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Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied.
A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced
adjacency lag operator which contains the topology of the network as well as the corresponding

coupling delays.

This generalizes the master stability function approach, which was developed

for homogenous delays. As a result the network dynamics can be analyzed by delay differential
equations with distributed delay, where different delay distributions emerge for different network
modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and
synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-

coupled Hodgkin-Huxley neurons is investigated.

It is shown that the parameter regions where

synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

I. INTRODUCTION

Complex networks and synchronization phenomena are
relevant in many fields. Specific examples can be found
in social systems [1, 2], engineering [36], biology [7-10]
and physics ﬂﬂ |. Some universal results on synchro-
nization in complex networks have been summarized in
ﬂﬂ, ] Often the interactions between nodes in the
network are assumed to be instantaneous, which means
that the state of one node immediately affects the state
of other nodes. However, if the signal propagation time
is at the order of the internal time scales of the system,
then time delays must be incorporated when modeling
the connections between the network nodes. Some basic
results on the dynamics of networks with time delayed
couplings can be found inﬁ%} In some applications,
like semiconductor lasers ], the coupling delays can
be tuned to be homogeneous. However, in general, the
coupling delays are heterogeneous, i.e., there exist dif-
ferent delays for different connections in the network [5)].
Such heterogeneity may affect the stability of synchro-
nized equilibria and synchronized periodic orbits and lead
to “amplitude death” in complex networks ﬂE, ]

Numerical simulations or statistical methods are often
used to study the synchronization behavior in networks
with heterogeneous delays @@] However, a better un-
derstanding of the dynamics can be gained by analyzing
the linear stability of specific solutions (equilibria, peri-
odic orbits, heteroclinic orbits, chaotic motion). In par-
ticular, decomposing the dynamics into network modes
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in the vicinity of a particular solution allows system-
atic investigations of stability and bifurcations. The so-
called master stability function approach combines such
modal decomposition with linear stability analysis. This
was first proposed for the analysis of completely syn-
chronized solutions in networks with instantaneous cou-
plings ﬂﬁ, @] where stability properties were linked to
the eigenvalues of the adjacency matrix. Similar decom-
positions were performed for nonidentical node dynamics
129, [26] and around cluster states [27-29].

Modal decomposition can be extended to networks
with delay couplings ﬂﬂ] This is possible even for mul-
tiple delays M], and distributed delays in the con-
nections ﬂé] However, in all these cases the delays were
considered to be homogeneous, that is, the same delay
distribution was used for all connections. An extension
to heterogencous delays was given in ﬂ@] with the restric-
tion that the adjacency matrices corresponding to differ-
ent coupling delays must commute. Another approach
based on a timescale separation was presented for hier-
archical networks having a small coupling delay within
subnetworks and a large coupling delay between subnet-
works m] A general approach for the modal decomposi-
tion around synchronized equilibria with heterogeneous
coupling delays was introduced in ﬂﬂ] Extending this
method to synchronized time dependent solutions is not
straightforward and we target this challenging problem
in this paper.

We introduce the so-called adjacency lag operator that
describes the topology of the network as well as the cor-
responding coupling delays. By block diagonalizing this
operator we decompose the network dynamics and show
that the network modes are given by non-autonomous de-
lay differential equations (DDEs) with distributed delay
in the vicinity of completely synchronized time depen-
dent solutions. The advantage of the proposed method
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is that, similar to the classical master stability approach
used for networks with homogeneous delay, the number
of DDEs describing the dynamics of a network mode is
equal to the number of equations describing a network
node. We show that for heterogeneous delay coupling
the delay distributions arising in the modal DDEs may
be different for each mode. This is in contrast to the clas-
sical master stability approach, where the modal equa-
tions only differ in a complex number (eigenvalue of the
adjacency matrix).

In the context of complex networks, synchronous pe-
riodic oscillations of neurons are of special importance
[7-11d, [14]. Some results for synchronized solutions of
networks of Hodgkin-Huxley neurons with homogeneous
coupling delays were presented in B, ] Here we apply
the developed decomposition method to study the effects
of heterogeneous coupling delays on such neural dynam-
ics. For the stability analysis of synchronized periodic
solutions we use a frequency domain approach that has
been successfully applied in other applications like ma-
chine tool vibrations [36, 37].

The paper is organized as follows. In Sec. [Il conditions
for the existence of synchronized solutions in heteroge-
neous delay-coupled networks are given. In Sec. [[II] the
decomposition of the dynamics around time dependent
solutions is performed. This is combined with numerical
continuation in Sec.[[V]in order to study the stability and
bifurcations of synchronized periodic orbits in a network
of Hodgkin-Huxley neurons. We conclude our results in

Sec. [Vl

II. SYNCHRONIZATION IN NETWORKS
WITH HETEROGENEOUS DELAYS

A network of N identical oscillators with heteroge-
neous delay coupling is considered. In particular, R dif-
ferent coupling delays are considered. Indeed, R = 1
gives the special case of homogeneous delays. The state
of the nodes are described by x; € R", i = 1... N while
the coupling delays are denoted by 7., r =1,..., R. The
dynamics of node i is modeled by the nonlinear DDE

R N
&i(t) = f(zi(t)) + Zzar,ijg(mi(t)amj(t —7)). (1)

r=1j=1

The dynamics of the uncoupled node is described by the
n dimensional nonlinear ordinary differential equation
(ODE) @&; = f(«;), while the coupling function g(z;, z;)
specifies how oscillator j influences the dynamics of oscil-
lator i. The coefficients a,;; are the elements of the N-
dimensional coupling matrices A, corresponding to the
delay 7,.. They specify how strong the current state x;(t)
of node i is affected by the delayed state x;(t — 7,-) of
node j with time delay 7,.. According to the modeling
framework, if a,;; = 0 then there is no signal going from
node j to node ¢ with time delay 7., but a signal may
travel between the same nodes with another delay. Note

that to incorporate continuous distributions for the cou-
pling delays the first sum in Eq. (D) is replaced by an
integral. Still, often we have a,;; # 0 for a single 7 only.

