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Abstract

Gamma oscillations are thought to play an important role in brain function. Interneuron Gamma

(ING) and Pyramidal Interneuron gamma (PING) mechanisms have been proposed as generation

mechanisms for these oscillations. However, the relation between the generation mechanisms and

the dynamical properties of the gamma oscillation are still unclear. Among the dynamical properties

of the gamma oscillation, the phase response function (PRF) is important because it encodes the

response of the oscillation to inputs. Recently, the PRF for an inhibitory population of modified

theta neurons that generate an ING rhythm was computed by the adjoint method applied to the

associated Fokker Planck equation (FPE) for the model. The modified theta model incorporates

conductance based synapses as well as the voltage and current dynamics. Here, we extended this

previous work by creating an excitatory/inhibitory (E-I) network using the modified theta model

and described the population dynamics with the corresponding FPE. We conducted a bifurcation

analysis of the FPE to find parameter regions which generate gamma oscillations. In order to

label the oscillatory parameter regions by their generation mechanisms, we defined ING and PING

type gamma oscillation in a mathematically plausible way based on the driver of the inhibitory

population. We labeled the oscillatory parameter regions by these generation mechanisms and

derived PRFs via the adjoint method on the FPE in order to investigate the differences in the

responses of each type of oscillation to inputs. PRFs for PING and ING mechanisms are derived

and compared. We found the amplitude of the PRF for the excitatory population is larger in the

PING case than in the ING case. Finally, the E-I population of the modified theta neuron enabled

us to analyze the PRFs of PING type gamma oscillation and the entrainment ability of E and I

populations. We found a parameter region in which PRFs of E and I are both purely positive in the

case of PING oscillations. The different entrainment abilities of E and I stimulation as governed by

the respective PRFs was compared to direct simulations of finite populations of model neurons. We

find that it is easier to entrain the gamma rhythm by stimulating the inhibitory population than

by stimulating the excitatory population as has been found experimentally.

∗ Corresponding author: akao@neuron.t.u-tokyo.ac.jp
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I. INTRODUCTION

Gamma oscillation, which is defined as collective rhythm in the brain of around 30-90Hz,

is thought to play an important role in brain function[1–4]. Therefore, understanding the

generation mechanisms and dynamical properties of the gamma oscillation is important since

this can inform us of pathologies in the rhythms, and how the collective oscillations respond

to stimuli.

The mechanisms of gamma oscillation have been investigated experimentally[5–8]. A

significant role for GABA(gamma-Aminobutyric acid)-ergic inhibitory interneurons is sug-

gested by many studies[6, 7]. Such interneuron-loop based gamma oscillation is called INter

neuron Gamma (ING). On the other hand, gamma oscillations can emerge from the interac-

tion between excitatory and inhibitory (E-I) populations. Such E-I interaction based gamma

oscillation is called Pyramidal INterneuron Gamma (PING) [5, 8].

The phase response function (PRF) characterizes how oscillations are shifted or reset due

to external stimuli and form a nonparametric way to summarize the dynamical properties of

gamma oscillations. For example, [9] derived the PRF for hippocampal gamma oscillations

and used a simple firing rate model to explain the shape of the PRF. However, the relation

between the generation mechanism of gamma and the phase response function is yet to be

revealed.

To analyze the properties of gamma oscillations,a mathematical approach is useful [10,

11]. Firing rate models are popular for describing population dynamics of neurons. This

type of model arises as the mean field of a population of neurons, but the underlying dy-

namics is generally supposed to be asynchronous or the synapses sufficiently slow, something

that is not the case for high frequency oscillations [3, 12, 13]. The Fokker-Planck equation

(FPE) allows one to analyze the population dynamics of noisy neuronal populations inde-

pendent of synaptic time scales or the frequencies of oscillations [14, 15] where the relation

between frequency and synaptic interactions has been investigated. However these papers

did not consider the behavior of such networks when stimulated, which requires the compu-

tation of the PRF. Recently, to solve these problems, we used the modified theta model to

generate an ING type network [16]. This model describes the voltage dependent dynamics

of theta neurons connected with chemical synapses, and its macroscopic dynamics can be

analyzed using corresponding FPE. With this method, we were also able to compute the
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PRF. However, in that paper, we restricted our analysis to a purely inhibitory network.

