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Modeling and parameter estimation to capture the dynamics of physical systems are often chal-
lenging because many parameters can range over orders of magnitude and are difficult to measure
experimentally. Moreover, selecting a suitable model complexity requires a sufficient understand-
ing of the model’s potential use, such as highlighting essential mechanisms underlying qualitative
behavior or precisely quantifying realistic dynamics. We present a novel approach that can guide
model development and tuning to achieve desired qualitative and quantitative solution properties.
It relies on the presence of disparate time scales and employs techniques of separating the dynamics
of fast and slow variables, which are well known in the analysis of qualitative solution features. We
build on these methods to show how it is also possible to obtain quantitative solution features by
imposing designed dynamics for the slow variables in the form of specified two-dimensional paths in
a bifurcation-parameter landscape.
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I. INTRODUCTION

Pulsing in lasers [1], mixed-mode oscillations in a chem-
ical reaction [2, 3], and bursting in neurons [4] are just a
few examples among the ubiquitous patterns that exhibit
features evolving on disparate time scales. One classical
approach to understanding such patterns is the method
of fast-slow decomposition of the underlying mathemat-
ical model, where each variable in the model is classified
as fast or slow. All slow variables are then fixed, so that
the fast variables define the so-called fast subsystem for
which the slow variables are treated as parameters [5–
8]. The slow dynamics impose a particular path that the
slow variables sweep out in the bifurcation landscape of
the fast subsystem. The full system dynamics can be
approximated by assuming that the fast variables drift
along a sequence of attractors, punctuated by occasional
rapid transitions between different attractors at certain
bifurcation events, while the slow variables trace the path
imposed by the slow dynamics. In particular when a sin-
gle slow variable is used, the classical modeling approach
includes an ordinary differential equation (ODE) for that
variable and considers the locus of zero speed, or nullcline
of the slow variable with respect to the fast variables, to
specify its direction of motion [7–11]; another approach is
to view the slow dynamics as a non-automomous external
force [12–14].

The method of fast-slow decomposition offers a sim-
ple and effective way of classifying different oscillatory
patterns for two-timescale systems. Each type of pat-
tern is uniquely described by the sequence of bifurca-
tions that are encountered as the slow variables trace
a selected path, and by the particular attractors of the

fast subsystem that are visited once such bifurcations are
crossed [9, 10, 12]. More precisely, bursting patterns will
be qualitatively the same if the associated paths traced
by the slow variables cross the same bifurcations of the
fast subsystem in the same order. However, this approach
does not reveal quantitative features of the oscillation,
which may be quite important for the particular applica-
tion associated with the pattern.
In this paper, we propose a novel extension to the ap-

plication of fast-slow decomposition. The underlying idea
of our approach is that we gain access to quantitative in-
formation about the fast dynamics by exploring and char-
acterizing in more detail regions in slow variable space
corresponding to similar qualitative behaviors of the fast
variables. The relevant quantitavitve information in this
context includes the dependence on parameters of con-
vergence rates to attractors and the periods of periodic
orbits. In our study, we will prescribe a simple form of
slow dynamics, leading to a particular class of imposed
paths that can be explored by variation of a small set
of associated parameters. Importantly, we consider two
slow variables, which provides access to a parameterized
continuum of paths that can be used to tune quantitative
features of an oscillation pattern. Specifically, we will be
considering families of elliptic paths in our case study
below.
The combination of imposed paths and easily obtained

quantitative information about the fast subsystem pro-
vides a resource that helps steer the fast-variable out-
puts to a quantitative agreement with desired targets.
The resulting dynamical system may serve as a partially-
phenomenological model of the physical system under
study in its own right; moreover, it may provide a guide
for subsequent parameter estimation in the full model, if



2

one is available; or, finally, it may serve as a tool to assist
in the development of a model for the slow components
of the system, if one is not yet available.

In what follows, we consider the specific field of neuro-
physiology and focus on patterns generated by neurons.
Neurons engage in activity patterns known as bursting
in a variety of settings, including sleep, novelty detec-
tion, generation of repetitive movements, release of hor-
mones, and certain pathological conditions [4, 15]. In
very general terms, bursting refers to any time course
of the membrane potential that features active phases of
consecutive high-frequency oscillations alternating with
intervals in which oscillations are much smaller, much
more infrequent, or absent altogether. This simple char-
acterization, however, encompasses a striking diversity
of bursting patterns that arise across different neurons in
various contexts [9, 10, 14].

Classic analysis of bursting dynamics, as pioneered by
Rinzel [7, 8], utilizes the fast-slow nature of such sys-
tems and is based on singularity theory [9, 12, 14]. The
key idea is to investigate bursting patterns and to design
minimal bursting models via the analysis of the under-
lying fast subsystem. While this type of analysis has
been used for realistic slow-fast models, it may yield en-
tirely abstract models of phenomenological bursting pat-
ters that exhibit specific features in a qualitative way
only [7, 8, 14, 16]. In particular, systems with a single
slow variable have been explored extensively in this way.
For such systems, an imposed path associated with a pe-
riodic bursting pattern is necessarily a line segment and
the slow variable oscillates back and forth over a given
range of values. The bursting patterns obtained for such
systems are entirely characterized by the number and or-
der of bifurcations of the fast subsystem that are encoun-
tered along the imposed path; for example, a complete
classification of bursting patterns was attempted in [10].

