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Dynamical bending, buckling, and polymorphic transformations of the flagellum are known to
affect bacterial motility, but run-reverse-flick motility of monotrichous bacteria also involves the
even more flexible hook connecting the flagellum to its rotary motor. Although flick initiation
has been hypothesized to involve either static Euler buckling or dynamic bending of the hook,
the precise mechanism of flick initiation remains unknown. Here, we find that flicks initiate via
a dynamic instability requiring flexibility in both the hook and flagellum. We obtain accurate
estimates of forces and torques on the hook that suggest that flicks occur for stresses below the
(static) Euler buckling criterion, then provide a mechanistic model for flick initiation that requires
combined bending of the hook and flagellum. We calculate the triggering torque:stiffness ratio and
find that our predicted onset of dynamic instability corresponds well with experimental observations.

I. INTRODUCTION

The deformations of rotating filaments play an im-
portant role in bacterial motility. The dynamical bend-
ing of rotating rods and helices and its effect on swim-
ming has been extensively investigated[1–6], including
in the context of flagellar extension[7–12], polymorphic
transitions[11, 13–17], bundling[18–24], and wrapping
around the cell body[25]. Dynamical configurations of
rotating filaments have also been considered for micro-
robotic propulsion[26, 27]. Here, we concentrate on
monotrichous bacteria such as Vibrio alginolyticus that
swim by rotating a single helical flagellar filament and
display the ubiquitous run-reverse-flick motility[28], in
which straight forward and backward runs are inter-
spersed with reorienting flicks caused by deformation of
the flagellum up to 90◦[29] off-axis.
Rotary motion of the flagellum is driven by a mo-

tor embedded in the cell body that is connected to the
flagellar filament by a structure called the hook, which
plays a crucial role in flicks. The hook is much shorter
and more flexible than the flagellum. As thin filaments,
their resistance to bending is measured by a bending
stiffness (EI, where E is the Young’s modulus and I
a second moment of the cross-sectional area, see Eq.
1). Hook lengths are LH = 100 nm and bending stiff-
nesses are EI ≈ 10−25 Nm2, while flagellum arclengths
are L ≈ 5µm and stiffnesses are EI ≈ 10−23 Nm2. The
events before and after the flick are summarized in the in-
set to Fig.1. Key to this paper are the pre-flick forward
run (B) in which compressive forces and torques build
up to trigger the flick (C), and the post-flick forward run
(D) in which the flagellum has returned to an on-axis
orientation. The difference between the two is that pre-
flick, clockwise rotation during backward swimming (A)
unwinds the hook leading to a smaller bending stiffness
(EIu = 3.6 ± 0.4 × 10−26 Nm2), while post-flick, coun-
terclockwise rotation winds the hook leading to a larger
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FIG. 1. Inset: After swimming backwards (A) with clockwise
flagellar rotation, which unwinds the hook and decreases its
stiffness to EIu, reversal of the flagellar motor leads to a short
pre-flick forward run (B) that increases loading on the hook
and causes a flick (C) in which the flagellum deforms off-
axis and turns the bacteria. Post-flick, the wound hook with
increased bending stiffness EIw returns the flagellum on-axis
for a forward run (D). Main figure: axial torques and forces
on hook during pre-flick (flick-triggering, red circles, EIu) and
post-flick (non-flick-triggering, blue triangles, EIw) runs of
different bacteria, estimated by Son et al’s[29] 1D model (open
symbols) and our full hydrodynamic model (filled symbols).
Solid line is static Euler buckling criterion, while dashed line
is Euler buckling criterion if EI = 1× 10−26 Nm2 (see text).

bending stiffness (EIw = 2.2± 0.4× 10−25 Nm2)[29].

The mechanism triggering flicks remains imprecisely
understood. Flicks have been proposed to involve buck-
ling of the hook in static Euler buckling[29]. Buckling of
the flagellum during swimming has been investigated[5,
15], but only a few recent studies explicitly consider the
role of the hook, and in flicks always in the case of effec-
tively rigid flagellum. For free swimmers, Shum et al used
a boundary element method to model hydrodynamic in-
teractions of the cell body and a rigid flagellum connected
by a hook modeled as an inextensible Kirchoff rod[30].
They did not address flicks and due to computational
expense provided detailed results for only a few geome-
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try and hook stiffness scenarios. Modeling the hook as a
torsional spring connected to a rigid flagellum, Nguyen
et al [31] described a transition from straight hook and
straight trajectories to bent hook and helical trajectories
as hook stiffness decreased. Park et al [32] modeled flicks
using a time-dependent decrease in hook stiffness and
flagellum stiff enough not to bend, but their model could
be at most qualitative since the bacteria were not free-
swimming. While their model showed off-axis motion, it
did not lead to hook bending with deflections more than
25◦, and they did not compare predictions for the onset
of flick behavior to experimental observations. Flagellar
precession due to hook bending has also been observed
and modeled for surface-attached bacteria[33].
Here, we combine theoretical modeling with experi-

mental data to determine the mechanism of flick initia-
tion. We show that the flick is triggered by a dynamic
buckling requiring both hook and flagellum bending, and
find good agreement between predicted torque:stiffness
ratios required to trigger flicks and experimental obser-
vations. Flicks are a biological example of how failure of
compliant structures can be used constructively, a poten-
tial design paradigm for soft robotics. For any design ap-
plication, predictive models yielding quantitative criteria
for failure are necessary; our work provides an example
of such a predictive model.