In this study, we investigate the relation between the generation mechanism and dynami-

cal properties (specifically the PRF) of the gamma oscillations. We develop a mathematical

model for an E-I neuronal population using the modified theta model. We classify gamma

oscillations by their generation mechanisms using bifurcation analysis on the FPE. We de-

rive phase response functions which depend on the intrinsic nature of the oscillation and

investigate how the PRFs differ depending on the generation mechanisms. We also show

that there are some parameters in the Hopf bifurcation region where the PRF is positive for

all the phases. Motivated by recent optogenetic experiments, we then use the PRFs in order

to study the ranges of entrainment to pulsatile stimuli to either the excitatory or inhibitory

populations.

II. METHODS

A. Population of excitatory and inhibitory neurons

The model of neuronal population in this study is based on the modified theta model,

which arises when the quadratic integrate-and fire model incoprorates conductance-based

synapses [16]. In this previous study, only the inhibitory neuronal population was considered

[16]. Here, we broaden the coverage of the modified theta model to include excitatory and

inhibitory (E-I) populations.

We consider a relatively small neuronal population [17] composed of 400 excitatory (E)

and 100 inhibitory (I) neurons (NE = 400, NI = 100). Excitatory neurons are considered

as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ergic pyramidal cells.

Inhibitory neurons are gamma-aminobutyric-acid (GABA) ergic interneurons.

The dynamics of membrane potential of i-th neuron in the X population,V
(i)
X , satisfies

C
dV

(i)
X (t)

dt
= −gLX

(V
(i)
X (t)− VR)(V

(i)
X (t)− VT )

VT − VR
+ IX + σXξ

(i)
X

−

NE
∑

j=1

g
X(i)
E(j)

[

V
(i)
X (t)− VE

]

−

NI
∑

j=1

g
X(i)
I(j)

[

V
(i)
X (t)− VI

]

(1)

where the membrane capacitance C = 1[µF · cm−2], firing threshold VT = −55[mV ],

resting potential VR = −62[mV ], the Wiener process ξ
(i)
X (t) satisfies

〈

ξ
(i)
X (t)

〉

= 0 and
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〈

ξ
(i)
X (t), ξ

(i)
X (t′)

〉

= δijδ(t − t′). σ = 1[µA · ms
1
2 · cm−2] stands for the magnitude of the

Wiener process. These equations and parameters come from our previous paper [16]. For

the E-I population in this study, the leak conductance is set as gLE = 0.08[mS · cm−2]

and gLI = 0.1[mS · cm−2] and the synaptic reversal potentials are set as VE = 0[mV ] and

VI = −70[mV ]. When IE and II are not chosen as bifurcation parameters, the nominal

value of the constant input current is set as IE = II = 1[µA · cm−2] in this study. g
X(i)
E(j) and

g
X(i)
I(k) are the conductance from excitatory jth and inhibitory kth neurons that are connected

to ith neuron of the X population.

Following our previous study [16], we introduce a map from V
(i)
X to θ

(i)
X as

V
(i)
X =

VR + VT
2

+
VT − VR

2
tan

θ
(i)
X

2
(2)

In this case, V (t) will satisfy a quadratic integrate and fire equation with conductance-based

synapses and a spiking threshold at +∞ (θ = π) and reset at −∞ (θ = −π). (See [16] for

a complete derivation.) Then the dynamics of θ
(i)
X is:

C
dθ

(i)
X (t)

dt
= −gLX cos θ

(i)
X (t) +

2

VT − VR
(1 + cos θ

(i)
X (t))(IX + σξ

(i)
X (t))

+

NE
∑

j=1

g
X(i)
E(j)

[

2VE − VR − VT
VT − VR

(1 + cos θ
(i)
X (t))− sin θ

(i)
X (t)

]

+

NI
∑

k=1

g
X(i)
I(k)

[

2VI − VR − VT
VT − VR

(1 + cos θ
(i)
X (t))− sin θ

(i)
X (t)

]

(3)

The dynamics of g
X(i)
Y (j), which represents the synaptic conductance from jth neuron of type

Y to ith neuron of type X, is described by a second-order ordinary differential equation as