The sum Zle A, = A is the delay-independent cou-
pling matrix. It characterizes the network via a weighted
directed graph, where the oscillators are represented as
nodes and the coupling between them are represented as
edges. The weights of the edges are specified by the en-
tries in the matrix A, but there is no information on the
coupling delays in A.

A. Synchronization

In this paper completely synchronized solutions of
Eq. (@) are studied which are contained in the so-called
synchronization manifold defined by x;(t) = z(t), i =
1,..., N. The dynamics within this manifold is described
by the DDE

R

(1) = f(@s(1)) + Y M g(@s(t), @t — 7)), (2)

r=1

where M, denotes the constant row sum of the coupling
matrix A,, i.e.,

N
M, ::Zamj, fori=1,...,N. (3)
j=1

If for some coupling matrix A, the row sum is not in-
dependent of the row index 4, then it is not possible to
define the synchronization manifold.

In the special case of homogeneous delays (R = 1),
Eq. (@) simplifies to

d}s(t) = f(ws(t)) + Ml g(ms(t)vms(t - 7-1))' (4)

In this case, the condition Eq. (@) means that the row
sum M of the delay-independent coupling matrix A has
to be independent of the row index ¢. In general, M is
defined by

R N
M:=>"Y a;, fori=1,...,N. (5)
r=1j=1

As a consequence, time dependent synchronized states
may exist for homogeneous delays (when Eq. (@) holds)
but may be destroyed when adding heterogeneity to the
delays (when Eq. @) is not satisfied). Moreover, for
the existence of synchronized time-independent solutions
(equilibria) having Eq. (@) is already sufficient as will be
discussed below.

To analyze the stability of synchronized solutions we
define the perturbations y;(t) = x;(t) — xs(t) whose dy-
namics can be approximated by the linear variational sys-
tem

R N
¥i(0) = L) yi(t) + DY ary R(t7) y;(t = 72), (6)

r=1j=1



in the vicinity of the synchronized solution. The coeffi-
cient matrices are defined as

R
L(t) = Df (ws(t)) + > M. Drg(ms(t), zs(t — 7)),
R(tv 7—) = DQQ(ws(t)v :Es(t - T))v
(7)

where Df is the Jacobian of f, and the matrices Dig

and D,g are the derivatives of g with respect to the first
and the second argument, respectively. Defining the n/N

dimensional column vector y = col[yy,...,yx], Eq. (@)
can be rewritten as
R
9(t) = (In®L(0)y()+) (A, @R(t,7))y(t-7), (8)
r=1

where ® denotes the Kronecker product and Iy denotes
the N-dimensional identity matrix.

At this point, one may notice an important conse-
quence of heterogeneous delays. In this case, despite
the same coupling function g appearing in all connec-
tions and for all delays in Eq. (), the coefficient matri-
ces R(t,7,) in the linearized dynamics Eq. (6) depend
on the coupling delays 7, through xs(¢t — 7.). This has
consequences for the decomposability of the network dy-
namics, as will discussed in Sec. [Tl

B. Tangential vs. transversal dynamics

The perturbation vector y in Eq. [8) can be divided
into tangential perturbations and transversal perturba-
tions [23, , ] For tangential perturbations, each
node undergoes the same perturbation y,(t) = q,(t) for
i=1,...,N, that is, y(t) = col[q; (¢), ..., gy (t)]. Substi-
tuting this into (@) one obtains the dynamics for pertur-
bations within the synchronization manifold

R
q,(t) = L(t)q, (1) +ZMT Rt m) g (t—7), (9)

r=1

that is indeed the linearization of Eq. ([2). The transver-
sal perturbations are defined as y,(t) # y,(t) for at least
one i # j.

Indeed, many different solutions may exist within the
infinite dimensional synchronization manifold (equilib-
ria, periodic orbits, homoclinic and heteroclinic orbits,
chaos). Whereas tangential perturbations let the sys-
tem stay within the synchronization manifold, transver-
sal perturbations drive the system away from the syn-
chronization manifold. Synchronization occurs only if
the synchronized solution is transversally stable. The lin-
earized dynamics of the network and its decomposition
are discussed in detail in Sec. [TI}

C. Synchronized equilibria without
synchronization manifold

Time delays can change the stability of an equilibrium
but do not change the existence and location of the equi-
librium [38,[39]. According to Eq. (@) synchronized equi-
libria @s(t) = @ of the network are given by

f(xl)+Mg(z ) =0, (10)

where M is defined by Eq. ([Bl). Thus, as long as Eq. (B)
holds, changing the delays of the connections does not
change the existence of synchronized equilibria. On the
other hand, according to Eq. @) changing the delays
can change the existence of time dependent synchronized
solutions. In other words, synchronized equilibria ex-
ist if the constant row sum condition is fulfilled for the
delay-independent coupling matrix A but time depen-
dent synchronized solution exist only if the constant row
sum condition is fulfilled for all coupling matrices A,
r =1,...,R. We remark that if the coupling is non-
invasive at the synchronized solution, i.e. g(:c;‘, :c;‘) =0,
synchronized equilibria may also exist independent of the
specific network topology and independent of the cou-
pling delays.

As a consequence, there is a large set of networks with
heterogeneous delays, where synchronized equilibria exist
but no time dependent synchronized solutions are possi-
ble. In these cases, no synchronization manifold can be
defined and no tangential network mode exists. Indeed, if
all transversal perturbations around the equilibrium de-
cay then the synchronized equilibrium is stable but when
the equilibrium becomes unstable, an asynchronous state
appears. In these networks stable synchronized equilib-
ria occur due of identical node dynamics and identical or
non-invasive coupling functions which is often referred to
as amplitude death in the literature M] An overview
on the different scenarios including the possibility for syn-
chronized equilibria without a synchronization manifold
is presented in Fig. [l Finally, recall that Eq. (@) also
ensures the existence of time dependent synchronized so-
lutions for homogeneous delays but Eq. (@) is needed to
ensure this for heterogeneous delays. That is by making
delays heterogenous one may destroy the synchronization
manifold while still keeping the synchronized equilibria.

