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How systems transit between different stable states under external perturbation is an important
practical issue. We discuss here how a recently-developed energy optimization method for identify-
ing the minimal disturbance necessary to reach the basin boundary of a stable state is connected
to the instanton trajectory from large deviation theory of noisy systems. In the context of the
one-dimensional Swift–Hohenberg equation which has multiple stable equilibria, we first show how
the energy optimization method can be straightforwardly used to identify minimal disturbances—
minimal seeds—for transition to specific attractors from the ground state. Then, after generalising
the technique to consider multiple, equally-spaced-in-time perturbations, it is shown that the in-
stanton trajectory is indeed the solution of the energy optimization method in the limit of infinitely
many perturbations provided a specific norm is used to measure the set of discrete perturbations.
Importantly, we find that the key features of the instanton can be captured by a low number of
discrete perturbations (typically one perturbation per basin of attraction crossed). This suggests a
promising new diagnostic for systems for which it may be impractical to calculate the instanton.

I. INTRODUCTION

How and when systems can transit between different
stable states in the presence of ambient disturbances is
of fundamental importance in understanding their be-
haviour in practice. There are two clear limits which
can be explored: the system experiences just one finite-
amplitude disturbance or is continuously perturbed by
low amplitude noise. A technique for examining the for-
mer scenario has recently been developed using a non-
linear energy optimization method [1–6] which identi-
fies the disturbance of smallest amplitude—the minimal

seed—which can initiate the transition. A promising ap-
plication of this approach is to the problem of subcritical
transition to turbulence in parallel shear flows where the
minimal seeds which emerge are typically localized and
therefore appear relevant to experimental studies [3, 5].
In the latter, small-noise situation where the transition
between different stable states is rare, large deviation the-
ory is used to seek the most-likely transition trajectory
in the limit of zero noise known as the instanton [7].
One can use the instanton approach to identify
the fast dynamics which lead to transitions over
long timescales in fast-slow systems [e.g., 8, 9].
Again, fluid dynamics has provided an important appli-
cation area for these ideas with instantons computed in
a number of different contexts [10–14]. The purpose of
this paper is to explore the connection between these
two approaches by extending the nonlinear optimization
method to treat multiple perturbations. The instanton

approach should be a limiting case of the optimization
method as the number of discrete perturbations becomes
large under an appropriate norm. What is particularly
interesting is to gain some insight into how quickly this
limit is approached as the number of discrete perturba-
tions increases.

Rather than study the Navier–Stokes equations, we
perform optimization calculations for the much simpler,
one-dimensional Swift–Hohenberg equation (SH). Burke
and Knobloch [15] show that SH has multiple localized
stable equilibria as a result of homoclinic snaking which
provides a richer phase-space environment in which to
explore both approaches than the usual bistability of
the Navier–Stokes equations in, for example, shear flows
[5, 14]. The existence of multiple attractors opens up the
possibility that optimal transition trajectories between
any two states can take non-trivial forms involving third-
party basins of attraction. SH has also been studied ex-
tensively [16, and references within].

This paper is organized as follows. In section II we
describe the SH problem, the different equilibrium states
present for our chosen parameters, and their properties.
Section III describes the minimal energy perturbations
from the trivial state into any of the other stable states of
the problem. We are able to select for the different stable
states by optimizing the time-averaged energy, because
the stable states have sufficiently disparate energies. Sec-
tion IV extends the optimization calculations to include
multiple perturbations and the calculation of the instan-
ton. The discretized instanton corresponds to the opti-
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mal set of perturbations which occur at every timestep
of our simulation. Finally we conclude in section V.

II. DYNAMICS OF THE SWIFT–HOHENBERG

SYSTEM

We consider the one-dimensional Swift–Hohenberg
equation (SH) with a quadratic–cubic nonlinearity,

∂tu+ (1 + ∂2
x)

2u− au = 1.8u2 − u3, (1)

following Kao et al. [16]. Different coefficients for the
nonlinear terms—and different nonlinearities—will give
similar properties [e.g., 15]. The trivial state (u = 0)
is linearly stable for a < 0 so we pick a = −0.3. The
primary instability of the system has wavenumber k = 1,
corresponding to a characteristic length of Lc = 2π so
we consider a domain of length 6Lc to allow multiple
equilibria. All simulations are run using the open-source,
pseudo-spectral code Dedalus[17][18]. The solutions are
calculated as a Fourier expansion with 256 modes, and we
use ×2 padding to preventing aliasing errors on the grid
from the cubic nonlinearity. For timestepping, we treat
the linear terms implicitly using backward Euler, and we
treat the nonlinear terms explicitly using forward Euler,
with a constant timestep of 0.1 (the temporal resolution
of the trajectories was verified by additional simulations
with reduced timestep size).
Our choice of a = −0.3 has four stable solutions, and