There are cases of other types of bursting that involve
two slow variables [17]. For example, the qualitative pat-
tern of parabolic bursting has been explained in terms of
slow motion across bifurcation curves of the fast subsys-
tem [18], and a canonical underlying model associated
with this bifurcation structure was derived via nonlin-
ear coordinate changes [16, 19]. We adapt and extend
this approach of slow-fast decomposition with the goal of
capturing particular quantitative features of the bursting
pattern that are not expressable by the sequence of bifur-
cations alone. Hence, rather than focusing on a canonical
model we will incorporate also quite precise information
regarding the dynamics of the fast variables. The overall
slow-fast model is developed in what can be considered
a design stage: an entire family of paths that encoun-
ters the required sequence of bifurcations is defined and,
subsequently, a path is selected that best represents the
prespecified quantitative features.

As leading example and case study for this paper,
we consider a seven-dimensional model of bursting in
neurons of the respiratory brain stem [20] with five
fast and two slow variables. This model exhibits a

particular form of neuronal bursting, which we refer
to as depolarization block or DB bursting; an example
of the corresponding voltage time course is shown in
Fig. 1(b). This type of bursting pattern has also been
observed in other neuronal models [21, 22]. Each cycle
within a DB bursting pattern consists of:

(i) a silent phase of quiescence;
(ii) the emergence of sustained voltage spiking with

gradually increasing spike frequency;
(iii) a fairly abrupt significant increase in spike fre-

quency and attenuation of spike amplitude;
(iv) an approach towards a depolarization block state

of steady, elevated voltage;
(v) a re-emergence of spiking; and
(vi) a return to quiescence.

The quantitative features of DB bursting may be im-
portant for the biological function of a neuron; for exam-
ple, the spiking phase within a burst may be associated
with release of substances such as hormones or with ac-
tivation of a particular muscle group. Moreover, it may
not be obvious that two bursting solutions, which are
qualitatively similar from the point of view of fast-slow
decomposition, really share what biologists would con-
sider to be the same features. For example, if oscillations
become sufficiently small, they will be undetectable or
swamped by noise, while only certain frequencies of oscil-
lations may suffice to achieve a biological purpose; thus,
two solutions with oscillations of different amplitudes and
frequencies may merit a distinction that is not present in
qualitative analysis of fast-slow decomposition.
What determines the quantitative features of a burst-

ing pattern in a fast-slow system? We present a case
study illustrating that a natural extension of the method
of fast-slow decomposition can provide useful informa-
tion for quantitatively representing data on bursting aris-
ing from biological experiments. Here, we go beyond
the consideration of which bifurcation curves are crossed
and take into account details of the path in the plane
traced dynamically by the two slow variables in between
these crossings, as well as corresponding details about
the attractors of the fast subsystem encountered along
this path.
This paper is organized as follows. In the next sec-

tion, we present the relevant analysis of the DB bursting
model from [20] and compare its dynamics with that of a
four-dimensional reduced model. The full details of the
seven-dimensional model can be found in [20], but the
system of equations is also given in the Appendix. Sec-
tion III illustrates how imposed paths for the two slow
variables in the four-dimensional model can be used to
obtain quantitatively similar bursting patterns as exhib-
ited by the full seven-dimensional model. In this work,
we use elliptical paths to illustrate our approach but it
will be clear that more involved paths could be designed
and used for specific applications. We explore in Sec. IV
how other aspects of the fast-subsystem dynamics, which
are related to but go beyond the analysis of its bifurcation
diagram, determine quantitative features of the bursting
patterns. We end with a discussion in Sec. V.
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FIG. 1. DB bursting in the seven-dimensional system (1)&(2).
Panel (a) shows the bursting oscillation in projection onto
the ([Ca], [Na])-plane overlaid on the bifurcation set of the
fast subsystem in this region, given by the loci of saddle-
node bifurcations on an invariant cycle and Andronov–Hopf
bifurcations, labelled SNIC and AH, respectively. Panel (b)
shows the corresponding time course of voltage v.

II. THE DB BURSTING MODEL AND ITS

DYNAMICS

Rubin et al. [20] presented a seven-dimensional model of
bursting in neurons of the respiratory brain stem. The
model is based on the Hodgkin–Huxley formalism and is
given by the following system of ODEs involving five fast
and two slow variables; see the Appendix for a complete
description of the various functions and parameter values

used:















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






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
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













v′ = − 1
c

{IL(v) + IK(v, n)
+ INa(v,m, h) + Isyn(v, s)
+ ICAN(v, [Ca]) + Ipump([Na])},

n′ = 1
τn(v)

[n∞(v)− n],

m′ = 1
τm(v) [m∞(v)−m],

h′ = 1
τh(v)

[h∞(v)− h],

s′ = 1
τs

[(1− s) s∞(v)− k s],

(1)

{

[Ca]′ = ε {kIP3 s− kCa ([Ca]− [Ca]b)},

[Na]′ = α {−ICAN(v, [Ca])− Ipump([Na])}.
(2)

Here, system (1) comprises equations for the five fast
variables v, n, m, h, and s, and system (2) comprises
equations for the two slow variables [Ca] and [Na], which
denote the intracellular calcium and sodium concentra-
tions, respectively. Hence, the five-dimensional fast sub-
system depends on two parameters that yield curves in
the ([Ca], [Na])-parameter plane along which bifurcations
occur. These curves can readily be computed with stan-
dard software packages, for example, with XPPAUT [23].
Rubin et al. [20] used fast-slow decomposition to high-