III. DECOMPOSITION OF NETWORKS WITH
HETEROGENEOUS COUPLING DELAYS

Characterizing the stability of completely synchronized
solutions requires the analysis Eq. (8). However, for large
networks investigating Eq. () directly is typically not
feasible. To solve this problem, and to gain insight into
the network dynamics, we will decompose the dynamics
into a tangential mode (see Eq. ([@)) and N —1 transversal
modes. For networks with homogeneous delay (R = 1),
the decomposition can be carried out with the help of
the diagonalization of the adjacency matrix A = A, ﬂﬂ,



Network Eq. (1) with identical node
dynamics and identical coupling function.

Row sum condition Eq. (5) ?

Synchronized equilibrium.

no

Constant delay distribution Eq. (3) ?

No synchronization manifold.
(synchronized equilibria due
to amplitude death possible)

Synchronization manifold exists.
(time-dependent synchronized
solutions possible)

FIG. 1. Complete synchronization and amplitude death in
networks with heterogeneous delays.

23, 24, ] For networks with heterogeneous delays the
same decomposition is still possible if all matrices A,
r=1,..., R commute with each other M] However, in
most cases the matrices A, do not commute.

A general approach for decomposition was introduced
in ﬂﬂ] for the analysis of synchronized equilibria based on
the eigenmode decomposition of the matrix

B(s) = ZAT e 7, (11)

which can be derived from the Laplace domain repre-
sentation of Eq. ) (s € C is the Laplace variable) and
combines the information on the coupling topology and
the coupling delays. However, we will show below that
for time-dependent synchronized solutions such decom-
position is not possible in general. Thus, in this paper
we carry out the decomposition in the time domain using
lag operators and emphasize the fundamental limitations
caused by the time dependency of the matrices L(t) and
R(t,7).

A. Three decomposition levels

Delay-coupled networks are infinite dimensional sys-
tems due to the existence of time delays 7, in the coupling
terms, i.e., the initial condition for Eq. () is a function
on the time interval [—Tyax, 0] for the vector y € R™Y,
where Tiax is the maximum delay. This means that the
state at time ¢ can be defined by the function y(t + ),
—Tmax < 0 <0 @, @] Roughly speaking the network
is N X n x oo dimensional.

According to this, three different levels of decomposi-
tion of delay-coupled networks may be identified. The
first level is the network level, which focuses on the N
nodes coupled via the edges of the graph. A decomposi-
tion at the network level decomposes the dynamics into
N network modes. If Eq. [@3) is fulfilled, one tangential
and N —1 transversal network modes exist m, |ﬂ, %, @]

The second level is the node level corresponding to the
n dimensional system specifying the dynamics at each
node, which may be decomposed into n decoupled scalar
DDEs; see ﬂﬁ, @] where the scalar Lambert W function
was utilized. For example, one may decompose Eq. (@)
for the tangential dynamics into n scalar DDEs. A de-
composition combining the network and the node level
is possible but in such a case the corresponding modes
are less descriptive. The third level is the delay level. In
particular, a scalar DDE can be further decomposed into
infinitely many ODEs corresponding to the characteris-
tic roots ﬂﬁ, ﬁ, @] The node level and the delay level
are often handled together using Operator Differential
Equations [43] or Matrix Lambert W function [49].

In the remaining part of this paper we focus on the de-
composition at the network level. Indeed, such a decom-
position is not always possible. For example, networks
with non-identical node dynamics, i.e., using f, instead
of f in Eq. (@) yield L; instead of L in Eq. ([@). In this
case, the Kronecker product in Eq. (8) cannot be con-
structed and a decomposition at the network level is not
possible in general.

B. Representation with lag operators

We are searching for a time domain representation of
the network dynamics in terms of an operator that con-
tains the information about the network topology as well
as the coupling delays similar to the matrix B(s) defined
in Eq. ().

Let us introduce the lag operator S(7) defined by

S(r)y(t) =yt —7), (12)

for a scalar-valued function y(t). Indeed, this can be
extended to vector valued functions. An alternative rep-
resentation of the lag operator can be derived from the
Taylor expansion of y(t — 7) about 7 = 0 and is given by
S(7) = e~ The eigenfunctions of the lag operator are
exponential functions independent of the time lag, that
is,

S(t)e’t =e e (13)

where s € C. As a consequence, lag operators with dif-
ferent arguments commute with each other and fulfill the
relation

S(Tl)S(Tg):S(TQ)S(Tl):S(Tl +T2). (14)

It follows that 8™ (7) = S(n7) and the identity element is
denoted by S(0). Obviously, the lag operator commutes
with the differential operator £8(7) = S(7)4.

With the help of the lag operator, the linearized dy-
namics Eq. (8) can be written as

a(t) = (IN®L<t>+ZATS<m®R<t,m)y<t>. (15)

r=1



We remark that when calculating the elements of the
Kronecker product A, S(7,) ® R(t, ) the lag operators
do not act on R(¢, 7,.); see (B). Since the matrix R(t, 7;)
may be different for each term in the sum in Eq. (I3),
decomposition at the network level is not possible in gen-
eral. In this paper we focus on the case when the coeffi-
cient matrix R(t, 7) = R(t) does not depend on the delay
7. This occurs, for example, in the case of synchronized
equilibria x4(t) = xs(t — 7) = «¥, which results in con-
stant matrix R = Dog (w:, w’:) Also, when the coupling
is in the form g(x;(t), z;(t — 7)) = G(zi(t)) -x; (t — 72,
we obtain R(t) = G(zs(t)). In these cases Eq. (IH) can
be simplified to

y(t) = (Iv @ L(t) + Bo R())y(t), (16)

where the so-called adjacency lag operator B is defined
by

R

B=Y A.8(r). (17)

r=1

This contains all information about the network topol-
ogy (given by the matrices A,) and the coupling delays
(specified by the lag operators S(7:.)). Notice that the
matrix B(s) defined in Eq. () is the Laplace domain
representation of the adjacency lag operator B.

C. Decomposition of the adjacency lag operator

The adjacency lag operator B contains lag operators
defined in Eq. (I2). Due to the property ([I4) these op-
erators can be handled like commuting symbols. First
we present the formal diagonalization of the operator B
that is equivalent to the diagonalization of the matrix
B(s) presented in [5]. We also show that this does not
necessarily decouple the linearized dynamics around time
dependent synchronized solutions and we present an al-
ternative approach for the decomposition to overcome
this problem.