several unstable solutions. The solutions are shown in
figure 1. The energy of each solution is given in table I.
The four stable solutions are the trivial state at the ori-
gin, O, the periodic state P , and two localized states,
S2 and S3, which have two and three large amplitude
maxima (u & 1). Although all the states are periodic
with length 6Lc, we call P the periodic state because it
also has periodicity of Lc. This choice of parameters has
enough different states for the optimization problem to
give non-trivial results, but not so many states to obfus-
cate the analysis.
The equations have reflection and translation symme-

tries of which two,

Z : x→ 6Lc − x, (2)

T : x→ x+
Lc

2
mod 6Lc, (3)

are important for the discussion which follows although
none of our calculations are restricted to any
symmetric subspace. Because we have defined our so-
lutions as centered around x = 3Lc, the stable states
as well as U2, U3, U4, and U5 are Z-symmetric. These
unstable states have one Z-symmetric unstable eigenvec-
tor, and one Z-antisymmetric unstable eigenvector. The
other unstable states, U1.5, U2.5, and U3.5 lack Z sym-
metry.
Figure 2 shows a schematic depiction of the Z-

symmetric manifold. Although U2, U3, U4, and U5 have
two unstable eigenvectors for the full problem, they only
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FIG. 1. The nonlinear solutions to SH (equation (1)) with
a = −0.3, shown in black (stable) or grey (unstable). U1.5,
U2.5, and U3.5 are unstable edge states with only a single
unstable eigenvector, and are not Z-symmetric. U2, U3, U4

and U5 are Z-symmetric unstable solutions with two unsta-
ble eigenvectors. We plot the sum of the solution and Z-
symmetric eigenvectors (with some small amplitude) in red
dashed lines, and the sum of the solution and eigenvectors
without Z symmetry in blue dotted lines.

have a single unstable eigenvector in the Z-symmetric
subspace, and thus are edge states. U2 separates O from
S2; U3 separates O from S3; U4 separates S2 from P ;
and U5 separates S3 from P . Although we perform our
optimization in the full phase space (i.e. no symme-
tries are imposed on the dynamics), we find that the
optimal perturbations satisfy Z symmetry, so the their
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FIG. 2. Schematic diagram of the Z-symmetric manifold. The dashed lines show basin boundaries, and the unstable states are
drawn with their unstable manifold. The unstable states are edge states of the Z-symmetric dynamics. Left: The trajectories
of the minimal seeds for each stable state are shown in different colors. The dotted line corresponds to a perturbation, and the
solid colored line corresponds to the evolution of SH. The minimal seed is the closest point on the basin boundary to O. Right:
The trajectory of the optimal set of two perturbations (green), and the instanton (orange). Because we fix the time between
the two perturbations, the first perturbation for the green curve does not go to M2.

dynamics lie on the Z-symmetric manifold.
In full phase space, U1.5 is an edge state between O

and S2; T U2.5 (U2.5 shifted by Lc/2 in x) is an edge
state between S2 and T S3; and U3.5 is an edge state be-
tween T S3 and P . The two dimensional unstable man-
ifolds of U2 and U4 are depicted in figure 3 (those for
U5 and U3 mimick U2 and U4 respectively). U2 has an
unstable Z-asymmetric eigenvector (blue dotted line in
figure 1) which leads back to O. A linear combination
of the two unstable eigenvectors leads to the edge states
U1.5 and ZU1.5. The Z-asymmetric unstable eigenvector
of U4 leads to either T S3 or ZT S3. Because the unsta-
ble manifold contains four stable states, it also contains
four saddle states—T U2.5, ZT U2.5, ZU3.5 and U3.5—
each positioned between a given neighbouring pair of sta-
ble states.
In the remainder of the paper, we quantitatively com-

pare the states and different trajectories. To aid in this
comparison, the state u is projected onto two coordinates:
the total energy per characteristic length, and the energy
in the third through fifth Fourier mode per characteristic
length,

Et(u) =
1

6

∫

1

2
|u|2 dx

=
1

6

(

1

2
û(0)2 +

127
∑

k=1

|û(k)|2
)

, (4)

E3−5(u) =
1

6

(

|û(3)|2 + |û(4)|2 + |û(5)|2
)

, (5)

where û denotes the spatial Fourier transform of u, and
the k 6= 0 Fourier modes are multiplied by two due to
Hermitian symmetry. Other choices of coordinates
give similar plots but Et and E3−5 seemed the best
at separating the different states in the plane.