light the underlying bifurcation set of (1) that dictates
the qualitative form of the DB bursting pattern. They
found that there are two types of bifurcations, namely,
a saddle-node bifurcation on an invariant cycle, de-
noted SNIC, and an Andronov–Hopf bifurcation, denoted
AH; Figure 1(a) shows the curves SNIC and AH in the
([Ca], [Na])-plane. For values ([Ca], [Na]) in between the
curves SNIC and AH, an attracting periodic orbit of (1)
exists togther with a single equilibrium from which it bi-
furcates at AH; the equilibrium also exists to the right of
AH, where it is stable. For values ([Ca], [Na]) to the left
of SNIC, three equilibria exist; one of these is stable and
corresponds to hyperpolarized voltages near the resting
potential. During one period of the DB bursting pattern
in the full system (1)&(2), the path taken by the slow
variables [Ca] and [Na] is such that bifurcation curves are
crossed four times; this is illustrated in Fig. 1(a), where
the DB bursting pattern is shown in projection onto the
([Ca], [Na])-plane. Our hypothesis is that the quantita-
tive features of this particular path taken by the two slow
variables [Ca] and [Na] control the specific pattern of the
time course of v shown in panel (b).
The stages of the DB bursting pattern listed in Sec. I

can be explained in terms of the trajectory path in the
([Ca], [Na])-plane. Starting from a point on the periodic
orbit located top-left in the ([Ca], [Na])-plane, the tra-
jectory lies near the family of hyperpolarized rest states
and the DB bursting pattern is in the quiescent or silent
phase (i); upon crossing the curve SNIC, sustained volt-
age spiking emerges (ii); as soon as the curve AH is
crossed, the frequency of the spiking increases signifi-
cantly, while the amplitude decreases during stages (iii)
and (iv); spiking re-emerges as the path crosses AH

again (v), which is followed by a return to silence after
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FIG. 2. DB bursting in the reduced four-dimensional sys-
tem (3)&(2). Panel (a) shows the bursting oscillation in pro-
jection onto the ([Ca], [Na])-plane overlaid on the SNIC and
AH curves. Panel (b) shows the corresponding time course of
voltage v; compare with Fig. 1.

crossing SNIC for the second time (vi). Hence, the active
phase of each burst, namely, the epochs of voltage spiking
and elevated voltage in stages (ii)–(v), encompasses the
segment on the side of the curve SNIC that contains AH;
the attenuation of spike amplitude and approach towards
depolarization block of stages (iii) and (iv) occur between
the two crossings of AH; compare with [20]. Barreto and
Cressman [21] also associated curves of saddle-node bi-
furcations on an invariant cycle and Andronov–Hopf bi-
furcations with bursting dynamics.

For this paper, we think of the output of the seven-
dimensional model as our data set, or target output for
a reduced model. In an actual application, it would be
replaced by experimentally recorded data.

III. IMPOSED PATHS FOR A

FOUR-DIMENSIONAL REDUCED MODEL

Our simulations show that a fairly similar DB-like burst-
ing pattern can be obtained from a reduction of the
seven-dimensional model of Rubin et al. [20] to a four-
dimensional version. This reduction is achieved by a

quasi-steady-state approximation, made by setting m =
m∞(v) and s = s∞(v)/(s∞(v) + k), and by the classical
step of replacing h with 1 − 1.08n [7, 24]. The fast sub-
system is then reduced to the following two-dimensional
model:






















v′ = − 1
c

{IL(v) + IK(v, n)
+ INa(v,m∞(v), 1 − 1.08n)
+ Isyn(v, s∞(v)/(s∞(v) + k))
+ ICAN(v, [Ca]) + Ipump([Na])},

n′ = 1
τn(v)

[n∞(v)− n].

(3)

Figure 2 shows DB bursting for the reduced sys-
tem (3)&(2). The DB bursting pattern of (3)&(2) is
again projected onto the ([Ca], [Na])-plane in panel (a),
along with the bifurcation curves SNIC and AH for the
two-dimensional fast subsystem (3), and the time course
for v is shown in panel (b). Due to the approximations
used, an adjustment of some of the parameter values was
required for achieving the characteristics of DB burst-
ing of the target system (1)&(2); see the Appendix for
details. One key ingredient is that we have obtained a
similar bifurcation structure of the fast subsystem for (3)
as for (1). Another is achieving the appropriate sequence
of traversals of bifurcation curves. Despite the overall
similarity between the systems, comparison with Fig. 1
reveals some differences with the DB bursts from the
seven-dimensional model, which we found to persist de-
spite extensive exploration of parameter space: in the DB
bursts of the reduced model, stage (ii) of sustained volt-
age spikes is brief, the voltage spikes are less attenuated
in the approach toward depolarization block in stage (iv),
and the re-emergence of spiking is prolonged in stage (v).
These effects are linked in Fig. 2(a) with the behavior of
the slow variable [Ca]; the projection of the bursting solu-
tion of the four-dimensional system onto the ([Ca], [Na])-
plane shows that during the spiking phase, the trajectory
dances back and forth across the curve AH, failing to cross
over it completely.
The comparison between Figs. 1 and 2 indicates that

the model reduction from seven to four dimensions in-
duces an unwanted effect on the behaviour of the slow
variables [Ca] and [Na]. Rather than trying to fit the
slow-variable dynamics, however, our approach is to ig-
nore their biological relevance completely. That is, we
will demonstrate that, given a particular bifurcation
structure of the fast subsystem, we can generate a desired
quantiative pattern by imposing a path on the associated
slow variables. For this purpose, unwanted effects in a
particular parameter tuning are not relevant, as long as
the bifurcation structure is present. To this end, we re-
place the biological ([Ca], [Na])-dynamics with imposed
paths in the ([Ca], [Na])-plane, so that the combined sys-
tem has the relevant qualitative and quantitative features
of DB bursting as given by the seven-dimensional model;
see also [12, 14] for similar ideas with one-dimensional
imposed paths.
More specifically, we consider a parameterized path P

in the ([Ca], [Na])-plane in the form of an ellipse with
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principal axes along the [Ca]- and [Na]-axes. Such an el-
lipse reasonably resembles the path shown in Fig. 1(a),
yet it is defined by only five parameters that still provide
enough freedom to adjust quantitative features of the dy-
namics. A sixth parameter is the speed ε with which the
ellipse is traced. Hence, P is defined as