A. Critical torques and forces for flick initiation

suggest a dynamical, not static, buckling mechanism.

The torque (M) and force (F) on the hook required
to cause flicks provides clues to the mechanism of flick
initiation. To quantify the forces and torques needed
to initiate flicks, Son et al.[29] imaged swimming cell
body geometries and velocities[34] during pre-flick as well
as post-flick forward runs. They calculated the motor
torque and axial hook force using a one-dimensional (1D)
model[29] that used the known drag coefficients for ellip-
soidal cell bodies with the imaged dimensions, and drag
coefficients and rotation-torque coupling coefficients for
the flagellum (geometry in Table I) obtained from re-
sistive force theory. Their results are plotted in Fig.
1 (open symbols). In this plot, values are scaled by
the critical force Fcr = π2EI/L2

H and critical torque
Mcr = 2πEI/LH , using the measured[29] bending stiff-
nesses EIu for pre-flick runs, and EIw for post-flick runs.
Son et al. noted that the average force and torque of
pre-flick runs just exceed the Euler buckling criterion
F/Fcr + (M/Mcr)

2 > 1 if it were calculated using a
smaller EI = 1.0 × 10−26 Nm2 (dashed line in Fig. 1,
plotted using EIu for Fcr and Tcr in the axes normaliza-
tion), which is of the same order of magnitude but outside
the error of the measured EIu, and they suggested that
the flick initiation is caused by a static Euler buckling of
the hook.
We reanalyzed the data from pre- and post-flick runs

using our previously described implementation[36–38] of

the method of regularized Stokeslets[39, 40]. The method
of regularized Stokeslets is a well-established numerical
technique that calculates fluid velocity fields, swimming
speeds, and trajectories for bacteria; it can handle com-
plex geometries and accounts for all hydrodynamic in-
teractions and is therefore expected to be significantly
more accurate[37] than the 1D model. The cell body is
modeled as a prolate ellipsoid with major axis 2a and
minor axis 2b. The flagellum is modeled as a rigid helical
filament with filament radius r, helical radius R, and he-
lical pitch P specified in Table I and a taper that ensures
the filament is normal to the cell body at the attach-
ment (see SM[41]). We prescribe a fixed rotation rate for
a flagellum orientation along the x-direction for forward
runs. For a given body geometry, due to the linearity of
Stokes equations the swimming speed, force, and torque
on the hook are proportional to the rotation rate (ω) of
the flagellum. Therefore, choosing ω to match the swim-
ming speed with its experimental value also determines
the force and torque on the hook.

Our results are plotted (filled symbols) in Fig.1. The
x-components of forces (0.4−1.7 pN) and torques (700−
2860 pN nm) are approximately 1.3 and 2.4 times larger
than forces (0.3 − 1.3 pN) and torques (300 − 1200 pN
nm) estimated by the 1D model (full results in Table
S1). It is evident that the forces and torques are not large
enough to exceed the static Euler buckling criterion of the
hook (black line). Therefore, in this paper we explore the
possibility that the flick mechanism involves dynamical
buckling of the hook.

B. Outline.

To investigate the role of hook and flagellar bending in
flicks, we first study the response of a hook modeled as an
inextensible Kirchoff rod to forces and torques exerted by
the cell body and flagellum and show that the response
can accurately be linearized (but not as a simple torsional
spring) in the biologically relevant regime. Then, we take
advantage of the computational advantages of such lin-
earization to explore flagellum orientation dynamics in
a model of a swimming bacterium with rigid flagellum
connected to the cell body by the linearized hook. As
hook stiffness decreases there is a transition from on-axis
flagellar rotation to off-axis flagellar precession. How-
ever, precession alone cannot explain the large (> 60◦)
flagellar reorientations observed during flicks. We show
that precession is not realized since forces during preces-
sion lead to the significant flagellar bending seen during
flicks, by treating the flagellum as an extensible Kirchoff
rod coupled to hydrodynamic forces. Thus, we establish
the mechanism by which combined flexibility of hook and
flagellum initiate flicks. Finally, we calculate triggering
torque:stiffness ratios for different cell sizes and find that
the predicted onset of dynamic instability corresponds
well with experimental observations.
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TABLE I. Dimensions of the flagellar filament and cell body for V. alginolyticus. (All values are taken from [29], except values
for EA and GA which are taken from [4, 35].)