Let us search for a diagonalization of the adjacency lag
operator B as

BVy, = Dy Vi,

18
Uy B = Dy Uy, (18)

k=1,...,N,

where Dy is a scalar operator serving as the “eigen-
value” while Vy, and Uj are vector valued operators in
column and row format (with N components) serving
as the “right and left eigenvectors”. These form an or-
thonormal system with Uy - Vy = ¢, where - represents
the N-dimensional dot product and dxy denotes the Kro-
necker delta. In general, Dy, Vi, Ui may contain linear
and nonlinear functions of the lag operators S(7,.). We
assume that the diagonalization Eq. (I8) exists, i.e., alge-
braic and geometric multiplicities are the same for each
eigenvalue Dy.

Using eigenvectors Vi and Uj, we define the new vari-
ables

qi(t) = (U @ 1n) y(1), (19)

and use them to construct the solution of Eq. (If) as

N

y(t) =) (Ve®@Ly)qt) (20)
(=1

Then, by multiplying Eq. ([I8]) with U ®I,, from the left,
substituting Eq. 20), and using Eqs. (I8) ([I9) yields

N
@) =3 (U [L(0)] Ve + U [R()] VDo) q,(t),  (21)
(=1

where we used the abbreviated notation Uy [P(¢)]V, =
(U @ P(t))(Ve @ 1) where only the lag operators in Uj,
act on P(t).

If the coefficient matrices L(t) = Lo and R(t) =
Ry are time independent (which happens around syn-
chronized equilibria ﬂﬂ]), then Uy [Lo] Ve = Lgdge and
Uk [Ro] Ve = Rodre. As a consequence, Eq. ([ZI) de-
couples into N independent subsystems, where g, and
V). act as modal coordinates and mode shapes, respec-
tively. In contrast, for time dependent coefficient ma-
trices Z/{k [L(t)] Vz 75 L(t) 5kg and Z/{k [R(t)] Ve 7£ R(t) 5kg
since Uy, and Vj, can contain lag operators. (A paradig-
matic example for such a coupling term can be given by
U [L(t)] Ve = L(t) — L(t — 7,.) for k # 1.) Thus, even
if the adjacency lag operator B can be diagonalized, the
network dynamics Eq. ([I0) does not automatically de-
couple into N subsystems when writing it in terms of the
modal coordinates Eq. (ZI)).

Nevertheless, it is worth taking a closer view at
Eq. 2I). Often Vj, and/or Uy, does not contain lag oper-
ators (but numbers only). This happens if the coupling
matrices A, 7 = 1,..., R have common eigenvectors (ei-
ther right or left). In such cases, the corresponding op-
erator is given by

R
Dp =Y 0rkS(r), (22)

r=1
where o, , 7 = 1,..., R are the eigenvalues of the matri-
ces A,, 7 =1,..., R belonging to the common eigenvec-

tor of the kth network mode. As a consequence, many
of the coupling terms in Eq. (ZI) vanish as illustrated
in Fig. 2(a). In particular, we distinguish between three
different types of modes.

We first consider the modes k = 1,..., k1, where the
left eigenvectors U, contain only numbers. Then we have
U [L()] Ve = L(t) dke and Uy, [R(¢)] Ve = R(t) dke and
Eq. 1) simplifies to

4 (t) = (L(t) + R(t) D) qx (1) (23)

for kK = 1,...,k1. In other words, the first k1 modes
are completely decoupled; see the top rows in Fig. 2l(a).
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FIG. 2. (a) Structure of Eq. (2I) with separation into master modes (), contains only numbers), slave modes (V}; contains only
numbers) and intermediate modes. Only the squares and the diagonal stripes are non-empty. The stripes at the main diagonal
are associated with Eq. (23) and determine the stability of the master and the slave modes, respectively. The intermediate modes
are driven by the master modes and both can drive the slave modes. (b) Structure of Eq. (2I]) after additional decomposition
of the intermediate modes. The two small squares at the main diagonal of the intermediate modes are associated with two
blocks similar to Eq. (20)), specifying the stability of the intermediate modes.

We call these master modes because they can drive the
remaining modes of the network. Note that Eq. (22)
yields Dy, q;,(t) = Zil ok @i (t — 7). Thus, Eq. 23)) is
a DDE with distributed delay with kernel Zle Ok 0(T—
7r), where § denotes the Dirac delta function.

Second, we consider the modes &k = ko + 1,..., N,
where the right eigenvectors V) contain only num-
bers while the left eigenvectors U}, contain lag opera-
tors. In this case, we have Uy [L(t)]V, = L(t) dxe and
U [R(t)] Ve = R(t) Ope for £ = ko +1,...,N and the
corresponding coupling terms vanish in Eq. (21); see the
last columns in Fig. P a). As these modes do not drive
any other mode but can be driven by other modes we
call them slave modes. Note that if the driving modes
are zero, Eq. ([23) would describe the slave modes. We
remark that the tangential mode is always a slave mode
because V; = [ 1,...,1 |7 meaning that the tangential
mode cannot drive transversal modes.

The third type of modes with k = k; + 1,..., ko are
called intermediate modes shown in the middle rows in
Fig.2(a). In this case both Uj, and Vi contain lag oper-
ators and the dynamics of the intermediate modes is not
decoupled as illustrated by the large block in the mid-
dle in Fig. Rla). In order to decouple the intermediate
modes from each other, a modified decomposition of the
adjacency lag operator B different from the eigenmode
decomposition Eq. (I8) is necessary.

More precisely, we aim for the block diagonalization of
the adjacency lag operator B such that for the interme-
diate modes k = p, ..., q we have

BVP;~~~7¢1 =Dp,....q Vp,....a:

24

Up,...qB =Dy, qUp,..q (24)
Here D, 4 is a @Q x(Q block of lag operators (QQ = ¢—p+
1>1),V,,  qandU, 4 represent operator blocks of size
N xQ and @x N, respectively, and U, ... 4-Vp.,... 4 gives the
@ dimensional identity matrix. Specifically, we construct
Eq. 24) such that either U, 4 or V, ., contain only
numbers. Then, due to common invariant right or left
subspaces of the coupling matrices A, r =1,..., R, the

elements of D), ., are given by linear combinations of
the lag operators S(7;.).