P = P([Ca]c, [Na]c, d, [Ca]0, [Na]0, ε)

:=















[Ca](t) = [Ca]c + ([Ca]0 − [Ca]c) cos (ε t)
− d ([Na]0 − [Na]c) sin (ε t),

[Na](t) = [Na]c + ([Na]0 − [Na]c) cos (ε t)
+ 1

d
([Ca]0 − [Ca]c) sin (ε t).

Here, [Ca]c and [Na]c define the center of the ellipse,
d is its aspect ratio, and ([Ca]0, [Na]0) is a chosen
initial point at time t = 0. The ranges for [Ca]
and [Na] are the intervals [[Ca]c − δ, [Ca]c + δ] and
[[Na]c − 1

d
δ, [Na]c + 1

d
δ], respectively, where δ =

√

([Ca]0 − [Ca]c)2 + d2 ([Na]0 − [Na]c)2. For the paths
used in this paper, we fix [Na]0 = [Na]c and use [Ca]0 to
tune the path width and d to control its aspect ratio. We
assume 0 < ε ≪ 1, such that P is traced in the counter-
clockwise direction and [Ca] and [Na] evolve slowly in
time. We stress again that elliptical paths do not rep-
resent a model of any biological process, but are rather
used as a tool for exploring the space of slow variables
and, thereby, accessing features of the fast-subsystem dy-
namics.
It is convenient for our purposes that the evolution

along an ellipse P can also be considered as the solution
of the system of ordinary differential equations

{

[Ca]′ = −ε d ([Na]− [Na]c),

[Na]′ = ε 1
d
([Ca]− [Ca]c),

(4)

for the initial conditions [Ca]0 and [Na]0. By combining
system (4) with the fast subsystem (3) of the reduced
four-dimensional model, we obtain the four-dimensional
driven model (3)&(4) that is the main subject of this
paper. Note that the formulation (4) suffices for our pur-
poses here, even though its periodic orbits — the ellipses
— are not isolated. In case continuation of the overall
periodic orbit of the driven system (3)&(4) is required, a
family of isolated attracting elliptical periodic orbits can
be obtained in similar fashion from a scaled version of
the Hopf normal form [23].

IV. RESULTS

The approach of imposing a path P for the two slow vari-
ables [Ca] and [Na] allows us to control and explore their
qualitative and quantitative effects systematically. Our
main result is that we are able to quantify different fea-
tures observed in the (fast) voltage variable of DB burst-
ing patterns by harnessing the behavior of the underlying
slow subsystem; these findings go beyond the standard
approach of determining the bifurcation diagram of the
fast subsystem.
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FIG. 3. DB bursting patterns for the seven-dimensional
driven system (1)&(4) with [Ca]c = 0.7, [Na]c = 5.35,
[Ca]0 = 0 and ε = 0.009, and three different values for d,
namely, d = 1

2
(blue, outermost ellipse), d = 2 (purple, cen-

tral ellipse) and d = 20 (red, innermost ellipse). Panel (a)
shows the three paths P in the ([Ca], [Na])-plane overlaid on
the loci for SNIC and AH, and panel (b) shows the three cor-
responding time courses for v; note that only the time course
with d = 1

2
shows isolated tonic spikes at the start of each

burst.

A. Bursting with an imposed ([Ca], [Na])-ellipse

We expect that a driven system, where the two slow vari-
ables [Ca] and [Na] evolve as determined by an imposed
elliptic path, can exhibit DB bursting if the fast sub-
system gives rise to a region in the ([Ca], [Na])-plane
bounded by bifurcation curves SNIC and AH. We now
confirm that claim by showing that the qualitative fea-
tures of DB bursting are obtained by choosing a path P
that crosses these curves in the specific sequence SNIC,
AH, AH, and SNIC.

We first explore this for a driven version of the seven-
dimensional model, that is, by combining the fast subsys-
tem (1) with the driven system (4). Figure 3 shows three
different DB bursting patterns for system (1)&(4), using
three different imposed paths for the slow variables [Ca]
and [Na]. The imposed paths in the ([Ca], [Na])-plane
are shown in panel (a) overlaid on the loci for SNIC and



6

0 0.1 0.2 0.3

5

6

0 500 1000 1500 2000 2500 3000

-100

-80

-60

-40

-20

0

20

40

(a)

SNIC

AH

[Ca]

[Na]

(b)

v
[m

V
]

t [ms]

FIG. 4. DB bursting patterns for the four-dimensional driven
system (3)&(4) with [Ca]c = 0.15, [Na]c = 5.85, [Ca]0 = 0
and ε = 0.004, and three different values for d, namely, d = 1

5

(blue, outermost ellipse), d = 1 (purple, central ellipse) and
d = 50 (red, innermost ellipse). Panel (a) shows the three
paths P in the ([Ca], [Na])-plane overlaid on the loci for SNIC
and AH, and panel (b) shows the three corresponding time
courses for v; note that the d = 1 and d = 50 time course are
shifted ahead in time and show less spike attenuation within
the burst relative to that for d = 1

5
.