Flagellar filament Cell body

Flagellar Filament Helix Contour Bending Torsional Stretch Shear Head Head

pitch radius radius length stiffness stiffness stiffness stiffness length width

P(µm) r (µm) R(µm) L(µm) EI(Nm2) GJ(Nm2) EA(N) GA(N) 2a (µm) 2b(µm)

1.49 ± 0.02 0.016 0.14 ± 0.02 4.59± 1 10−23 10−23 8× 10−10 8× 10−10 3.2± 0.5 1.2± 0.1

FIG. 2. Forces F, motor (MM ) and perpendicular (Mapp)
torques at one end of a hook deform it from a straight rest
position in the x-direction so that the tangent direction at the
other end is d3(LH), described by polar angles (θM , φM ).

II. METHODS

A. Inextensible Kirchoff rod model of hook.

Since the radius of the hook is only 10 nm, follow-
ing [30] we treat it as a slender inextensible Kirchoff rod
which resists bending due to elastic material response.
During motion, hydrodynamic forces and torques arise
on the cell body and flagellum, but we ignore hydrody-
namic forces on the hook itself due to its short length.
This model is described in detail in [30], but briefly,

the undeformed hook of length LH is straight and in
the x-direction (Fig. 2). As a function of the ar-
clength s ∈ [0, LH ] the position x(s) defines the de-
formed centerline of the rod with an associated orthonor-
mal triad {d1(s),d2(s),d3(s)}. d1(s) and d2(s) specify
the orientations of material cross sections of the rod and
d3(s) = d1(s)× d2(s) = ∂x/∂s is tangent to the center-
line. At each cross section, a force F and moment M are
exerted by the material with greater s on the material
with lesser s. The constitutive law for the moment is

M = EI(κ1d1 + κ2d2) +GJκ3d3, (1)

where the twist vector κ = κi(s)di(s) measures the local
curvature of the rod via ∂sdi = κ×di, EI is the bending
stiffness related to Young’s modulus E, and GJ is the
torsional stiffness of the rod related to shear modulus G.
I and J are second moments of the cross sectional area

about the bending or twisting axis, respectively.
The Kirchhoff equations,

∂sF = 0, ∂sM+ d3 × F = 0, (2)

express local force and moment balance on rod elements
in the absence of external (hydrodynamic) forces and
torques, and together with Eq. 1 yield a system of ODEs
that can be solved given initial conditions at s = 0 (the
cell body). Nondimensionalizing to tilde variables by us-
ing LH as the unit of length and EI/L2

H as the unit of
force, the ODEs are

d
′

i = κ̃× di,

κ̃
′

1 = (F̃ · d2)− κ̃2κ̃3(Γ− 1),

κ̃
′

2 = −(F̃ · d1) + κ̃1κ̃3(Γ− 1),

κ̃
′

3 = 0,

x̃
′

= d3. (3)

where (·)
′

= ∂(·)/∂s̃, and Γ = GJ/EI is the ratio of
the torsional to bending stiffness. We solve these using a
fourth order Runge-Kutta scheme.

B. Linearization of hook response.

In the zero-Reynolds-number limit appropriate for
bacteria[42], the forces (and torques) exerted by the
hook on the flagellum and cell body are equal and oppo-
site. The shape that the hook takes under these applied
torques determines the relative orientation of the flag-
ellum and cell body. Equations 3 are solved by impos-
ing boundary conditions at the hook-cell body junction
(s = 0). The boundary conditions are determined by con-
sidering that the flagellar motor keeps the attached end
of the hook normal to the cell body surface and applies a
nearly constant motor torque[43] in the x-direction. To
keep the end of the hook normal to and translating with
the cell body, there are also constraint torques in the
y- and z directions and constraint forces applied to the
hook by the cell body. Thus we study the deformations
of the hook while varying the torque M0 (with motor
x-component MM ) and force F0, defined as applied on
the cell body by the hook. The dominant influence of
the hook on swimming dynamics is due to change in the
orientation of the flagellum relative to the cell body[30];
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we ignore displacements of the hook endpoint since it is
much shorter than the flagellum or cell body. The orien-
tation of the flagellum is determined by the direction of
the hook’s end, d3(s = LH).
Without loss of generality, we consider the case where

Mapp > 0, the non-motor component of M0, is in the
z-direction (Fig. 2) and calculate x(s). The orientation
of d3(LH) is specified by angles (θM , φM ). Dimensional
analysis implies that both these angles are functions
of {GJ/EI, kH = |EI/LHMM |,Mapp/MM ,F0L