The partitioning of phase space into the various basins
of attraction is key to understanding the minimum energy
perturbations that lead to each of the different stable
solutions to SH. In the next section, we will find that
these states are on the stable manifold of the unstable
solutions Ui.

III. MINIMAL SEED PERTURBATIONS

We now carry out nonlinear optimization calculations
to calculate the minimal seed for the stable states S2, S3

and P . The minimal seed is the minimum energy per-
turbation from O which evolves into each of these stable
states. We will refer to the minimal seeds as M2, M3 and
MP . This is a first step in considering multiple pertur-
bations as well as continuous perturbations (section IV).
To find the minimal seeds, we calculate the pertur-

bation with fixed energy E0 which maximizes the time-
integrated energy

F [u(t)] =

∫ tf

0

∫ 6Lc

0

1

2
|u|2 dxdt. (6)

We do this with an iterative approach (derived in ap-
pendix A):

1. Integrate u from t = 0 to t = tf , including the
perturbation δu at t = 0;

2. Initialize the adjoint variable β(x, tf ) = 0 at t = tf ;

3. Integrate the adjoint variable according to the ad-
joint equation

∂tβ − (1 + ∂2
x)

2β + aβ = −3.6uβ + 3u2β + u (7)

back to t = 0;
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FIG. 3. Schematic diagram of the phase space around U2 (left) and U4 (right). Both states have two unstable eigenvectors—
one tangential to the Z-symmetric manifold, and one directed out of the manifold. The arrows are all in the two-dimensional
unstable manifold of U2 and U4, and the colors correspond to the basin of attraction of the different stable states within the
unstable manifold.

4. Update the perturbation δu according to

δu(x)→ δu(x) + ǫ[αδu(x)− β(x, 0) ], (8)

where ǫ = 0.073 is a small parameter setting the
size of the update and α is a Lagrange multiplier
used to enforce the constraint that the perturbation
has initial energy E0.

The adjoint equation is evolved in time using Dedalus,
with the same numerical choices as the integration of
SH. This algorithm can be repeated until we find a local
maximum of the time-integrated energy.
The algorithm depends on many choices. We use a fi-

nal time tf = 50, which is long enough to reach the stable
states O, S2, and S3, or to get close to the solution P .
Using a later final time would lead to better esti-
mates for the minimum seeds but also makes the
optimization procedure more sensitive to the per-
turbations and hinders convergence [4]. The use of
the time-integrated energy (see (6)) rather than the more
usual final energy as our objective function is motivated
by optimization calculations involving multiple perturba-
tions (described in the next section). With multiple per-
turbations, maximizing the time-integrated energy rather
than the energy at the final time tf encourages the algo-
rithm to introduce large perturbations at t = 0, rather
than wait some amount of time before perturbing the
system (which is equivalent to optimizing over fewer per-
turbations). Some calculations were nevertheless
done with the final energy as the objective func-
tion and found to produce similar minimum seeds
albeit with slower convergence.
Trajectories which approach a given stable solution

have larger time-integrated energies than trajectories
which approach lower energy solutions allowing minimal
seeds for each to emerge naturally as E0 is increased. To
do this, the optimization procedure is started with white
noise of energy E0 = Ei much greater than the energy of

the minimal seed. Then the optimization loop is run for
E′

0 < E0 for up to two hundred iterations to see if the
system is still in the attractor of the desired state. If it
is, the optimal perturbation is rescaled down in energy
again and the optimization loop repeated. If the system
is not in the attractor of the desired state, the energy
of the optimal perturbation is either rescaled upwards
E′

0 > E0, or the optimization is restarted with white
noise of the same energy. Using this procedure, we cal-
culate the energy of the minimal seed to within an energy
per characteristic length (Et) tolerance of 5× 10−4.

The procedure is repeated hundreds of times until we
have several perturbations with the same low energy
which are in the attractor of the desired state. For state
S2, most initial noise guesses converge to the same low
energy, whereas for state S3, we converged to the lowest
energy perturbation only 18 times after over 600 initial
guesses. Each of these perturbations are slightly differ-
ent, as their energy is slightly larger than the energy of
the minimal seed (given our tolerance of 5 × 10−4). To
get a better estimate of the minimal seed, we rescaled
the perturbations to slightly lower amplitudes to see the
minimum energy necessary to reach the desired state.