AH of the fast subsystem (1); the corresponding three
time courses for v are shown in panel (b). For each path,
we used [Ca]c = 0.7, [Na]c = 5.35, with initial condition
[Ca]0 = 0 (recall that we always set [Na]0 = [Na]c) and
constant speed ε = 0.009. Only the aspect ratio d was
varied, namely, d = 1

2 (blue) for the fattest ellipse shown
in panel (a), which was increased to d = 2 (purple, cen-
tral ellipse) and then d = 20 (red, innermost ellipse). All
three paths cross the curves SNIC and AH in the speci-
fied sequence needed for DB bursting and, as illustrated
in panel (b), all yield DB bursting patterns that exhibit
the qualitative features described for stages (i)–(vi); note
that the path with d = 1

2 yields some tonic spiking at
the onset of each active phase that is also seen in the DB
bursting of system (1)&(2), and which is a quantitative
feature not seen for the other paths.

Qualitatively similar DB bursting can be obtained for
the four-dimensional driven system (3)&(4). Since the

loci of SNIC and AH for the fast subsystem (3) have
shifted slightly in the ([Ca], [Na])-plane, slightly differ-
ent paths must be imposed. Figure 4 shows the effect
of three different ellipses centered at [Ca]c = 0.15 and
[Na]c = 5.85, with [Ca]0 = 0 and ε = 0.004. Again,
only the aspect ratio d was varied, where we chose d = 1

5
(blue, outermost ellipse), d = 1 (purple, central ellipse)
and d = 50 (red, innermost ellipse). As for Fig. 3, the
associated paths are overlaid in panel (a) on the loci for
SNIC and AH in the ([Ca], [Na])-plane, and the three cor-
responding time courses for v are shown in panel (b).
Note that only a short segment of each of the three im-
posed elliptic paths lies in the region to the right of AH,
which regulates stages (iv) and (v) of DB bursting. Con-
sequently, the approach towards and away from the de-
polarization block state of steady, elevated voltage is rel-
atively brief; compare Figs. 3(b) and 4(b). Also, the path
with d = 1

5 (blue, with earliest burst onset) yields partic-
ularly deep hyperpolarizations between bursts, and max-
imal spike attenuation during bursts, which is also the
case for the path with d = 1

2 (blue, exhibiting isolated
tonic spikes at the start of the burst) in Fig. 3. The dif-
ference in the range for the t-axes in Figs. 3(b) and 4(b)
is controlled by the different choices for ε.
Thus, as expected, the qualitative features of the

DB bursting pattern for both the full seven-dimensional
driven system (1)&(4) and the reduced four-dimensional
driven system (3)&(4) are entirely determined by the
type of bifurcations exhibited by their respective fast
subsystems and the specific order in which these bifurac-
tions are encountered. As illustrated in Figs. 3 and 4, we
can easily control such properties by choosing [Na]c large
enough and deciding on appropriate values for [Ca]c and
[Ca]0. We also observe, however, that quantitative dif-
ferences in the bursting patterns are obtained by tuning
the aspect ratio d of the elliptic path, as well as the speed
ε at which this path is traced. For example, comparison
between Figs. 3 and 4 suggests that the speed with which
[Ca] and [Na] traverse the same path leads to quantita-
tive differences in the bursting. We next pursue the idea
of linking model parameters associated with the imposed
path in ([Ca], [Na]) space to quantitative features of the
DB pattern.

B. Quantitative features of bursting beyond the

basic bifurcation structure

We now explore how the dynamics of the fast subsys-
tem can be analyzed to determine quantitative features
of bursting solutions for the full system. Here, we fo-
cus exclusively on the reduced four-dimensional driven
system (3)&(4).
We first return to the consideration of the traversal rate

of the imposed path. Figure 5 shows time courses of v
for three quantitatively different bursting patterns for the
four-dimensional driven system (3)&(4) with ε = 0.002 in
panel (a), ε = 0.006 in panel (b), and ε = 0.01 in panel (c)
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FIG. 5. The same path in the ([Ca], [Na])-plane can yield
quantitative differences in bursting features, depending on the
speed at which it is traversed. Shown are the time courses of
v for the four-dimensional driven system (3)&(4) resulting
from the same imposed elliptic path with speeds ε = 0.002 in
panel (a), ε = 0.006 in panel (b), and ε = 0.01 in panel (c).
The other parameters for the path are [Ca]c = 0.15, [Na]c =
5.85, [Ca]0 = 0, and d = 0.1.

for an imposed elliptic path with the parameters [Ca]c =
0.15, [Na]c = 5.85, [Ca]0 = 0 and d = 0.1. Consistent
with the previous subsection, when ε is small, each phase
of the burst is elongated due to the smaller traversal rate;
note the different t-scales in the three panels. Moreover,
as ε increases, the faster traversal of the same path in the
([Ca], [Na])-plane yields less attenuation of the voltage
oscillations during the depolarization block phase of each

burst cycle. As is particularly clear in Fig. 5(a), a slower
traversal intensifies this attenuation.

We dig deeper into the source of quantitative differ-
ences in patterns by next considering the time intervals
between spikes in stage (ii) of a DB bursting pattern, dur-
ing which repetitive, high-amplitude voltage spikes occur.
These spikes arise from a family Γ0 of stable periodic or-
bits of the fast subsystem that exist in the ([Ca], [Na])-
region in between the bifurcation curves SNIC and AH.
The time intervals between spikes can vary significantly
across successive spike pairs within a bursting solution,
and the time until emergence of the first spike after the
second crossing of SNIC can differ appreciably across pa-
rameter values and paths. Our hypothesis is that these
quantitative features observed in stage (ii) of DB burst-
ing are controlled by characteristics of the ([Ca], [Na])-
dependent family Γ0.