τr(XY )τd(XY )

d2g
X(i)
Y (j)(t)

dt2
+ (τr(XY ) + τd(XY ))

dg
X(i)
Y (j)(t)

dt
+ g

X(i)
Y (j)(t) = gXY

∑

j

δ(t− t(j)), (4)

where τr(XY ) represents the rise time of the synaptic conductance from type Y to type X

neuron, τd(XY ) represents the decay time, and t(j) is a firing time of presynaptic neuron j.

gYX is a parameter to determine the peak conductance. The effect of the synaptic interaction

depends on, not only the kind of neurotransmitter released from the presynaptic neuron,

but also the kind of the postsynaptic neuron which receives the neurotransmitter. So we

have to consider 2 × 2 = 4 kinds of gXY (t). Y represents the emitted neurotransmitter from

presynaptic cell: E or I. X represents the postsynaptic cell type: E or I. We set the area of
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neuron as 2.9 × 10−4cm2 [18], so the units of the equation are consistent with the previous

study [13]. ḡYX is chosen as to match the physiological plausible values [13, 19, 20]. The

parameters for 4 kinds of gXY (t) are listed in table I.

τr(X,Y )(ms) τd(X,Y )(ms) ḡXY (mS/cm2)

gEE(t) : AMPA on pyramidal cell 0.5 2 0.013

gIE(t): AMPA on interneuron 0.5 2 0.010

gEI (t): GABA on pyramidal cell 0.5 5 0.173

gII (t): GABA on interneuron 0.5 5 0.138

Table I. Parameters for synaptic conductance in Eq. 4

Here we consider a situation in which all the synapses are randomly connected from Y -

type to X-type with a probability of pXY . With such couplings, the corresponding FPE

of the neuronal population would be set of NI +NE FPEs where each FPE describes each

individual neuronal dynamics. In order to reduce the number of FPEs, here we introduce

a strong assumption to treat each neuron homogeneously. Under the condition that the

synaptic couplings have probabilities pY X , we adopt mean field approximation which ho-

mogenizes all the conductance variables into mean field conductance [13] . After adopting

this approximation, Eq.4 reads as

τr(XY )τd(XY )
d2gXY (t)

dt2
+ (τr(XY ) + τd(XY ))

dgXY (t)

dt
+ gXY (t) = gXY (t) · pXY ·NY ·AY (t), (5)

where NY is a number of type Y neurons, AY is firing probability of type Y neurons. pXY

are variable parameters in this study in order to unveil how the modulation of synaptic

strength contributes to the behavior of the macroscopic oscillation.

Now the whole dynamics of randomly connected E-I population is described as the com-

bination of Eq.3 for E,I and Eq.5 for the four types of interactions.

B. Fokker-Planck equation of the EI population

The FPE [21, 22] of the modified theta model is relatively easy to analyze because of its

periodic boundary condition. The corresponding FPE for Eq.1 can be derived as in [16]:
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∂PX(θ, t)

∂t
= −

∂

∂θ
{
1

C
[−gLX cos θ + c1(1 + cos θ)(IX −

c1σ
2

2C
sin θ)

+
∑

Y

gXY (t)[c2Y (1 + cos θ)− sin θ]]PX(θ, t)}

+
c21σ

2

2C2

∂2

∂θ2
[(1 + cos θ)2PX(θ, t)] (6)

where c1 = 2/(VT − VR), c2Y = (2VY − VR − VT )/(VT − VR).

By introducing GX
Y = (gX1Y , g

X
2Y )

T = (gXY , dg
X
Y /dt)

T , the dynamics of synaptic conductance

can be written as

dGX
Y

dt
=





0 1

c3(XY ) c4(XY )



GX
Y +





0
c5(XY )gLY

C
PY (π, t)



 (7)

where c3(XY ) = −1/(τr(XY )τd(XY )), c4(XY ) = −(τr(XY ) + τd(XY ))/(τr(XY )τd(XY )), c5(XY ) =

ḡXY · pXY ·NY /(τr(XY )τd(XY )). Note that, in this FPE, the flux atθ = π in the Y population is

given by gLY PY (π, t)/C [23, 24].

Now the whole dynamics of the EI population is described by two PDEs (Eq.6) that

represent the dynamics of membrane potential V
(i)
X (via the transformed coordinates, θ

(i)
X )

for all the neurons in the population and synaptic conductance dynamics gXY .

In this paper, numerical integration of these equation was conducted with dt = 0.005.