2
H/EI}.

In Appendix A, we show that the effects of typical
F0 on d3(LH) are < 4% of the effects of typical M0.
Furthermore, GJ/EI has little influence on swimming
dynamics[30] so we always use GJ = EI. Thus, we
seek to model the orientation of d3 as a function of
only kH and Mapp/MM . For a given kH , we find that
(θM , φM ) are well-approximated by linear functions of
Mapp/MM in much of the regime experienced by V. al-

ginolyticus [1000 pN nm < MM < 4000 pN nm[44],
0.1 < kH < 2[29], 0.1 < Mapp/MM < 0.5[45]]:

θM = αθ|Mapp/MM | (4)

φM = [αφ|Mapp/MM |+ βφ]sgn(MM ), (5)

where αθ, αφ, and βφ are functions of kH . Appendix A
contains details of the linearization and interpolations of
αθ, αφ, and βφ as a function of kH . Heuristically, θM
is proportional to the perpendicular torque Mapp, while
φM is an odd roughly linear function of motor torque
MM , with a small dependence on Mapp. We find that
this model has < 4% error relative to the Kirchoff-rod
calculation of (θM , φM ) for the ranges 0 < 1/kH < 3 and
0 ≤ Mapp/MM ≤ 0.5, corresponding to 0 ≤ θM ≤ 55◦

and 0 ≤ φM ≤ 100◦.

C. Calculation of swimming velocities, trajectories,

and flagellum dynamics.

Using the linearized hook response and assuming a
rigid flagellum, it is possible to efficiently calculate in-
stantaneous swimming translational and rotational ve-
locities, changes in flagellum orientation, and hence
swimming trajectories and flagellum dynamics. In the
low-Reynolds number limit appropriate to swimming
bacteria[42], the translational and angular velocities of
a rigid body are linearly related to the force and torque
applied to the body. In our calculation, applied forces
and torques are determined from the hook configuration,
and then used to calculate the dynamics of connected cell
body and flagellum. Given the flagellum orientation, the
torque applied by the hook on the cell body is determined
using the linearized model as

Mc = MM x̂+Mappn̂, (6)

where Mapp = |MM |θ/αθ, and n̂ is the unit vector in the
direction of x̂× r̂ rotated by an angle −φM (Mapp/MM )
about the x-axis. Then we calculate the velocity of the

attachment point (V) and the angular velocities of the
cell body (Ωc) and flagellum (Ωf ) about the attachment
point as follows. By force and torque balance on the
bacterium, the force and torque on the flagellum are −Fc

and −Mc, where Fc is the (unknown) force exerted by
the hook on the cell body. We treat the hydrodynamics
of the cell body and flagellum separately and ignore their
hydrodynamic interactions, so
(

Fc

Mc

)

= Rc

(

V

Ωc

)

,

(

−Fc

−Mc

)

= Rf

(

V

Ωf

)

. (7)

where Rc and Rf are the resistance matrices for the cell
body and flagellum, calculated using our previously re-
ported implementation[36–38] of the method of regular-
ized Stokeslets[39, 40]. Equation 7 gives 12 linear equa-
tions which can be solved for the 12 unknown components
of V, Ωc, Ωf , and Fc.
For an instantaneous orientation r̂ of the flagellum de-

fined by (θ, φ), the swimming velocity V, and body and
flagellum angular velocities (Ωc,Ωf) are found in the
body coordinate system. The rate of change of flagel-
lum orientation is specified by (θ̇, φ̇, γ̇) (See Fig. 3a),
which are obtained from the relative angular velocity
Ω = Ωf −Ωc and the geometric constraint ˙̂r = Ω× r̂, as

θ̇ = Ωz cos(φ) − Ωy sin(φ),

φ̇ = Ωx − cot(θ)(Ωy cos(φ) + Ωz sin(φ)),

γ̇ = Ωf · r̂ (8)

where γ̇ is the rotation rate of the flagellar filament along
its centerline axis. We numerically integrate in time to
obtain the trajectory of the flagellum orientation.

D. Extensible Kirchoff rod coupled to

hydrodynamic forces.

To study how off-axis motion leads to bending of the
flagellum, we must consider the deformations of a Kir-
choff rod (representing the flagellum) under the influence
of hydrodynamic forces. It is more convenient to couple
external hydrodynamic forces into models of extensible,
rather than inextensible Kirchoff rods[4, 23, 32, 35]. Flag-
ella are neary inextensible, but in this model inextensibil-
ity is approximately enforced by adding a stiff extensional
modulus that can be thought of as a penalty for filament
extension.
We adopt the method used by Olson et al [4] to study

the dynamics of an elastic rod interacting with an incom-
pressible viscous fluid. Here, the filament represented
by the Kirchoff rod is the flagellum, not the hook, so
the curve x(s, t) describes the filament centerline of the
flagellum, where s ∈ [0, L] is a parameterization of the
material arclength along the filament. As in the inex-
tensible Kirchoff model, material frames are tracked by
the orthonormal triad {d1(s, t),d2(s, t),d3(s, t)}. How-
ever, the inextensibility condition |∂sx(s, t)| = 1 does not
hold; in the undeformed state the unit vector d3(s, t = 0)
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is equal to the tangent vector to the filament centerline
(∂sx(s, t)), but in general they are not equal.
Kirchoff rod theory relates the cross sectional force