Specifically, we note that each periodic orbit in Γ0 has
a well-defined period that depends on the choice for [Ca]
and [Na]. The periods encountered along a path P are
determined by the location of this imposed path in the re-
gion bounded by SNIC and AH. We find that the progres-
sion of periods encountered along P strongly shapes the
time intervals between spikes in stage (ii) of the resulting
DB bursting pattern. Figure 6(a) shows the curves SNIC
and AH in the ([Ca], [Na])-plane together with contours
of equal period for the periodic orbits of the family Γ0.
The periods associated with the contours progressively
decrease as we move farther from SNIC, starting from 40
for the curve closest to SNIC, although close to AH some
non-monotonicity sets in (e.g, note the turning point for
the labeled contour with period 10.1). This panel also
includes two elliptic paths with ε = 0.009: the fat (blue)
path is given by [Ca]c = 0.15, [Na]c = 5.2, d = 0.1,
and [Ca]0 = 0, and the thin (red) path by [Ca]c = 0.1,
[Na]c = 5.1, d = 1, and [Ca]0 = −0.1. The corresponding
time traces of v over the first half period are shown in
panels (b) and (c) of Fig. 6, respectively. The filled black
and green circles indicate the moment when the solutions
cross SNIC and AH, respectively.

The fat (blue) path crosses SNIC roughly orthogonal
to the period contours and thus progresses quickly to a
region with relatively short periods. The interspike in-
tervals in the corresponding time trace of v, shown in
Fig. 6(b), are relatively short, with little change over
the period of the burst. In contrast, the thin (red) path
crosses SNIC in a direction that is aligned with the high-
period contours close to the curve SNIC. Correspondingly,
there is a longer delay from the crossing (black circle) to
the first spike in the time trace of v, shown in Fig. 6(c),
and the first few interspike intervals are longer than any
of the ones shown in Fig. 6(b), with a gradual compres-
sion of spike times over the course of the burst. Note that
we selected parameter values such that the overall times
from the start (black circles) to the end (green circles)
of the active phase, in between SNIC and AH, are quite
similar for both DB bursts, so the longer interspike inter-
vals in Fig. 6(c) are not simply due to a slower passage
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FIG. 6. Interspike intervals of the DB bursting pattern are
significantly affected by the different periods of the periodic
orbits in the family Γ0 of the fast subsystem that are encoun-
tered along the imposed path. Panel (a) shows SNIC and AH

in the ([Ca], [Na])-plane along with contours (grey) of equal
period for periodic orbits in Γ0. Overlaid are a vertically
wide (blue) path with [Ca]c = 0.15, [Na]c = 5.2, d = 0.1,
and [Ca]0 = 0 and a horizontally elongated (red) path with
[Ca]c = 0.1, [Na]c = 5.1, d = 1, and [Ca]0 = −0.1. The
corresponding time courses of v over the first half period are
shown in panels (b) and (c), respectively; their crossings of
the curves SNIC and AH are marked with black and green
circles, respectively.

through stage (ii) of the DB bursting pattern.

Next, we turn to stages (iv) and (v) of the DB bursting
pattern and quantify the approaches towards and away
from the depolarization block state of steady, elevated
voltage, which occur after the first and second crossing
of AH, respectively. The observed rate of contraction
(expansion) is related to the stable (unstable) eigenval-
ues obtained from the linearization of the fast subsystem
about the equilibria associated with this elevated state.
Near the curve AH of Andronov–Hopf bifurcations, these
equilibria all have complex-conjugate pairs of eigenval-
ues. Their real parts are negative to the right of AH and
positive to the left of it. Figure 7(a) shows 15 contours in
the ([Ca], [Na])-plane of these real parts Re(λ), uniformly
distributed from −0.05 to 0.09; the curve AH corresponds
to the countour Re(λ) = 0. We select three elliptic paths
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FIG. 7. Contraction to and expansion away from the de-
polarization block state depends on the real part Re(λ) of
the eigenvalues of the associated equilibria in the fast subsys-
tem that are encountered along the imposed path. Panel (a)
shows SNIC and AH in the ([Ca], [Na])-plane along with con-
tours (grey) of Re(λ). Overlayed are paths with [Ca]c = 0.19,
[Na]c = 5.75, [Ca]0 = 0.04 and ε = 0.004, and varying d = 0.1
(blue, outermost ellipse), d = 0.2 (purple, central ellipse) and
d = 0.4 (red, innermost ellipse). The corresponding time
courses of v are shown in panel (b) with time shifted so that
the first crossing occurs at t = 0 (green square on the vertical
line at t = 0), and voltage shifted down by 200 and 100mV
for the time courses with d = 0.1 (blue, lowermost trace) and
d = 0.4 (red, middle trace), respectively; the second crossing
of AH is marked with triangles.

