )15 ( )/ dS Q
S Q Q

dQ
γ − − ⎡ ⎤= ⎢ ⎥⎣ ⎦

, (59) 

 
20 0 20 0 2( ) ( )30 ( ) ( ) / 4d S Q dS Q

S Q S Q Q Q
dQ dQ

γ ⎡ ⎤
⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎣ ⎦
. (60) 

Additionally, the differences between the analytical model result and the perturbation expansion 

up to the second order in ߣ for ܵଶି ଶሺܳሻ and ܵሺܳሻ are 

 2 22 2 ( )( ) ( ) 15 dS Q
S Q S Q Q

dQ
γ− −Δ = − , (61) 

 
2 20 0 20 0 2( ) ( )( ) ( ) ( ) 430 d S Q dS Q

S Q S Q S Q Q Q
dQ dQ

γ ⎡ ⎤
Δ = − − +⎢ ⎥

⎣ ⎦
, (62) 

where ܵଶି ଶሺܳሻ and ܵሺܳሻ are the exact values computed from Eq. (56). 

Table 1 presents the relative errors of strain estimated by Eqs. (57) and (58), whereas Fig. 

1(a) and (b) show how the difference between the analytical calculation and perturbation 

expansion varies with ܳ . It is evident that as expected the second-order formula has higher 

accuracy than the first-order one. For the strains investigated here, the relative error from the 

second-order equation is smaller than that from the first-order equation by approximately an 

order of magnitude. These results support the validity of our perturbation expansion approach, in 

which the high order terms can be neglected. 
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Table 1. Relative errors from perturbation expansion 

 γ ൌ 0.1 γ ൌ 0.2 γ ൌ 0.3 Δߛଶି ଶ 3.4 ൈ 10ିଷ 1.4 ൈ 10ିଶ 3 ൈ 10ିଶ Δߛ 9.6 ൈ 10ିସ 3.8 ൈ 10ିଷ 8.5 ൈ 10ିଷ 

 

FIG. 1. The variation between the analytical formula [Eq. (56)] and the formulas of perturbation 

expansion [Eqs. (33, 35)] as a function of ܴܳ for (a) ܵଶି ଶሺܳሻ and (b) ܵሺܳሻ with different shear 

strains. 

B. Evaluation of Microscopic Strain 

To test the formulas for radially varying strain, we have performed non-equilibrium 

molecular dynamics simulations of interacting particles under shear, using the LAMMPS 

software [31]. Our simulation box contains 16,000  particles at a fixed density of ρ ൌ0.07843 Հିଷ . The pairwise interaction is described by the modified Johnson potential [32], 

which was developed for liquid iron. The SLLOD algorithm coupled with Nose-Hoover 

thermostat is applied to the system to simulate continuous shear [33]. Each time-step is set to be 1  fs. For the equilibrium PDF ݃ሺݎሻ  and expansion coefficient ݃ଶି ଶሺݎሻ  shown in Fig. 2, the 
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temperature is 1500 K and the shear rate is 1.3143 × 1011 sec-1. These data were fitted within ݎ േ 1.3 Հ using Eqs. (22) and Eq. (37) to extract the microscopic strain ߛሺݎሻ. The result in Fig. 3 

is consistent with our assumption that Eq. (22) will reduce to Eq. (37) when the mechanical 

perturbation is small. 

 

FIG. 2. The (a) ݃ሺݎሻ and (b) ݃ଶି ଶሺݎሻ from molecular dynamics simulation using the LAMMPS 

software and SLLOD algorithm, where ܰ ൌ 16,000, ρ ൌ 0.07843 Հିଷ , shear rate 1.3143 ൈ 10ଵଵ sec-1, temperature 1500 K, time step 1 fs, and modified Johnson potential were used. 
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FIG. 3. The non-affine strain distribution as a function of r predicted by Eq. (22) and Eq. (37), 

where the data points were obtained from molecular dynamics simulation using LAMMPS 

software and SLLOD algorithm. 

V. DISCUSSIONS AND CONCLUSIONS 

In conclusion, equations for extracting microscopic strain in shear and uniaxial extension 

have been derived through the perturbation expansion of anisotropic PDF in terms of real 

spherical harmonics. The resulting formulas, presented in both real and reciprocal spaces, 

connect the anisotropic PDF and structure factor in the non-equilibrium state to the 

corresponding isotropic ones in the quiescent state. This phenomenological approach is 

independent of potential form, and can be applied to analysis of small-angle scattering 

experiments and computer simulations of materials under flow and deformation. Additionally, 

our formulas reduce to the affine ones as derived in Refs. [3, 4, 8, 11, 19, 20], and are equivalent 

to the non-affine strain equation found in Refs. [19, 20] with the condition: ln ( )/ ln ( )/d r dr d g r drγ << . We further demonstrate that the high order terms of real spherical 
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harmonics cannot be ignored when the mechanical perturbation rises to a certain value. Unlike 

the situation for the zeroth and first order expansion, the isotropic terms 00( )/ ( )/dg r dr dg r dr≠  

and 00( )/ ( )/dS Q dQ dS Q dQ≠  for the second expansion.  

In the past, significant research effort has been devoted to the derivation of anisotropic PDF 

under flow and deformation, by assuming radially homogeneous strain [1-13]. In some other 

studies [19, 20, 22, 23], expressions for the microscopic strain are defined by 

phenomenologically extending the affine equations [Eqs. (32) and (52)]: 

 
2200

15 ( )( ) ( )g r
r

dg r
r

dr

γ
−

≡ − , 

 
0200

5 ( )( ) ( )g r
r

dg r
r

dr

ε ≡ − . 

These equations were subsequently used to fit the experimental ݃ଶି ଶሺݎሻ or ݃ଶሺݎሻ data to connect 

the non-affine strain to the anisotropic PDF and inter-particle structure factor. However, such an 

approach lacks a rigorous mathematical foundation. In this work, by starting from the 

transformation of molecular displacement, we derive formulas for microscopic strain through the 

Irving -Kirkwood perturbation expansion method. Our method can be applied to analysis in both 

the real and the reciprocal spaces. For example, the strain distribution could be a key to 

distinguish the shear transformation zone and dynamical correlated region in the systems of 

metallic glass and colloid [22, 23]. 

We note that the traditional methods for extracting the microscopic strain rely on the 

derivative of ݃ሺݎሻ or ܵሺܳሻ. This sometimes can be challenging, as good data statistics is required. 

Consequently, Eqs. (23) and (44) might be a better choice for the data analysis. Furthermore, Eqs. 
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(31) and (51) permit characterization of the microscopic strain through ܵሺܳሻ, instead of ܵଶି ଶሺܳሻ 

(in the case of shear) or ܵଶሺܳሻ (in the case of uniaxial extension). As demonstrated by the 

numerical study of the affine model of Gaussian chains (Table 1), the strain estimation from ܵሺܳሻ has higher accuracy than the ones extracted from ܵଶି ଶሺܳሻ or ܵଶሺܳሻ. In the case of non-

affine deformation, we also find that the data quality of γሺݎሻ evaluated by ݃ሺݎሻ is better than the 

one by ݃ሺݎሻ. This stems from the fact that ݀݃ሺݎሻ/݀ݎ [݀ܵሺܳሻ/݀ܳ] is actually not equal to ݀݃ሺݎሻ/݀ݎ [݀ܵሺܳሻ/݀ܳ] for high order expansion even when structural difference is small (Fig. 

1).  
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