F(s, t) and moment M(s, t) to the external per unit
length force f(s, t) and external per unit length moment
m(s, t) applied by fluid on the filament,

0 = ∂sF+ f (9)

0 = ∂sM+ (∂sx× F) +m. (10)

The constitutive relations for the extensible Kirchhoff
rod are

F = GA(d1 · ∂sx)d1 +GA(d2 · ∂sx)d2

+ EA(d3 · ∂sx− 1)d3 (11)

M = EI(κ1 − τ1)d1 + EIκ2d2 +GJ(κ3 − τ3)d3 (12)

where EI and GJ are the bending and twist stiffnesses,
respectively, while GA and EA allow extensibility of the
rod. In the stiffnesses E and G are the Young’s modulus
and shear modulus, and A is the cross-sectional area of
the filament. The values of GA and EA used in our
calculations are listed in Table I, and taken from [4] and
[35]. As for the inextensible rod, the twist vector κ(s, t)
is related to the local material frames by ∂sdi = κ× di.
The initial shape of the flagellar filament is set to be a
tapered helix with centerline described in the SM, and
τ1 and τ3 are reference curvatures chosen so that in the
initial configuration M = 0.
Given a current configuration of the filament x(s), the

time evolution of x(s, t) and di(s, t) is numerically ob-
tained by using Eqs. 9-12 to determine the hydrodynamic
force f and moment m on discretized segments of the fil-
ament. Since hydrodynamic forces and torques on the
filament are equal and opposite to the forces and torques
applied by the filament on the fluid, we can use the forces
and torques in the method of regularized Stokeslets to
calculate the fluid flow fields everywhere, and hence by
the no slip boundary condition the translational and ro-
tational velocities of filament segments. Time integration
of the velocities yields the configuration of the filament
as a function of time. Details of our numerical implemen-
tation are in Appendix B. For our choices of stiffness pa-
rameters and motions, the arclength changes by at most
0.2% so the flagellum remains nearly inextensible.

III. RESULTS

A. Flagellar orbits and precession.

Linearizing the hook makes calculation of the time-
dependent swimming behavior of a bacterium with a flex-
ible hook but rigid cell body and rigid flagellum signif-
icantly less computationally expensive, allowing investi-
gation of a wide enough range of body geometries and
hook stiffnesses to connect to experiments. In this and
the next section the cell body is an ellipsoid with the
mean geometry listed in Table I, and the same flagellum

geometry as above. Neglecting the hook length, the flag-
ellum is attached at the pole of the cell body and instan-
taneously oriented along r̂ = cos(θ)x̂ + sin(θ) cos(φ)ŷ +
sin(θ) sin(φ)ẑ. A constant negative motor torque MM is
applied to give CCW rotation. We compute the trajec-
tory of flagellum orientation (θ, φ) during swimming. If
the helical centerline of the flagellum is initially oriented
in the x-direction, after a transient it moves around a
central direction r∗ [at (θ∗, φ∗)] such that the end point
of the centerline nearly traces a circle (dashed circle in
Fig. 3a, example trajectories in Fig. 3b,c).
For stiff hooks (kH > k∗H ≈ 0.552), a stable orbit

around r∗ occurs for each motor revolution and the de-
flection angle ∆θ between the flagellum orientation r and
r∗ is small. In Fig. 3b we show a typical trajectory of the
flagellum orientation in this regime. Initially the flagel-
lum is in the x-direction, but after a transient stabilizes
in a nearly circular trajectory. The deflection angle of
the hook is quite small throughout. Stable orbits were
identified by direct time evolution. Orbits can also be
identified as the fixed points (modulo 2π) of the discrete
map

F : (θi, φi) 7→ (θi +

∫ 2π

0

θ
′

dγ, φi +

∫ 2π

0

φ
′

dγ) = (θf , φf ),

(13)

where (θ
′

, φ
′

) = (dθ/dγ, dφ/dγ) = (θ̇/γ̇, φ̇/γ̇). Stability
of an orbit was evaluated by constructing a Poincare map
on a local line in (θ, φ) space transverse to the orbit: if
ζ is a coordinate along the line such that ζ = 0 is on the
orbit, the Poincare map takes ζn to ζn+1 = g(ζn), which
is the next intersection of the orientation trajectory with
the line. Linearizing around ζ = 0, g(ζ) ≈ g̃ζ, and orbits
are asymptotically stable if |g̃| < 1. Stable orbits identi-
fied using this metric matched stable orbits identified by
direct time evolution of the dynamics.
For less stiff hooks or greater motor torques (kH <