Although our optimization calculations do not impose
Z symmetry, in each case, we find the perturbations are
very close to being symmetric. If the perturbation is
symmetrized, we find that we can reach the desired state
with slightly lower energies than by using the rescaled
outputs of the optimization calculation. Thus, we believe
the minimal seeds are Z-symmetric states.

Each of our target states S2, S3, and P are well-
separated in energy, so it is straightforward to calculate
minimal seeds for each state individually by changing
the energy of the initial perturbation. Because of this,
we were able to use the same objective function (see (6))
to find all three target states. In other problems where
different target states have similar energies, it may be
more efficient to find the minimal seeds by varying the
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FIG. 4. Minimum energy perturbations to O to the three other stable states, S2, S3, and P (shown with black stars). The
trajectories are also plotted, showing that in each case, the minimal seed is on the stable manifold of one of the Z-symmetric
unstable states, U2, U3, or U4. Tick marks are placed on the trajectories every 5 time units. See figure 5 for each of the
perturbations.
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FIG. 5. The minimal seeds leading to stable states S2, S3, and
P . They each evolve toward one of the Z-symmetric unstable
states (U2, U3, or U4) before reaching the desired stable state.

objective function.

The minimal seeds and the trajectories to their respec-
tive stable solutions are shown in figures 4 & 5. The total
energy of each minimal seed is given in table I. The min-
imal seeds and their trajectories lay on the Z-symmetric

manifold, and the trajectories are depicted heuristically
in the left panel of figure 2. The minimal seed is the clos-
est point of approach between O and the stable manifold
of the unstable states U2, U3, and U4, which are each
edge states of the Z-symmetric problem. It is worth re-
marking that U5 is also an edge state of the Z-symmetric
problem, but has higher energy than U4, so one would ex-
pect its stable manifold to be further from O than U4’s
stable manifold (although this does not have to be true).

IV. MULTIPLE PERTURBATIONS AND

INSTANTONS

In the previous section, we found the optimal single
perturbation to state O which led to another stable state.
We now consider n perturbations δu1, δu2, . . ., δun which
act at times t1 = 0, t2, . . ., tn. This is a discretized
version of the continuous forcing problem,

∂tu+ (1 + ∂2
x)

2u− au− 1.8u2 + u3 = f(x, t). (9)

In the limit of large n, with perturbations which are
equally spaced in time by ∆t, we can approximate
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f(x, ti) ≈ δui/∆t. If the system is forced with low ampli-
tude white noise, i.e., f(x, t) =

√
ǫdW (x, t), where dW is

a Wiener process in time and space, then the probability
to transition between states is

p ∼ exp(−I[u]/ǫ), (10)

where the action

I[u] =

∫ T

0

∫ 6Lc

0

1

2
|f |2 dxdt (11)

[7]. The instanton trajectory, uI(x, t), is the trajectory
which starts and ends at the chosen stable states and cor-
responds to a noise sequence which minimizes the action
(i.e. is most likely). See appendix B for more details
about instantons.
When optimizing over multiple perturbations, we use

a norm which will converge to the action I in the limit
of infinitely many perturbations,

N [{δui}ni=1
] = n

n
∑

i=1

Et(δui). (12)

For a single perturbation, this is simply the energy of
that perturbation (the norm used in the previous sec-
tion). In the limit of infinitely perturbations which are
equally spaced in time, we have

I[f ] =

∫ tf

0

∫ 6Lc

0

1

2
|f(x, t)|2 dxdt

≈
n
∑

i=1

∆t

∫ 6Lc

0

1

2
|f(x, ti)|2 dx =

n
∑

i=1

∫ 6Lc

0

|δui|2
∆t

dx

=
6

tf
n

n
∑

i=1

Et(δui) =
6

tf
N [{δui}ni=1

] , (13)

where n = tf/∆t, and the approximation becomes an
equality in the limit ∆t → 0. Thus, the minimal seed
(n = 1) and instanton (n = ∞) can be viewed as two
extremes of the general optimization problem for arbi-
trary n. It may seem like a more natural choice of norm
would have been the sum of the energies of the perturba-
tions (N({δui})/n) but this goes to zero as n → ∞ (see
table I) rather than tending to the finite limit like the
chosen norm (12).
In this section, we calculate the optimal set of two,

five, and five hundred perturbations. The optimal set
of five hundred perturbations corresponds to adding a
perturbation at every time step and so is the discretized
instanton. We call the perturbations associated with the
instanton δuI , and the optimal set of n perturbations
δunP . We only calculate these for the transition between
O and P . For simplicity, the perturbations are assumed
to be equally spaced in time, with ti = tf (i − 1)/n, so
the two perturbations in δu2P act at t = 0 and 25, and
the five perturbations in δu5P act at t = 0, 10, 20, 30,
and 40.
The calculation is based on a generalization of the

optimization algorithm described in section III (see ap-
pendix A). We optimize over a set of n perturbations