As a consequence, the intermediate modes can be
further decomposed into intermediate master modes
(when U, 4 contains only numbers) and intermediate
slave modes (when V, ., contains only numbers); see
Fig. 2l(b). Then, the dynamics of the intermediate mas-
ter modes is given by

4y ()= IoOL(t)+D,.. s @R(t))q, (1), (25)
where g, (t) has nQ components. Note that such
equation also describes the intermediate slave modes if
the driving modes were zero.

We conclude that, in contrast to the case of synchro-
nized equilibria, for time dependent synchronized solu-
tions the diagonalization of the adjacency lag operator B
given by Eq. ([I8) does not automatically decouple the
network modes. Instead, a block triangular structure
arises as shown in Fig.[2l Using the block diagonalization
given by Eq. (24)) further decomposition of the interme-
diate modes may be possible. Then the stability of the
synchronized solution can be guaranteed by ensuring that
the blocks on the main diagonal decay exponentially, i.e.,
the solutions of Eq. (Z3) for the master and slave modes
and also the solutions of Eq. (23] for the intermediate
modes decay exponentially. A frequency domain method
for stability analysis of these systems is presented in Ap-
pendix [Al



D. Examples

As an illustration, two examples with N = 5 nodes
and two different coupling delays are presented. The
first one is a special case of all-to-all coupling without
self-coupling. In particular, we consider the coupling ma-
trices

01110 00001
10011 00100
A;=(10011, A;=1]0100 0|, (26)
11100 00001
01110 10000
that result in the adjacency matrix
01111
10111
A=A +A,=|1 1011}, (27)
11101
11110
and the adjacency lag operator
B:A18(71)+A28(7'2)
0 8(7'1) 8(7'1) S(Tl) 8(7'2)
8(7'1) 0 8(7'2) S(Tl) 8(7'1) (28)
= |8(n) S(r2) 0 8S(m1) S(m)|,
S(Tl) S(Tl) S(Tl) 0 S(Tg)
8(7'2) 8(7'1) 8(7'1) S(Tl) 0

cf. (I7). Notice that for this example the adjacency ma-
trix A is symmetric but the adjacency lag operator B is
not as 845 75 854.

After diagonalization of B described by Eq. ([IX) the
operator-valued eigenvalues are

Dy = 38(7‘1) +S(T2),
Dy = —28(7’1) +S(T2),

D3 = —=S(m1), (29)
D4 = —8(7'2),
D5 = —8(7'2).

Each Dy, is a linear combination of the lag operators S(71)
and S(72) so that their coefficients are indeed the eigen-
values of A; and Ay ( belonging to a common eigenvec-
tor); cf. Eq. 22)). The corresponding operators U}, and
Vi can be found in Appendix [Bl Observe that for each
k, Uy, and/or Vj, contains only numbers and consequently
we only have four master modes (2,3,4,5) and one slave
mode (1). One may also notice the algebraic multiplic-
ity Dy = Ds that also results in geometric multiplicity.
This means that V, and Vs (and similarly U, and Us)
are not unique but here they are constructed such that
orthonormality is satisfied.

The second example is referred to as general coupling

and is defined by the coupling matrices

01110 00001
10011 0100
A;=|10011, Ax=1]01000|, (30)
11100 00001
01110 10000
resulting in the adjacency matrix
01011
00111
A=A +A=1|1100 1], (31)
10101
11010
and the adjacency lag operator
B:Als(Tl)“"AQS(TQ)
O S(Tl) 0 S(Tl) S(Tg)
0 0 S(Tg) S(Tl) S(Tl) (32)
= 8(7'1) 8(7'2) O O S(Tl) .
8(7'1) 0 8(7'1) O S(TQ)

8(7’2) S(Tl) 0 S(Tl) 0

cf. ().
The diagonalization described in Eq. (8] yields the
operator-valued eigenvalues

Dy =28(11) + S(12),
Dy = —S(T1)+S(T2),
D3 = —8(7’2),

Dy = %(— (S(m1) + S(12))

+V/S2(r) — 28(11)S(r2) — 332(71)),
D5 = %(— (S(m1) + S(12))

~ V& ()~ 28(r)S(r) - 387(m)).

Here Dy, D5, and D3 are linear combination of the lag op-
erators, while D4 and D5 are not and can only be defined
via multi-variable Taylor series ﬂﬂ] One can conclude
that mode 3 is a master mode, modes 1 and 2 are slave
modes and modes 4 and 5 are intermediate modes; see
the corresponding operators U, and V. in Appendix

As mentioned above the formal diagonalization of B
does not necessarily lead to uncoupled dynamics for the
intermediate modes in case of time dependent solutions.
Thus, D4 and D5 can only be used for the stability anal-
ysis of synchronized equilibria. For time dependent syn-
chronized solutions the block diagonalization defined by
Eq. ([Z8) is needed, which yields

_|=S(r) S(n)
Das = {—3(71) —5(72)} ’ (34)

while the operators Uy 5 and Vs 5 are given in Appendix
These are constructed as a linear combination of Uy
and Us and as a linear combination of V4 and V5. Indeed,
the formal diagonalization of Dy 5 lead to the operator-
valued eigenvalues Dy and Dj defined in Eq. (33).

(33)




IV. DELAY-COUPLED HODGKIN-HUXLEY
NEURONS

In this section we study the synchronized solutions
in a network of N delay-coupled Hodgkin-Huxley neu-
rons with heterogeneous delays ﬂg, 1d, @] We utilize
the modal decomposition from Sec. [[II] and analyze the
modal dynamics Eq. (23) and Eq. (23] rather than the
full network dynamics Eq. (8). We use the frequency do-
main method from Appendix [A] for the stability analysis
of the arising non-autonomous DDEs with distributed
delay. Apart from having smaller systems for stability
analysis the network modes give information about the
arising patterns of oscillations when stability is lost.