k∗H), orbits become unstable and instead the flagellum
precesses, taking multiple flagellar revolutions to circle
around r∗. During precession, typical deflection angles
∆θ are much larger than during orbits. In Fig. 3c we
show a typical orientation trajectory in this regime. Af-
ter a transient, the precessional behavior can be seen in
which r̂ wiggles as it traces out the circle, staying be-
tween two angles θmin and θmax as it precesses. Each
small loop in the transient or wiggle in the outer pre-
cessional circle corresponds to a single motor revolution.
Because the precession angle is large, the transient takes
many (≈ 20) motor revolutions. Fig. 3d shows how ∆θ
and the radius of the circle traced by the flagellum end-
point increase as kH decreases and orbits transition to
precession.
For both orbiting and precession, the center of the orbit

or precession remains quite close (θ∗ < 0.01◦) to the x-
axis for all values of kH investigated.
Our results are consistent with the precession-like be-

havior robustly observed across a variety of systems with
flexible hooks and rigid flagella. Ref [30] found orbits
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FIG. 3. a) Orientation of flagellum along r̂ described by angles (θ,φ) traces a nearly-circular trajectory (dashed line) around
average orientation r̂∗. b,c) Examples of the flagellar orientation trajectories during free swimming with linearized hook
dynamics. The flagellum is initially oriented in the x-direction and after a transient motion the settles into either orbits or
precession. The blue trace is the motion of the flagellum endpoint relative to the cell body for motor moment of MM = 2000
pN nm. For kH = 1 > k∗

H (b) the long-time motion is a small orbit, shown as a red circle. One orbit traversal takes one
flagellar rotation. For kH = 0.36 < k∗

H (c) the long-time motion is precession closely following the largest circular paths. One
traversal around the path takes multiple flagellar rotations. d) Trajectory size measured by minimum (θmin

p ) and maximum
(θmax

p ) deflection angles (red lines) or radius of end-point motion (R, blue line). In model with rigid flagellum, as stiffness
parameter kH decreases flagellum trajectories transition from small orbits to large precession at k∗

H .

which became unstable as hooks became less stiff, and
precession was observed and modeled[33] for bacteria
stuck to a slide. However, precession itself can not ex-
plain flick initiation; for a simple torsional spring[31]
as well as in our more realistic linearization, preces-
sion would lead to helical swimming trajectories[31], not
flicks. Even supposing that the flick is just a portion of
a helical trajectory lasting until hook stiffness increases,
experimental movies[29] show ≈ 90◦ flagellar deflection
during flicks, while in our model we find θ significantly
less than 60◦ for a wide range of kH < k∗H .

B. Flicks require flagellar bending.

Buckling of the hook alone leads to precession and he-
lical trajectories with too small deflection angles to ex-
plain flicks. In the above, the flagellum was assumed to
be rigid, but large precessional rotations introduce sig-
nificant forces on the flagellum which may cause it to
bend. Bending of both the flagellum and hook is thus
essential for understanding flicks. To determine whether
precessional orbits lead to the bending observed in flicks,
we prescribe that the base of the flagellum translates
and rotates its orientation exactly as predicted by the
rigid model above, and ignore the hydrodynamic inter-
actions with the cell body and hook. The flexible flag-
ellum is started with the same configuration as a rigid
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FIG. 4. Adding flagellum flexibility, for kH > k∗

H flagellum re-
mains nearly unbent and on-axis, while for kH < k∗

H stresses
from precession lead to large deformations from rigid flagel-
lum (straight grey line), as measured by endpoint displace-
ment between bent and rigid flagellum |r− r0|(s=L).

flagellum then allowed to evolve in time. If the model
shows little flagellar bending the rigid flagellum assump-
tion is valid and precessional orbits are predicted, but if
it shows significant flagellar bending, the actual (uncal-
culated) dynamics will be strongly affected by both hook
and flagellum bending. We use this approach rather than
directly simulating the full swimming dynamics incorpo-
rating hook and flagellum flexibility since the extensible
Kirchoff rod model is computationally expensive, and due
to long transients we could not reliably identify long-time
flagellar behavior under full swimming dynamics.
Movies S1-5 show the resulting flexible flagellar mo-

tion for kH above and below the critical value, along
with fits of the deformed centerline of the flagellum (red
line) and, for comparison, the location of the rigid flag-
ellum. For orbits with small ∆θ (kH > k∗H), deflections
of the flexible flagellum are small. On the other hand,
for precessional motion (kH < k∗H), flagellar deflections
are large. We quantify deflections via the displacement
between the endpoint of the deformed centerline and the
rigid centerline at a time corresponding to half of a pre-
cessional rotation (Fig. 4). The bending displacement
is significant even for kH = 0.55, nearly immediately be-
low k∗H . Thus after accounting for flagellum flexibility,
for kH < k∗H precession is not observed; instead signif-
icant flagellar bending alters the dynamics. Thus, to-
gether with hook bending, the flagellar bending apparent
in movies of flicks[29] is necessary for flick initiation.
By comparison, the only previous simulations of

flicks[32] choose flagellar stiffness such that the flagellum
hardly bends, and find deflections of at most 25◦. These
simulations do not quantitatively predict the critical stiff-
ness for the onset of flicks, possibly since the flagellum
base is fixed in position rather than free-swimming, or