{δui} with fixed normN0 to maximize the objective func-
tion given in equation (6). The only differences are that
steps 1. and 4. are replaced by

1.′ Integrate u from t = 0 to t = tf , including the
perturbations δui at t = ti;

and

4.′ Update the set of perturbations δui according to

δui(x)→ δui(x) + ǫ(nαδui(x) − β(x, ti)), (14)

where ǫ = 0.073 (or 0.018 for the instanton cal-
culation) is a small parameter setting the size of
the update, and α is the single Lagrange multiplier
used to enforce that the set of perturbations has
norm N0.

As for the single perturbation problem, we initialize
the algorithm with random noise for all perturbations.
Then the optimization procedure is repeated up to two
hundred times to try to find a set of perturbations with
norm N0 that leads to P . We then vary N0 to find δuI

(δunP ), up to norm of 0.025 (5n × 10−4). We repeat
this for about one thousand random initial conditions.
This gives several slightly different optimals which have
the same norm (up to the tolerance). To determine the
best, we uniformly rescale the set of perturbations to
slightly lower amplitudes, and see which set of perturba-
tions can transition to P at the lowest amplitude. We
also symmetrize δuI and δu5P (δu2P was already sym-
metric) to give our best estimate for the optimal set of
perturbations. It’s worth remarking that this strategy
for finding the instanton is not the usual direct one of
minimizing the action across all trajectories which con-
nect O and P . Instead, the action is fixed and then the
time-integrated energy of the system maximised to find
a trajectory connecting O and P . The action is then
systematically reduced until no such connection can be
found anymore. The success of this indirect approach
relies on the fact that the optimization algorithm will
find a connection if possible at a given action, as this
maximizes the time-integrated energy. The equivalence
of the approach used here and the usual instan-
ton calculation is discussed in appendix C where
a formal connection between the two variational
problems is made.
The right panel of figure 2 shows a schematic depiction

of the optimal set of two perturbations and the instan-
ton. The optimal set of two perturbations consists of a
perturbation toward the stable manifold of U2, followed
by a second perturbation to the stable manifold of U4,
which leads to P . The instanton trajectory approaches
U2, flows toward S2, and then moves toward U4. In this
sense, one can think of the instanton as primarily con-
sisting of two “types” of perturbations, similar to the op-
timal set of two perturbations. This is because the basin
of attraction of S2 separates the basins of attraction of
O and P . Thus, our results suggest that one might
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FIG. 6. Instanton trajectory (yellow to black line), and trajectories for optimal set of two and five perturbations to transition
from O to P . The instanton trajectory’s color corresponds to the size of the perturbation δuI(t) at that position in the
trajectory. The perturbations δu2P,i and δu5P,i are shown in dotted lines. Tick marks are placed on each trajectory every
five time units. Long tick marks denote states and perturbations which are plotted in figure 8. After they reach U4, all three
trajectories are identical, so they are all denoted with the black line. The trajectories associated with the optimal set of two and
five perturbations are very close to each other, but are different from the instanton trajectory, or the minimal seed trajectory
MP (figure 4).

expect the number of perturbations required to ap-
proximate the instanton may match the number
of basins of attraction which need to be crossed.

More quantitatively, figure 6 shows the instanton and
the trajectories associated with δu2P and δu5P , in the
same projection as figure 4. We will refer to the instan-
ton trajectory as I, and the trajectory associated with
δu2P and δu5P as 2P and 5P . We plot the solution and
perturbations at different times in figure 8. The color of
the instanton trajectory in figure 6 corresponds to the
size of the perturbation δuI(t) at each point on the tra-
jectory (so the required noise is initially large to escape
O’s basin of attraction and then vanishes once the sys-
tem is in P ’s the basin of attraction). We measure the
amplitude of the perturbation using

|δu| =
√

Et(δu)

6
, (15)

the square root of the energy per unit length. We use
the amplitude (rather than the energy) because the am-
plitude of the sum of many perturbations in the same
direction is equal to the sum of the amplitudes. The am-
plitude of the perturbation as a function of time is shown
in figure 7.