that are all centered at [Ca]c = 0.19 and [Na]c = 5.75 and
use [Ca]0 = 0.04 and ε = 0.004. The only difference in
these contours is in their aspect ratios, which are d = 0.1
(blue, outermost ellipse), d = 0.2 (purple, central ellipse)
and d = 0.4 (red, innermost ellipse). Their intersections
with AH are marked with squares and triangles, indi-
cating the first and second crossings, respectively. The
corresponding time courses for v are shown in Fig. 7(b),
where time is shifted so that the first crossing occurs at
t = 0 (marked by a vertical line with a green square on
it). Here, the burst with d = 0.2 (purple, top) is plotted
in actual coordinates, while the ones with d = 0.1 (blue,
bottom) and d = 0.4 (red, middle) have been shifted
down by 200 and 100mV, respectively.
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As shown in Fig. 7(b), stage (iv) of the DB burst-
ing patterns is rather similar across these parameter val-
ues, even though the times until the second crossing of
AH (triangles) are different. Observe that the times be-
tween AH crossings for the bursts with d = 0.2 (purple,
top) and d = 0.4 (red, middle) are similar, while the
burst with d = 0.1 (blue, bottom) exhibits a significantly
longer stage (iv). Fig. 7(a) illustrates that the burst with
d = 0.4 (red, innermost ellipse) does not cross the contour
Re(λ) = −0.05, which indicates that the net contraction
towards the depolarization block state is not as strong as
for the other two bursts. Consequently, even though the
bursts with d = 0.2 (purple, central ellipse) and d = 0.4
(red, innermost ellipse) spend about the same time to the
right of AH, the time needed to expand away from the
depolarization block state is shorter for the burst with
d = 0.4 (red, innermost ellipse), resulting in a shorter
time until the onset of stage (v); see Fig. 7(b). Note
further that the longer time spent to the right of AH

for the burst with d = 0.1 (blue, outermost ellipse) re-
sults in a stronger contraction towards the depolarization
block state and subsequent slower expansion away from
it. Hence, this case includes no additional spikes before
the voltage drops to initiate the silent phase at the end
of stage (v).
In fact, the times spent between crossings of bifurca-

tion curves and the rates of contraction and expansion
encountered during these times, as indicated by the con-
tours in Fig. 7(a), combine in such a way that the to-
tal number of additional spikes exhibited in stage (v),
before the return to the silent phase, depends non-
monotonically on the aspect ratio of the imposed elliptic
path. The time courses in Fig. 7(b) are ordered to empha-
size this non-monotonicity; they reveal that the largest
number of additional spikes occur for the (purple, cen-
tral) elliptic path with d = 0.2. Although these spikes
start earlier within the burst for larger d, such as d = 0.4
(red, innermost ellipse), the relatively short time from
the second AH crossing to the second SNIC crossing lim-
its the number of spikes that can occur within stage (v).
For smaller d, such as d = 0.1 (blue, outermost ellipse),
the need for additional expansion to overcome the strong
contraction from stage (iv) is so strong that not even a
full spike can be fired within stage (v) before SNIC is
crossed and the active phase ends.

V. DISCUSSION

We introduced and demonstrated a conceptual approach
to modeling and analysis of fast-slow dynamics that
allows one to determine and extract quantitative infor-
mation of relevance to the appplication at hand. Our
approach applies to fast-slow systems with at least two
slow variables and proceeds as follows:

(i) In the first step, the standard fast-slow decom-
position method is used to extract the possible
qualitative features of the system dynamics by

determining the bifurcation structure of the fast
subsystem. From this structure, one can infer
which attracting states will be encountered by any
closed path in the space of slow variables.

(ii) Continuation along each family of states is used
to obtain additional quantitative information such
as the periods of attracting periodic orbits of the
fast subsystem and the contraction rates associ-
ated with invariant objects of the fast dynamics.
Obtaining information on the fast subsystem in
the regions that are traversed along a path in the
slow variable space allows a characterization of the
specific quantitative features that the full system
solution will exhibit when it follows that path.

(iii) Once this information has been obtained, a path in
slow-variable space can be designed to provide a de-
sired set of solution features, which could be used to
inform the development of a model for slow-variable
dynamics or to guide a data fitting algorithm.

As our specific test-case example we considered depo-
larization block or DB bursting as displayed by a seven-
dimensional model from [20] for neurons of the respira-
tory brain stem. Here, the concentrations [Ca] of cal-
cium and [Na] of sodium in the neuron evolve on a much
slower time scale than the voltage potential v across the
cell membrane, which is the observable in experiments.
We derived a four-dimensional reduction of that model
with only two fast variables and also considered its driven
version, where the family of paths was chosen to be el-
lipses in the plane of [Ca] and [Na]. DB bursting is orga-
nized qualitatively by a curve of saddle-node bifurcations
on an invariant cycle (SNIC) and a curve of Andronov–
Hopf bifurcations (AH) of the fast subsystem, and elliptic
paths naturally capture the crossing sequence arising in
the biological model. The bursting pattern traces a fam-
ily of attracting periodic orbits of the fast subsystem, and
also exhibits contraction towards and subsequent expan-
sion away from the equibria that undergo the Andronov–
Hopf bifurcation. Although there are some quantita-
tive discrepancies between the active phase dynamics in
the seven- and four-dimensional biological models, a key
point is that by tuning imposed paths, we can select par-
ticular quantitative features of fast-subsystem dynamics.
More specifically, we found that the amount of time

an imposed path spends in different regions of the
([Ca], [Na])-plane, corresponding to passage between bi-
furcation curve crossings, is only one factor in determin-
ing timing-related quantitative features of the resulting
bursting pattern. In fact, the periods of the periodic or-
bits of the fast subsystem that are encountered along
the path play a crucial role in shaping the spike fre-
quency within the bursts; this relation can be analyzed by
computing contours of equal period in the region where
(attracting) periodic orbits of the fast subsystem exist.
Moreover, we found that abrupt transitions from slow
spikes (at the onset of spiking) to faster spikes can be
predicted this way. Similarly, the eigenvalues of the equi-
libria of the fast subsystem that are encountered along
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the path are responsible for the observed contraction and
expansion rates associated with the depolarization block
state of DB bursting; details can be analyzed by comput-
ing contours of equal real parts of such eigenvalues in the
relevant regions of the ([Ca], [Na])-plane. These contours
explain an apparent and initially counter-intuitive non-
monotonicity in the number of spikes that arise at the end
of the DB phase, just before the onset of the silent phase,
with respect to the aspect ratio d of the imposed ellipti-
cal path in the ([Ca], [Na])-plane. We find similar results
(not reported here) with the models proposed in [21] and
in [22]. Given their connection to the well-established re-
lationship between bifurcation structures of the fast sub-
system and qualitative features of the bursting pattern,
we believe that our ideas will extend naturally to models
with different underlying bifurcation diagrams of their
associated fast subsystems; for example, our approach
might be of use for modeling and analysis of the sound
patterns produced by songbirds [25, 26].