The time evolution of the Hodgkin-Huxley neuronal
network is given by the DDE

CVi(t) = T — gnami (t) ha(t) (Vi(t) — Via)
— g ni(t) (Vi(t) — Vi)
—gr (Vi(t) = W)

R
+ > i (Vilt =) = Vi(®),

i, = (Vi) (1 — ma(®)) — B (Vi) ms(t).

hi =an (Vi) (1 = hi(t)) — Bu (V1)) ha(t),
i =an (Vi) (1 = n4(0)) — B (Vi) ),
(35)
fori=1,...,N. Here the time ¢ is measured in ms. The

symbol V; denotes the voltage of the i-th neuron at the
soma (measured in mV) while the dimensionless gating
variables m;, h;,n; € [0, 1] characterize the “openness” of
the ion channels embedded in the cell membrane. The
specific form of the nonlinear functions ., (V), ap(V),
an(V) and B(V), Bu(V), Ba(V) are given in Eq. (CI),
while the reference voltages VNa, Vi, Vi, the conduc-
tances gna, 9k, g1, the membrane capacitance C, and
the driving current I are given in Table[llin Appendix[C]
The last term in the voltage equation in Eq. [B5) rep-
resents a direct electronic connection of conductance k
between the axon of the j-th neuron and the dendrites of
the i-th neuron, that is, V;(¢) represents the postsynaptic
potential while Vj(t — 7,.) represents the presynaptic po-
tential and the delay 7, stands for the signal propagation
time along the axon of the j-th neuron (dendritic delays
are omitted here). That is, the presynaptic potential is
equal to what the potential of the soma of the jth neuron
was 7, time before.

In order to demonstrate the decomposition techniques
established above the examples with all-to-all coupling
Eq. 28) and the general coupling Eq. (32) are consid-

ered with the conductances fixed at k = 1.2;?1152 and
K = 1.6%, respectively. The different values of the

coupling strengths compensate the different row sums of
the two coupling schemes, i.e., kM is the same in the two
examples cg. ([@). Consequently, the tangential dynamics

Eq. [@) are equivalent in the two cases when considering
homogeneous delays 7 = T2; see ﬂﬁ] We vary the delays
and study how the stability of the equilibria and periodic
soutions change.

A. Synchronized equilibria

For the parameters considered here, Eq. ([B3) has a
unique equilibrium; see [10]. Fig. Ba) and (b) show
the stability charts for the equilibrium in the (71, 72)-
plane for all-to-all coupling (Eq. (28])) and general cou-
pling (Eq. (32)), respectively. The stable domains are
shaded. When crossing the thick black curves starting
from a shaded domain, the dominant characteristic roots
corresponding to the tangential network mode cross the
imaginary axis and the synchronized equilibrium bifur-
cates to synchronized periodic solutions. Notice that
along the diagonal 7 = 75 of homogeneous delays, tan-
gential stability losses occur at the same locations in
both panels. When crossing the thin colored curves,
characteristic roots corresponding to transversal network
modes cross the imaginary axis. When starting from a
shaded domain, the synchronized equilibrium becomes
unstable with respect to transversal perturbations and
synchronization is broken. In this case typically cluster-
synchronized periodic solutions appear ﬂiLlﬂ

In order to emphasize the effects of delay heterogene-
ity we show the real part A of the dominant character-
istic roots for the case with general coupling in Fig. [
In Fig. @(a) and (b) we vary the delays along 71 = 7o
and along 75 = 7 + 4.8 ms shown as dotted and dashed
lines in Fig. BIb), respectively. For the homogeneous
case 71 = To both tangential and transversal stability
losses occur and the synchronized equilibrium is stable
only for € [1.7,2.4] and 7y € [3.9,4.5]. For the het-
erogeneous case T2 = 71 + 4.8 ms tangential instabilities
vanish but transversal ones appear leading to the stable
regions 71 € [0,2.4] and 7 € [7.1,9.8]. Note that in this
case introducing heterogeneity in the delays increases the
stable regions. While this may not be true in general,
tuning delay distributions were also used to stabilize the
equilibrium for metal cutting @—@]

B. Synchronous periodic spiking

Here we study the synchronized periodic solutions em-
bedded within the synchronization manifold. In par-
ticular, with the help of the software package DDE-
BIFTOOL [55] we compute periodic solutions of Eq. (Z)
by using numerical collocation and continue these while
varying the delays. In Fig. [f] the peak-to-peak voltage
amplitude |V;| of the synchronized periodic solution is
plotted as a function of the delay 7 for different values
of the delay heterogeneity A7 = 75 — 7. The left and
the right columns in Fig. [§] correspond to the all-to-all

(Eq. @8)) and the general coupling (Eq. (32)), respec-
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FIG. 3. Stability charts for the equilibrium of Hodgkin-Huxley neurons with (a) all-to-all coupling and (b) general coupling.
Thick (black) curves are associated with purely imaginary roots of the tangential mode. Thin dark (blue) and light (green)
curves indicate purely imaginary roots associated with mode 2 and 4/5, respectively. Stable regions, where all characteristic
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FIG. 4. Real part of characteristic roots for general coupling
with (a) homogeneous delays 71 = 72 and (b) heterogeneous
delays 72 = 71 + 4.8 ms (b); cf. Fig. B(b). Stable regions
are shaded. Color code as in Fig. Bl (only the dominant roots
corresponding to modes 1,2 and 4/5 are shown).

tively. Notice that the branches are the same in the two
columns except the coloring.

DDE-BIFTOOL gives the stability information with
respect to the tangential perturbations of the periodic
solution: solid thin green (thick red) curves indicate tan-
gentially stable (unstable) solutions. To determine stabil-
ity with respect to transversal perturbations we decom-
pose the network dynamics as presented in Sec. [[ITl and
analyze the periodic DDEs with distributed delay given

by Eq. (23) or Eq. (25). The coefficient matrices L(t) and
R(t) are calculated using the output of DDE-BIFTOOL
and the operators Dy, are obtained from (29)) for all-to-
all coupling and from (B3]) and 34]) for general coupling.
Then the dominant Floquet exponents associated with
all N — 1 transversal network modes are calculated via
Hill’s infinite determinant Eq. (ATQ) and the correspond-
ing transversal instabilities are marked by dotted thick
black curves in Fig.