Initially, the instanton moves away from O due to large
amplitude perturbations producing two medium ampli-
tude maxima in the center of the domain (see figure 8).
This lasts until t ∼ 15, when the solution approaches the
unstable Z-symmetric state U2. The largest amplitude
perturbations occur at early times because the system
starts at a strong attractor (O). Between t ∼ 15 and
t ∼ 30, the perturbation amplitude increases again, to
perturb the system toward U4. Now the perturbations
are predominately on two outer maxima, while the two
central maxima grow in amplitude due to the flow of the
system. After t = 30, the solution approaches U4 with-
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(black line), and each of the optimal perturbations δu2P and
δu5P at the times of the perturbation. Also shown is the
amplitude of the sum of δuI between t = 10(i − 1) and 10i
(orange circles). The largest perturbations in all cases are
near t = 0 and near t = 25. This corresponds to perturbing
the system toward U2, and then subsequently perturbing the
system toward U4.

out needing significant perturbations. The sum of the
perturbations from t = 40 to 50 shown in figure 8 is so
small it barely be seen by eye. Although the instanton
appears to pass close to U3 (figure 6), this is an artifact
of our projection, as the solution is always negative at
the center of the domain (at x = 3Lc).

The trajectories 2P and 5P are similar to each other,
as well as to the instanton. In both cases, there are only
two large perturbations, one toward U2, and one to U4.
Because there is only one basin of attraction between
O and P , having more than two perturbations does not
change the result of the optimization significantly.

In section III, we found the minimal seed for P has
much lower energy than U4. However, the optimal set
of multiple perturbations never approaches this minimal
seed because the distance between S2 and U4 is smaller
than the distance between S2 and MP . This is because
U4 has two large amplitude central maxima, just like S2,
whereas MP has only medium sized central maxima. By
perturbing toward M2, flowing toward S2, and then per-
turbing close to U4, the optimal set of multiple pertur-
bations can take advantage of the energy-enhancing flow
toward S2.

Although the instanton follows a similar heuristic
strategy as the optimal set of multiple perturbations, its
trajectory using our projection is different from 2P and
5P . This is because the instanton perturbations enhance
the outer two amplitude maxima at early times (see t = 0
and t = 10 in figure 8). This moves energy from the
fourth to second Fourier mode, decreasing E3−5 relative
to 2P and 5P .

The instanton can enhance the two outer amplitude
maxima at early times because the amplitude of its per-
turbations is larger than the amplitude of δu2P or δu5P .
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FIG. 8. The solution along the instanton trajectory (I) and
along the trajectory associated with the optimal set of two
and five perturbations (2P and 5P ). I is shown every 10
time units in black, with the dashed orange line showing the
solution plus the sum of the perturbations over the next 10
time units. For 2P and 5P , we show the solution right be-
fore each perturbation (in black), as well as right after each
perturbation (in green or pink; dashed). In all cases, initially
the system develops two central large amplitude maxima, fol-
lowed by two outer medium amplitude maxima.



9

Figure 7 shows that the sum of the amplitude δuI over
time intervals of 10 time units (orange circles) is always
larger than the amplitudes of δu2P or δu5P at similar
times.
The norm of the optimal set of perturbations increases

as the number of perturbations increases. If this trend oc-
curs in other problems, it suggests that optimizing over a
finite set of perturbations may give a lower bound on the
norm of the instanton. This should simplify calculations
as optimizing over fewer perturbations is generally eas-
ier than calculating the instanton which has many more
degrees of freedom.

V. CONCLUSIONS

We have presented a series of optimization calcula-
tions using the one-dimensional Swift–Hohenberg equa-
tion (SH) with a quadratic-cubic nonlinearity. Parame-
ters such as the domain length were chosen so that there
are four stable solutions: the trivial solution O, two lo-
calized solutions with two or three large amplitude max-
ima (S2 and S3), and a global state P which is periodic
on the characteristic lengthscale. There are also several
symmetric and non-symmetric unstable solutions which
are on the boundary between basin of attraction of the
different stable solutions.
First we calculated the minimal seeds for transition

from O to either S2, S3, or P . These are the small-
est energy perturbation which causes transition to the
appropriate stable solution. Geometrically, the minimal

TABLE I. Energy of each of the solutions and minimal seeds.
For each optimal set of perturbations, we report the sum of
the energy of the perturbations, as well as the norm (equa-
tion (12)).

state or perturbation
∑

Et N = n
∑

Et

O 0

S2 0.5164

S3 0.8167

P 1.737

U1.5 0.3038

U2.5 0.5986

U3.5 0.8936

U2 0.2111

U3 0.3927

U4 0.6746

U5 0.9447

M2 0.2048

M3 0.2675

MP 0.3346

δu2P 0.2733 0.5465

δu5P 0.2700 1.350

δuI 0.0060 2.977

seed is the point of closest approach to O on the basin
boundary of each stable solution (left panel of figure 2).
In each case, the minimal seed is on the stable manifold
of one of the symmetric unstable states (figure 4). It is
straightforward to find the minimal seeds for the various
stable solutions because they are well separated in energy
which forms the basis of the objective functional used.