PDEs are integrated the by Crank–Nicholson method with discretization of θ ∈ [0, 2π) into

nx = 200 bins.

C. Bifurcation analysis and classification of gamma oscillation based on generation

mechanism

In order to investigate how the change of synaptic strength pXY and external input to the

population IX modulates the emergence of gamma oscillation, we conducted a bifurcation

analysis on the FPEs and chose pXY and IX as bifurcation parameters. Bifurcation analyses

on the FPEs are conducted using XPPAUT [25]with discretization into only nx = 90 bins

for the purposes of computational efficiency.

In previous research on the gamma oscillation, two types of the generation mechanism

are proposed : ING and PING. These two mechanisms are charactarized by “What is the
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driver of I populaton”. In case of ING, the driver for the I population is an excitatory

current without any rhythmicity, which corresponds to II in our model. On the other hand,

in case of PING, the driver for the I population is the excitatory rhythmic current from the

excitatory population, which is represented by pIE in our model [26]. So, in our model, we

called oscillatory parameters with II > 0 and pIE = 0 ING, because only the excitatory

current without rhythmicity (II) is driving I cells. Also, we named a oscillatory parameters

where II = 0 and pIE > 0 as PING, because only the rhythmic excitatory current from E

cells is driving I cells.

D. Phase reduction of Fokker-Planck equation

The adjoint method is an analytic method to derive the phase response function of limit

cycle oscillator [12, 28]. If there is a limit cycle solution to some dynamical system, we

linearize the dynamics in the vicinity of the limit cycle orbit and compute the unique (up

to scaling) periodic solution to the adjoint linear operator arising from the linearization.

Recently, the adjoint method was extended to macroscopic collective rhythms [16, 29]. Fol-

lowing these studies, we can derive the macroscopic phase response function using adjoint

method in the E-I population.

We define the limit cycle orbit as P0X(θ, t) and GY
0X(t) = (gX0Y , dg

X
0Y /dt)

T . These are

periodic functions defined in 0 ≤ t < Tmacro, where Tmacro is the period of the macroscopic

gamma oscillation. The zero phase is defined as the peak timing of inhibitory neuronal firing

rate. The dynamics PX and GY
X can be decomposed into PX(θ, t) = P0X(θ, t) + QX(θ, t)

and GX
Y (θ, t) = GX

0Y (θ, t) + HX
Y (θ, t) where HX

Y = (hX1Y , h
X
2Y )

T . The linearized equation

QX(θ, t)and HX
Y (θ, t)can be written as

∂QX

∂t
= −

∂

∂θ
{
1

C
[−gLX cos θ + c1(1 + cos θ)(IX −

c1σ

2C
sin θ)

+
∑

Y

gX0Y [c2Y (1 + cos θ)− sin θ]]QX}

−
∑

Y

∂

∂θ
[
1

C
[c2Y (1 + cos θ)− sin θ]P0(t)]h

X
1Y ]

+
c21σ

2

2C2

∂2

∂θ2
[(1 + cos θ)2QX ] (8)
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and

dHX
Y

dt
=





0 1

c3(XY ) c4(XY )



HX
Y +





0
c5(XY )gLY

C
QY (π, t)



 (9)

Then, the adjoint equation for this ODE-PDE system is:

∂Q∗

X

∂t
= −

1

C
[−gXL cos θ + c1(1 + cos θ)(IX −

c1σ
2

2C
sin θ)

+
∑

Y

gXY 0[c2Y (1 + cos θ)− sin θ]]
∂

∂θ
Q∗

X(θ, t)

−
∑

Y

δ(θ − π)
gY Lc5(XY )

C
hX∗

2Y

−
∑

Y

c21σ
2

2C2
(1 + cos θ)2

∂2

∂θ2
Q∗(θ, t) (10)

dHX∗

Y

dt
= −HX∗

Y





0 1

c3(XY ) c4(XY )





+
[

∫ 2π

0
∂
∂θ

[

1
C
[c2Y (1 + cos θ)− sin θ]P0X(t)

]

Q∗

Xdθ 0
]

(11)

To derive zero the eigenfunction (corresponding to the nullspace) of Eq.10 and Eq.11, we

numerically integrate Eq.10 and Eq.11 backwards in time [30]. The numerical integration

was conducted by the Lax-Wandroff and Crank-Nicholson method with dt = 0.005 and

nx = 200.