The homogeneous delay case 71 = 79 is shown in
Fig.[Ea) and (b). In this case the red and green coloring
is the same in the two panels as the tangential dynam-
ics are equivalent. However, the stability with respect
to transversal perturbations (dotted thick black curves)
differs due to different eigenvalues of the adjacency lag
operator for the two different coupling schemes. For ex-
ample, at 71 = 7o = 3.4 ms (marked by vertical dashed
lines) both the synchronized equilibrium (|Vs| = 0 mV)
and synchronized periodic spiking (|Vs| &~ 90 mV) are
linearly stable for all-to-all coupling, whereas for general
coupling the synchronized equilibrium is unstable.

When increasing the delay heterogeneity AT =717 — 71y
the parameter regions where the synchronized periodic
solutions are unstable expand and in some cases they do
not even exist. For example, for A7 = 4.8 ms shown in
Fig. Bli) and (j) no such solutions exist for 7 € [1.9,5.9]
ms and for 7 € [1.4,6.2] ms, respectively. Moreover,
transversal instabilities are more pronounced for the case
of general coupling. For example, for A7 = 4.8 syn-
chronized periodic spiking is stable for 7 € [0,1.5] ms
and 7 € [6.0,14.7] ms when using all-to-all coupling (see
Fig. Bl(i)), while for general coupling this motion is only
stable for 7 € [0,0.7] ms and 7y € [6.4,13.5] ms (see
Fig. B)).

In order to demonstrate the full nonlinear dynamics
of the Hodgkin-Huxley neurons we use numerical sim-
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solutions with respect to tangential perturbations, while transversal instabilities are marked by dotted black curves.

The

parameters indicated by the dashed vertical lines in panels (a,b,e,f) are used in Fig.

ulations. Specifically, Eq. is integrated numerically
with a Runge-Kutta method [56]. Arbitrary constant val-
ues are chosen for the initial functions. For ¢t < 200 ms
the delays are set to the homogeneous case 71 = 75 = 3.4
ms corresponding to the vertical dashed lines in Fig. Bl(a)
and (b). The voltages V; of the five neurons are plotted
as a function of time ¢ for all-to-all coupling in Fig. [6a)
and for general coupling in Fig. B(b). In both cases (af-
ter some transient dynamics not shown in Fig. [6) syn-

chronized periodic spiking arise. At ¢ = 200 ms, the
delay 7o is increased abruptly to create the heterogene-
ity AT = 179 — 71 = 2.4 ms corresponding to the vertical
dashed lines in Fig. Be) and (f). Since in this case all
possible synchronized solutions are transversally unsta-
ble, cluster-synchronized periodic spiking appears for the
all-to-all coupling and asynchronous spiking appears for
the general coupling.
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FIG. 6. Voltages of the Hodgkin-Huxley neurons Eq. (35
for all-to-all coupling (a) and general coupling (b). We set
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V. CONCLUSION

Synchronized solutions of networks with heterogeneous
coupling delays were investigated. The conditions for the
existence of the synchronization manifold were given. It
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was shown that adding heterogeneity in the delays may
destroy time dependent synchronized solutions while still
maintain synchronized equilibria.

A systematic method was presented for the decompo-
sition of the dynamics at the network level in the vicinity
of synchronized solutions. This was based on the decom-
position of the adjacency lag operator, which contains
information about the network topology as well as the
coupling delays. In the generic case, the block diagonal-
ization of the adjacency lag operator led to a triangu-
lar structure for the modal dynamics. This allowed us
to investigate the stability of time dependent synchro-
nized solutions by analyzing the stability of modal DDEs
separately, where different modes were associated with
different delay distributions.

As an example, the effects of delay heterogeneity on
synchronized equilibria and synchronized periodic spik-
ing in a systems of Hodgkin-Huxley neurons were studied.
In this case increasing heterogeneity in the coupling de-
lays led to larger regions where all synchronized periodic
solutions were unstable or even no synchronized periodic
solutions existed. As neurosystems often store informa-
tion using periodic cluster-synchronized states, establish-
ing mathematical tool for their stability analysis in the
presence of heterogeneous delays is an interesting future
research direction. The extension of the current work to
near synchronous states is another topic left for future
research.
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Appendix A: Stability analysis in the frequency
domain

A frequency domain approach is suitable for the stabil-
ity analysis of the modal dynamics Eq. (23) and Eq. (25)
because exponential functions e*! are eigenfunctions of
the lag operator (cf. Eq. (I3])). Here we present the meth-
ods for Eq. ([23) but the results may be easily extended
for Eq. (25).

For synchronized equilibria xs(t) = x¥, Eq. (23) with
time invariant coefficient matrices L(t) = Ly and R(t) =
Ry describes of the modal dynamics. Then, the expo-
nential ansatz

a5 (t) = a0 e (A1)
with s € C (see [43,[47, 48, [57]) leads to the modal char-
acteristic equation

det [Ls — Lo — RoAy(s)] = 0, (A2)

where Aj(s) os the eigenvalue of the operator Dy, i.e.,

Dk eSt = Ak (S) eSt . (A3)
Recall that e™*7 is the eigenvalue of the lag operator
S(7); see Eq. (I3). When Dy, can be written in the form

Eq. 22), we have

R
Ar(s) =D orp e ™. (A4)
r=1

The the characteristic roots s for network mode &, can be
found by solving the characteristic equation Eq. (A2). If
all characteristic roots are located in the left-half of the
complex plane then the mode is stable. Although there
are infinitely many characteristic roots, those with the
largest real part, often called dominant roots, determine
the stability. In this paper we compute these roots by us-
ing a multi-dimensional bisection method m, @] As the
parameters (e.g., the delays) are varied, roots can move
into the right half complex plane resulting in an insta-
bility. The stability boundaries indicate the parameter
values where roots cross the imaginary axis. By substi-
tuting s = iw, w > 0 into Eq. (A2) one may find these
boundaries.