FIG. 5. Calculated 1/kH values of post-flick (blue triangles)
runs lie in the stable regime to the left of the critical value
(dashed line) predicted by the dynamic buckling instability,
while those of pre-flick runs (red circles) lie in the unstable
regime. Nearly all pre-flick runs do not exceed the static Euler
buckling criterion (solid line).

since the spatial resolution of short hooks was limited.

C. Comparison to experiments and discussion.

The results above imply that flicks are initiated by the
dynamic buckling instability when kH = EI/MMLH <
k∗H . The critical k∗H depends on body and flagellum ge-
ometry. To compare with experimentally observed runs
(Table S1) we calculate k∗H for the body geometry of each
run, and in Fig. 5 plot 1/k∗H against 1/kH = MMLH/EI
obtained from the regularized Stokeslet calculation of the
torque, LH = 100nm, EIu for pre-flick runs, and EIw for
post-flick runs. The dotted line is 1/k∗H = 1/kH , so sta-
ble orbits are predicted to the left and above the dotted
line, while dynamical buckling is predicted to the right
and below, in good agreement with the distribution of
post- and pre-flick runs. Notably, only one pre-flick run
exceeds the Euler buckling condition (solid line)[46] in
addition to our dynamic instability condition. Fig. 5
strongly supports the claim that flicks are initiated by
the dynamic instability of the hook and flagellum that we
have identified rather than static Euler buckling of the
hook. Although our models and the experiments are spe-
cific to Vibrio alginolyticus, we expect that the physical
conclusions arising from flexible filaments are robust. In
particular, as torque increases, our dynamical transition
occurs before the static Euler buckling condition is met,
especially since as noted above the orbit-precession tran-
sition for hook-mediated rotation is robust across models.
Our calculations ignored displacement of the hook end-

point and hydrodynamic interactions between the flagel-
lum, hook, and cell body, which we expect to result in
15-20% errors, in the same range as the uncertainty of
the measured EIu. We have not calculated the full swim-
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FIG. 6. The linear response of hook deflection angles to applied moments. a,b) Dots are the response of deflection angles (θ, φ)
for the exact Kirchhoff rod model, while lines are the linear interpolations for different relative stiffnesses kH . The coefficients
plotted in c) are the intercepts and slopes of these linear interpolations. c) The linearization coefficients for the orientation
angles (θ, φ) and associated errors. The corresponding relations are Eq. 4 and 5.

ming and bending dynamics during the flick, only deter-
mined the mechanism of flick initiation. To model the
full kinematics of a flick requires knowledge of the time-
and winding-dependent stiffness of the hook and treat-
ing a fully flexible flagellum and hook for a swimming
bacterium with full hydrodynamic interactions, which is
computationally expensive if one wished to model multi-
ple cell body geometries. For hook deflections within its
range of validity, our linearized model could aid in this
goal, especially since other models of flexible hooks and
flagella may be limited by insufficient resolution of the
hook[32], which is an order of magnitude shorter than
the flagellum. Our results indicate that dynamical in-
stabilities must be accounted for in designs incorporat-
ing slender filaments since they can occur before static
failure, although we expect any instabilities to be highly
dependent on details of system geometries and actuation.

Appendix A: Details for linearization of hook

As described in Section II B, we apply a motor torque
(MM ) in x-direction and a torque Mapp in z-direction,
and calculate the orientation at the end point [d3(s =
LH)] expressed in terms of the polar coordinates (θ, φ)
(see Fig. 2). The results calculated for MM = 2000 pN
nm and LH = 100 nm are shown in Fig. 6. We vary EI
to select a fixed value of kH = EI/MMLH , then plot the
angles (θ, φ) as a function of varying Mapp. It is evident
that θ is nearly linear in Mapp and φ has only a slight
dependence on Mapp in the investigated range. For each
kH , we perform a linear fit of the angle as a function
of Mapp/MM , then numerically interpolate those as a
function of kH to find the linear fit reported in the main
text with coefficients

αθ = 0.0024/k4H − 0.05/k3H + 0.013/k2H + 1/kH ,

αφ = 0.05/k2H − 0.031/kH

βφ = 0.5/kH. (A1)

Fig. 6c shows the coefficients and percent error in the
fits as a function of 1/kH . By comparing this range (0 ≤
Mapp/MM ≤ 0.5) to those in Fig. 6a,b, one can see that
the linear fits have less than 5% error as long as θ < 55◦

and φ < 100◦. Finally, we repeated the procedure for
motor torques MM = {500, 1000, 4000, 6000} pN nm and
found that the coefficients have the same dependence on
kH for all the motor torques.