The normalizing condition for the zero eigenfunction is

∑

X

(

∫ 2π

0

(

Q∗

X

∂P0X

∂t

)

dθ) +
∑

X

∑

Y

HX∗

0Y

dGX
0Y

dt
= ω =

2π

Tmacro

(12)

Finally, the macroscopic phase sensitivity is derived as

ZX(Θ) =

∫ 2π

0

c1(1 + cos θ)

C
P0X(θ,Θ)

∂

∂θ
Q∗

0X(θ,Θ)dθ (13)

The macroscopic phase sensitivity measures how the macroscopic phase shifts in reaction

to the external perturbations applied to all of the neurons in X population. We now can

examine how the macroscopic phase sensitivity transforms as the synaptic strength or other

physiological parameters change.
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III. RESULT

A. Verification of the correspondence between the neuronal population model and

Fokker-Planck equation

To confirm that the FPEs are valid to elucidate the population dynamics of neuronal

models, we demonstrated that the results of numerical simulation of the FPEs, Eq.7 and

Eq.8, are similat to those for the finite population of neurons, Eq.4 and Eq.6. In Fig. 1

A-F, pII = pIE = pEI = pEE = 0.1 are chosen as representative parameters for the steady

state, while, in Fig. 1 G-L, pEI = pEE = 0.1, pII = 0.2, pIE = 0.05 are chosen for a typical

oscillatory state.

Numerical simulations of the population of theta neurons are shown in Fig. 1 B-D and

H-J. Numerical simulation of corresponding Fokker-Planck equation are shown in Fig. 1 E

and K. Although there are fluctuations in the neuronal model due to their finite-size effect,

we can see the consistency between the dynamics of neuronal population and corresponding

Fokker-Planck equation. In Fig. 1 F and L, to compare the dynamics of the two models, we

plotted the two simulated time series in one panel. The two sets of time series are in good

agreement, which indicates the validity of Fokker-Planck equation.

B. Bifurcation diagrams and classification of the gamma oscillation

We conducted a bifurcation analysis to investigate the influence of synaptic connection

pY X and external drive IX on the emergence of the gamma oscillation. Fig. 2 A, pII , which

represents the synaptic strength of local reccurent inhibition, and pIE, which represents the

synaptic strength from E cells to I cells, are chosen as bifurcation parameters. In Fig. 2

B, we chose II and pIE as bifurcation parameters because these two parametes are directly

related to the definition of ING and PING in our model (see method C).

As a result of the bifurcation analysis, oscillatory parameter regions via a Hopf bifurcation

are found in both Fig. 2 A and B. Four representative parameter sets are chosen and marked

in Fig 2 A-B. In Fig. 2 A, for pIE = 0, oscillation emerges for large pII (Marked as blue dot)

and as pIE increases, the curve of Hopf bifurcations moves downward until it crosses the

pII = 0 line (Marked as the orange dot). In Fig2 B, the same parameter as the blue dot in

Fig. 2 A is also marked as the same color (blue dot), which is also located close to the Hopf
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FPE
Spiking model

Figure 1. Dynamics of E-I neuronal population simulated with both the full spiking neuronal model

and corresponding Fokker-Planck equation. (A-F) Stable steady state. (G-L) Oscillatory state. (A,

G) Network diagram. (B, H) Raster of the excitatory (red) and inhibitory (blue) neurons. (C,

I) Membrane potential of a representative neurons. (D, J) Time series of synaptic conductance

gXY (t) simulated with the spiking neuronal model. (E, K) Conductances from the Fokker-Planck

equation. (F,L) Overlay of the two gXY (t): Spiking neuronal population and FPE. Note that the

two simulated time serieses are in good agreement, which indicates the validity of Fokker-Planck

equation. Parameters were set as specified in methods section such as II = IE = 1.

boundary. As pIE increases, the Hopf boundary linearly moves downward and also crosses

the II = 0 line (marked as red dot). Note that in Fig. 2 B, blue dot is ING type oscillation

because pIE = 0 means no excitatory current is injected from E population for I cells and I

cells are purely driven by the external current II . Also, the red dot in Fig. 2 B is a PING

type oscillation because II = 0 means no external current exists for the I cells and so I cells

are purely driven by excitarotory current from E cells.