The linkage that we have established between quan-
titative bursting features and path of traversal through
the ([Ca], [Na])-plane opens the door to designing an im-
posed path for the slow variables [Ca] and [Na] to achieve
a particular quantitative outcome. This ability to control
solution features is very useful from a model development
perspective, especially in situations where it is advanta-
geous to work with a lower-dimensional model reduction
that must be tuned to capture complicated dynamics.
The design of paths can guide model development and,
moreover, it may be useful for parameter estimation and
fitting for the slow dynamics, which may be particularly
helpful in light of difficulties in experimentally measur-
ing quantities associated with slow variables in neural
models. Once a family of paths has been chosen, the
path or paths with the most suitable quantitative fea-
tures can be selected. We used ellipses here, but other,
more complicated paths would often be more natural to
consider; in our example, such paths would likely allow
a closer fit between the voltage dynamics of the reduced
four-dimensional model and the target seven-dimensional
model. An important point is that the family of paths
is specified by a reasonably low number of parameters.
Interestingly, paths giving similar quantitative features
within the fast dynamics may be non-unique, and ob-
servations of such non-uniqueness may be useful either
to guide design of experiments that can select the most
suitable paths or to confirm that a model features the
dynamic robustness that allows some biological systems
to maintain function across variable conditions [27–29].
In addition to exploring identifiability of slow dynamics
from observations of fast variable features, another nat-
ural direction for future work is to consider the utility of
our proposed approach for parameter estimation of fast-
slow bursting models by coupling it with optimization
techniques. One challenge is to define suitable functions
that encapsulate, in terms of relevant quantitative fea-
tures, the distance of a given (periodic) output from the
dynamics under consideration; in applications, the latter

may be generated by an actual experiment, rather than
a higher-dimensional mathematical model.
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APPENDIX

For completeness, we provide here the precise definitions
of the functions used in system (1)&(2); the parameters
are given in Table I. Recall that system (1)&(2) is the
same model of DB bursting in neurons of the respiratory
brain stem as described in [20] and full details can also
be found there.
The equation for voltage v in system (1) includes the

following currents:

IL(v) = gL (v − EL),

IK(v, n) = gK n4 (v − EK),

INa(v,m, h) = gNa m
3 h (v − ENa),

Isyn(v, s) = gsyn s(v − Esyn),

ICAN(v, [Ca]) =
gCAN (v − ECAN)

1 + exp(([Ca]− kCAN)/σCAN)
,

Ipump([Na]) = rpump (φ([Na])− φ([Na]b)),

where

φ([Na]) =
[Na]3

[Na]3 + k3Na

.

The equations for n, m, h, and s all have a similar form,
with

X∞(v) =
1.0

1.0 + exp((v − θX)/σX)
,

where X ∈ {n,m, h, s}, and

τX(v) =
tX

cosh
(

v−θX
2σX

) ,

where X ∈ {n,m, h}; the time scale τs(v) = τs for s
is taken constant. There are many parameters in this
model, and their values as used in this paper are listed
in Table I.
The reduced two-dimensional fast subsystem (3) is ob-

tained from the five-dimensional fast subsystem (1) by
taking quasi-steady-state assumptions for m and s and
setting h = 1 − 1.08n. We use the same parameter val-
ues as in Table I, except those specified in Table II, which
were adapted to recover the bifurcation structure of the
fast subsystem and general slow subsystem behavior as
in system (1)&(2).
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TABLE I. Parameter values used for the functions in the
seven-dimensional model (1)&(2).

conductances reversal half
(nS) potentials (mV) activations

gL = 3.0 EL = −60.0 θh = −30.0mV
gNa = 150.0 ENa = 85.0 θm = −36.0mV
gK = 30.0 EK = −75.0 θn = −30.0mV

gsyn = 2.5 Esyn = 0.0 θs = 15.0mV
gCAN = 4.0 ECAN = 0.0 kCAN = 0.9µM

slopes time
(mV or µM) constants (ms) scaling constants
σh = 5.0 th = 15.0 kNa = 10.0 mM
σm = −8.5 tm = 1.0 [Na]b = 5.0 mM
σn = −5.0 tn = 30.0 kCa = 22.5 ms−1

σs = −3.0 τs = 15.0 [Ca]b = 0.05µM
σCAN = −0.05 kIP3 = 1200 µMms−1

other
C = 45.0 pF k = 1.0 rpump = 200.0 pA
ε = 7× 10−4 α = 6.6× 10−5 mMpA−1ms−1

TABLE II. Parameter values used for the functions in the two-
dimensional fast subsystem (3) that are different from those
used in the five-dimensional fast subsystem (1).

gK = 15.0 nS θs = 10.0mV
gCAN = 10.0 nS kCAN = 0.25µM

σs = −8.0mV kCa = 60.0ms−1

kIP3 = 1700 µMms−1

k = 10.0 rpump = 1500.0 pA
ε = 0.005
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