In the above, the force F0 = 0. To investigate the effect
of F0 on the orientation of the end point, we considered
the case with MM = 2000 pN nm and Mapp/MM = 0.5,
typical values for the torque. Since a typical force mag-
nitude due to flagellar propulsion is 1 pN, to be conser-
vative we applied a force with (F0,x, F0,z) = (1, 0.8) pN.
The latter value correponds to the z-component of flag-
ellar force when the deflection angle θ = 55◦. The results
are plotted for varying stiffnesses in Fig. 7. The error
due to ignoring the contribution of force to the deflection
angles is always less than 4%. Finally, we also measure
the magnitude of the displacement of the hook at the end
of the hook (s = LH), and find that for typical forces and
torques the end of the hook can be displaced by up to
about 0.5LH. While this is a large fraction of the hook
length, in the context of the bacterium it only amounts
to 50 nm, which is an order of magnitude smaller than
the length of the flagellum; hence we ignore the effects of
hook displacements for bacterial dynamics.

Appendix B: Numerical implementation of

extensible Kirchoff rod

We couple the extensible Kirchhoff rod model (Eqs. 9-
12) with hydrodynamic forces calculated by using surface
distributions of regularized Stokeslets [39]. We uniformly
discretize the centerline of the filament along the arc
length intoN segment of length ∆s. There areN+1 cross
sections at points sp = p∆s, for p = 0, 1, .., N + 1. The
center of segment p is at the half-integer-indexed point
sp+1/2. We represent each segment as a cylinder under-
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FIG. 7. The effects of applied force on the deflection angles. a) θM,F is the deflection angle due to applying a typical moment
and upper bound for the force, while θM and θF are the deflection angles when applying only the moment or force, respectively.
The dashed line represents percentage change in the deflection due to the force compared to due the moment. b) Similar
quantities for the torsional deflection φ due to applied moment and force.

going rigid body dynamics, and uniformly discretize the
surface of each cylinder using Ns regularized Stokeslets
as shown in Fig. 8. Note that since the segment has
finite extent, torques can result from the force distribu-
tion on the segment and there is no need to include rotlet
singularities.

The position of each segment of the filament deter-
mines the position x(sp+1/2), and the orientation of each
segment determines the frame di(sp+1/2) at each center
point p + 1/2. The discretized versions of the Kirchoff
equations for force and moment balance (Eq. 9 and 10)
for segment p+ 1/2 are

0 = Fp+1 − Fp +
∑

i
fi (B1)

0 = Mp+1 −Mp + 0.5[(∂sx× F)p+1 − (∂sx× F)p]

+
∑

i
(ri − x(sp+1/2, t))× fi (B2)

where
∑

i fi is the total force from regularized
Stokeslets on surface of the segment (i.e., the force from
the interaction of a rigid segment and the fluid), ri is the
position vector of the points on the surface of the seg-
ment, and (∂sx)p = [x(sp+1/2) − x(sp−1/2)]/∆s. Given
the current configuration, Eqs. 11 and 12 determine
(Fp,Mp), hence B1 and B2 determine the total hydrody-
namic force (

∑

i fi) and torque (
∑

i(ri−x(sp+1/2, t))×fi)
on each segment, which acts as a constraint on each seg-
ment. In Eqs. 11, and 12, the frame di(sp) is interpolated
between di(sp−1/2) and di(sp+1/2)) [35]. Assuming rigid
body motion of each segment, the method of regularized
Stokeslets is then used to find translational and angular
velocities (up+1/2,Ωp+1/2) of each segment that satisfy
the force and torque constraints and no-slip boundary
conditions on all surfaces. This is accomplished using
the same method as for swimming bacterium in [37], ex-
cept here each segment has a separate force constraint,

instead of just the flagellum and cell body having sepa-
rate force constraints. From these velocities we compute

∂tx(sp+1/2) = up+1/2 (B3)

∂tdi(sp+1/2) = Ωp+1/2 × di(sp+1/2) (B4)

at each time step and numerically integrate in time to
evolve the shape of the flexible flagellum.
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FIG. 8. The regularized Stokeslet method is coupled with an
extensible Kirchhoff rod model to model a flexible flagellum.
The flagellum is discretized into cylindrical segments of length
∆s. Cross sections between the segments are labeled by in-
tegers p, while segment centers are labeled by half-integers
p+ 1/2. Each segment is treated as a rigid body with trans-
lational and angular velocities V and Ω. The elastic forces
from deformation are calculated from the relative motion of
segments. Points show regularized Stokeslets on the surface
of each segments. A prescribed velocity and rotation rate is
applied to the cell end of the flagellum (s = 0) and then the
time-dependent deflections of the flagellum are calculated.
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