Next, we calculated the optimal set of multiple per-
turbations which guide the system from O to P . Math-
ematically, this is a straightforward modification to the
optimization algorithm, but in practice the optimization
problem is now more difficult because there are more per-
turbations to consider. Using a special norm, we then cal-
culated the optimal set of two perturbations (δu2P ), the
optimal set of five perturbations (δu5P ), and the instan-
ton (δuI) in which the perturbations are a continuous
function of time (i.e., optimizing over perturbations at
every timestep). The trajectories for these three calcula-
tions are shown in figure 6. In all cases, we found that
the easiest way to transition from O to P is to: 1. Intro-
duce two medium amplitude maxima in the center of the
domain; 2. Let the flow of SH grow these into two large
amplitude maxima; 3. Perturb the system to add two
outer medium amplitude maxima (toward the unstable
solution with four medium and large amplitude maxima,
U4); and 4. Let the flow of SH lead to P . Importantly,
even the two-perturbation optimal captured the key fea-
tures of the more involved instanton trajectory.

By generalising the recently-developed energy opti-
mization technique to multiple perturbations and identi-
fying the appropriate norm to measure a sequence of dis-
crete perturbations, we have established a formal link to
the instanton trajectory of large deviation theory which
gives the most likely transition path between two sta-
ble states in noisy systems. What has emerged in doing
this is the possibility that an optimization calculation
incorporating only a very small number of discrete per-
turbations can give significant insight into the instanton
trajectory. For the SH problem treated here, we found
that just two perturbations were enough to give a tra-
jectory similar to the instanton because only two basins
of attraction needed to be crossed (the basin of attrac-
tion of S2 is between the basin of attractions of O and
P ). Clearly, more complicated problems with additional
intervening basins of attraction will require more per-
turbations to approximate the instanton but this will be
clear by gradually increasing the number of allowed per-
turbations in the optimization procedure (e.g. here δu5P

is very similar to δu2P ).

An optimal set of multiple perturbations should also be
a good starting point for the calculation of an instanton
and thereby lead to faster convergence than, say, random
perturbations as an initial guess. Furthermore, it seems
that the norm (equation (12)) of the optimal set of multi-
ple perturbations gives a lower bound to the action of the
instanton. If this is true more generally, it may provide
an interesting upper bound on the transition probabil-
ities of systems under low amplitude noise without the
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need to calculate the full instanton.
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Appendix A: Derivation of the Optimization

Algorithm

We want to maximize the objective function F [u(t)] de-
fined in equation (6) subject to the following constraints.
We require u to satisfy SH, with perturbations δui act-
ing at times ti, for i = 1, . . . , n. We also require that δui

satisfy a norm condition N [δui] = N0 (equation (12)).
To impose these constrains, we split u(t) into n different
functions, ui(t), each of which are defined on t ∈ [ti, ti+1].
For simplicity of notation, we also define u0 = 0 and
tn+1 = tf . Then we can define a Lagrangian

L = F [u(t)] + α (N [δui]−N0)

+

n
∑

i=1

∫ 6Lc

0

dx γi(x) [ui(ti)− ui−1(ti)− δui]

+

n
∑

i=1

∫ ti+1

ti

dt

∫ 6Lc

0

dxβi(x, t)

×
[

∂tui + (1 + ∂2
x)

2ui − aui − 1.8u2
i + u3

i

]

, (A1)

where α, γi(x), and βi(x, t) are Lagrange multipliers im-
posing our constraints.
To maximize L, we must vary the Lagrangian with

respect to each of the variables. Varying α imposes the
norm condition, varying γi imposes the perturbations,
and varying βi requires ui to satisfy SH. Varying with
respect to ui gives the adjoint equation

∂tβi − (1 + ∂2
x)

2βi + aβi =

−3.6uiβi + 3u2
iβi + ui, (A2)

where the last term comes from our objective function.
Now we need a relation to relate the different βi to each
other. Varying with respect to un(tf ) gives βn(tf ) = 0.
Varying with respect to ui(ti) gives γi − βi(ti) = 0, and
varying with respect to ui−1(ti) gives −γi+βi−1(ti) = 0,
assuming i > 1. Thus, we have that βi−1(ti) = βi(ti);
that is, β can be viewed as a continuous variable satisfy-
ing the adjoint equation from t = tf to t = 0.