For synchronized periodic solutions x4(t) = xs(t + T'),
where T" denotes the period, we use Hill’s infinite determi-
nant method to determine stability [59,160]. The method
is often used in engineering applications and it is also
known as multifrequency approach @, 137, @—@] For
synchronized periodic solutions the coeflicient matrices
are periodic, that is, L(t) = L(t+7T) and R(¢) = R(t+T).
From Floquet theory it is known that the solutions of
Eq. 23) can be written as
(A5)

q;,(t) = pi(t)e*,  pi(t) = pp(t + 1),
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where the complex numbers s € C are called Floquet
exponents; see [64]. The periodic part p,(t) can be ex-
panded using Fourier series

e o0
p(t) = Z o M = g, (t) = Z o (s HIN

l=—00
(A6)
where 2 = 27/T is the frequency and g, , are the Fourier
coefficients. Similarly, the periodic matrices L(t) and
R(t) can be expanded into Fourier series

l=—00

L(t) = i L, ™ R(t) = i R, ™2t

) (A7)
Note that the Fourier coefficients L,, and R,, depend
on the form of the synchronized periodic solution of the

network, which is often available only numerically.
Putting Eq. (Af) and Eq. (A7) into the modal dynam-

ics Eq. [23)) yields

S S
Z eimQt Z Mm,l Qk,l _ 0,

m=—oo l=—00

m=—0o0

(A8)

where the matrices M,, ; are given by
Mm,l = In(S—l—llQ) 5m,l_Lm7l_Rmfl Ak(8+ilQ), (Ag)

and A (s) are defined in Eq. (A3). Since in Eq. (AS]) the

coefficients for each harmonic m must vanish, we obtain

M_; 1 M_1o M_y
det |... M()’,l MO,O M071 ...| =0.
Mi_1 Mo M,

(A10)

This infinite determinant can be interpreted as the char-
acteristic equation of the DDE Eq. ([23)) for periodic co-
efficient matrices. Note that the matrices M,,; also de-
pend on the modal index k. Notice that if the coefficient
matrices L(t), R(t) are constant, the higher harmonics
in Eq. (A7) vanish, i.e., L,, = Ry, = 0 for m # 0, and
Eq. (AIQ) simplifies to Eq. (A2).

Again, stability is guaranteed when all Floquet expo-
nents s are located in the left-half of the complex plane.
We use the multi-dimensional bisection method to com-
pute the exponents and detect the stability boundaries
in parameter space ﬂﬁ, @] but one may find alternative
methods in ﬂaﬁ) For a practical calculation of the deter-
minant Eq. (A10), the infinite matrix M is truncated to
a finite dimensional matrix by taking into account only
a finite number of higher harmonics iﬁ, 137, l61, ] Fi-
nally, we remark that ansatzes similar to Eq. (&) or
Eq. (Af) can also be made in the original system Eq. (8]
leading to a complete frequency domain description of
the network dynamics.
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Appendix B: Network modes for the examples

For simplicity we introduce the notation S(m1) = S1, S(72) = Sa. The operator-valued right and left eigenvectors

for the all-to-all coupling Eq. ([28)) corresponding to the operator-valued eigenvalues Eq. ([29) are given by

1 1 S 0 S+ 8
1 -3 Si 1 -18
1 2 1 %
Vi= |1, V= _g y Vs= oo S1 , Va= _% sy Vs=go——o —351 )
1 1 481 + &2 —(381 + S,) 0 381 + 28, SIS,
1 1 S 0 —(281 4 8z)
(B1)
and
Uy = [;M 11 _S 125435
5 (481+82)(381+282) 5 5 481+8Ss 5381+283 |’

to =[5~ —+ 0 4],

Us=1[100 —1 0], (B2)

U4:[0 1 -10 0],

Z/l5:[1 000 —1].

The operator-valued right and left eigenvectors for general coupling Eq. (82)) corresponding to Dy, D2 and D3 in

Eq. 33) and D45 in Eq. (B4) are given by

1 1 S? - 282
2
S AN i PR S e
1= ) 2= |— 9 3= 3 1 }
2 (814 852)(S — 28
1 1 (S1+82)(81 - 25) S2 282
1 1 —(82 — 285,85, — 2852)
1
V =
45 = (ST 8,5, 1 252)(757 1 88,55 + 25) (B3)
S1(8} — 8182 - 83) S1(283 + 2828, + 585152 + 4853)
St + 68283 + 78583 + 285 S1(28} — 585285 — 385,52 + 2853)
X | —68) — S8y — 28282 — 75,83 — 283 S1(287 — 5828, — 35,52 + 2853) ,
S1(8} — 8583 — 83) —58} + 878y — 385282 — 105,83 — 453
S1(8 — 8182 - S3) S1(283 + 28285 + 585152 + 483)
and
U — [1987416578,4+125:1853+4S5  (S1+82)(481+8>) 387 +385182+S3 S1(681+582) 181428,
L= |6 (81+82)(757 85152 +253) 2182424552 1652 21824245:85 1652 2182+245:5:+652 6 S1+Sz2 |’
Uy — [ 1 S2(287-3818:+4283) 1 Si-88+85 1 52 1 5,55 18-S,
2= L 3 (517252)(5%751524'25%) 3 55751524*25% 3 55751524*25% 3 55751524»25% 3812852 (B4)
ng[l 000 —1},
(01 -1 0 0
Us=110 0 -10]

Appendix C: Details of the Hodgkin-Huxley model

The nonlinear functions used in the the Hodgkin-
Huxley model Eq. (33]) are

VN =50mV  [gna = 12025 |C =145
0.1(V +40 .
am(V): (7—"_‘”40), Bm(V):4e*%, Vk = =77 mV gK :36;:;52 1 :205’“—1&2
1—e 10
_ V465 Vi, =—-544mV| g1 :0.3;:’“5
an(V)=0.07Te 20,  Bp(V) = ﬁ ,(C1) &
0.01 (V +55 .
(V) = ZOLWVES0) g (1) = 0125 56
1—e "0

while the parameters used in Eq. (38]) are given in Table[ll

TABLE I. Parameters for Hodgkin-Huxley neurons.