Finally, we update the perturbations δui in the direc-
tion

∂L
∂δui

= αnδui − γi = αnδui − β(ti). (A3)

Appendix B: The Instanton

An instanton is a trajectory which starts and
ends at two chosen states which minimizes the
action

I[u] =

∫ T

0

∫ 6Lc

0

1

2
|f |2 dxdt, (B1)

where f(x, t) is the forcing function (see equa-
tion (9) ). Here we are interested in transitions
between O and P . Associated with the action is a
Lagrangian,

LI [u, ∂tu] = (B2)
∫ 6Lc

0

1

2

∣

∣∂tu+ (1 + ∂2
x)

2u− au− 1.8u2 + u3
∣

∣

2
dx.

The conjugate momentum is

p =
∂LI
∂u̇

= ∂tu+ (1 + ∂2
x)

2u− au− 1.8u2 + u3,(B3)

i.e., the forcing function f (where u̇ = ∂tu). Then
the instanton Hamiltonian is

HI [u, p] :=

∫ 6Lc

0

pu̇ dx − LI = (B4)

∫ 6Lc

0

{

1

2
p2 − p

[

(1 + ∂2
x)

2u− au− 1.8u2 + u3
]

}

dx.

The associated Euler-Lagrange equations are

∂tu = p−
[

(1 + ∂2
x)

2u− au− 1.8u2 + u3
]

, (B5)

∂tp = (1 + ∂2
x)

2p− ap− 3.6pu+ 3pu2. (B6)

The first equation is the evolution equation for
the system (equation 9). The second equation
is the unforced adjoint equation (equation A2).
For more information about instantons and large
deviation theory, we direct interested readers to
Laurie and Bouchet [19], and references within.

Appendix C: Correspondence between uI and the

Instanton

The multiple perturbation approach is to find

min
N0

max
δui

L(δui, N0) (C1)

where L is defined in (A1) and the outer mini-
mization is performed over all N0 which possess
trajectories connecting the states O and P . The
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role of the objective functional F is to ensure
that such trajectories are found if they exist at
a given N0, but its precise form becomes increas-
ingly unimportant as the minimum of N0 is ap-
proached since the set of competitor trajectories
shrinks down to one. The easiest way to see this
mathematically is to rescale and rewrite L as fol-
lows

L∗ := L/α = N [δui] +
1

α
(F [u(t)]− αN0)

+

n
∑

i=1

∫ 6Lc

0

dx
γi(x)

α
[ui(ti)− ui−1(ti)− δui]

+

n
∑

i=1

∫ ti+1

ti

dt

∫ 6Lc

0

dx
βi(x, t)

α

×
[

∂tui + (1 + ∂2
x)

2ui − aui − 1.8u2
i + u3

i

]

. (C2)

The objective functional is then N [δui] subject to
the constraint that F [u(t)] = αN0 along with the
other constraints. Minimizing this over δui with
the requirement that trajectories link the states O
and P is the instanton calculation, albeit with this
extra constraint. If the sensitivity of the mini-
mum to this constraint is to vanish then α → ∞.
Empirically, we find that α increases as we ap-
proach the instanton. It is also clear here that βi

must scale with α as the optimum is approached.
This means that the homogeneous solution for β
in (A2) increasingly dominates over the particu-
lar integral forced by the F -dependent inhomoge-
neous term (here ui) so that

nδui → fi = pi ←
βi

α
& α→∞ (C3)

as the optimum is approached. This establishes
the correspondence.
An independent check is to show that the Hamil-
tonian HI of the instanton trajectory calculated
using the optimization procedure is constant over
time. This constant should be zero as once the
system reaches the attractor of P , there is zero
forcing, i.e., p = 0, so HI = 0 then. In figure 9
HI(t) is plotted normalised by LI(t) which shows
that HI(t) is indeed small and so our trajectory I
approximates the instanton.
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FIG. 9. The instanton Hamiltonian (normalized by the
instanton Lagrangian) as a function of time. The per-
turbations only act until tf = 50, so HI is identically
zero at later times. The typical size of the terms in
the Hamiltonian are given by LI, but they largely can-
cel out. Thus, the Hamiltonian is very nearly constant,
showing that the associated trajectory is an instanton.
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