The time series for each of the representative parameter sets are shown in Fig. 2 C-F.

The frequency of the oscillation is around 40Hz for all the parameters so that they are all

in the gamma range.
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Figure 2. (A, B) Bifurcation diagrams of the FPE. ST and HB stand for steady state and Hopf

bifurcation respectively. (A) Bifurcation diagram with (II ,pEI ,pEE)=(1,0.1,0.2). Representative

parameters of blue, orange and green dots are chosen as (pIE,pII)=(0,0.4), (0.05,0) and (0.05,0.4)

respectively. (B) Bifurcation diagram with (pII ,pEI ,pEE)=(0.4,0.1,0.2). Representative parameters

of blue and red dots are chosen as (pIE,II)=(0,1) and (0.05,0) respectively. Note that the two blue

dots in A and B correspond to the same parameter. (C-F) Time series of AY (t) which represents

firing rate of Y population simulated with representative parameters chosen in Fig. 2 A-B. (C)

Blue. (D) Orange. (E) Green. (F) Red. Other parameters are set as specified in methods section

such as IE = 1.

C. Verification of macroscopic phase response function derived by the adjoint

method

We computed the macroscopic phase response function (PRF) (or, more precisely, the

adjoints, ZX(φ)) of each of the gamma types to investigate any differences. The PRF for

each of the gamma types at the representative points is shown in Fig. 3. Here we define

the phase, φ of the oscillation to be scaled to φ ∈ [0, 2π) with φ = 0 corresponding to the

peak of the inhibitory population rhythm. Thus, for a variable, q(t), the value at phase

φ is q(Tmacroφ/(2π)) where Tmacro is the period of the oscillation. We computed these

using the adjoint method (see Methods) and to confirm the validity of the PRFs derived

by adjoint method, the phase sensitivity is also computed by a perturbation method and

compared. The phase sensitivity of X population at phase φ is defined as ∆φ/∆IX where∆φ
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Figure 3. Macroscopic PRFs of gamma oscillation (A) Blue dot. (B) Orange dot. (C) Green dot.

(D) Red dot. Blue and red represent ZI and ZE respectively. Solid line is computed by the adjoint

method and dots are computed by the perturbation method.

is macroscopic phase shift caused by impulsive perturbation ∆IX to IX , the bias current

to the entire population X, at phase φ . Representative parameters are chosen from Fig.

2 A-B. In each panel of Fig. 3, we see an excellent match between the adjoint and direct

perturbation methods.

In Fig.3 B, both PRFs are generally sinusoidal. In Fig. 3 A, ZI is also generally sinusoidal,

however ZE is zero for all the phases. This is because the E population has no effect on I

population when the rhythm is generated (i.e. pIE = 0).

D. Comparison of phase response function between ING and PING type oscillation

To reveal how the change of synaptic strength pY X and external current IX affects the

responses to stimuli, we investigate how the PRFs change as the type of the gamma oscillation

changes.

We derived PRFs by the adjoint method for representative parameters which were chosen

with equally spaced intervals as shown in Fig. 4A and F. In Fig. 4A, the parameters are set

so that pIE (Drive to I cells from E cells) and II (External drive to I cells) changes linearly

from green mark to blue and orange mark. We show the changes in the PRF at these points

in Fig. 4B-E, also the time series of the firing rate of the populations A(t) are shown in

the inset. In Fig. 4 F, parameters are changed linearly from blue mark to red mark. The

changes in the PRF at these points are shown in Fig. 4G and H.

In panels, B,C, we see several changes as we increase pIE : the size of ZI shrinks and ZE

grows; in all cases, however, ZI is larger in magnitude than ZE; and the PRF is mostly
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positive for ZE, but ZI maintains some negative lobes near the 0 (and 2π) phase. In the

other direction (Fig. 4D,E) as pII decreases from the green dot, ZE gets larger, while ZI

barely changes.

In panels, G,H, how the PRC changes from the blue dot to the red dot are shown. Note

that the blue dot is an ING type oscillation because I cells are driven by II . On the other

hand, the red dot is a PING type oscillation driven by pIE . As the generation mechanism

changes from ING to PING, the magnitude of ZI shrinks, while ZE grows. In addition, the

frequency of the oscillation of AX(t), shown in the insets, is close to constant during the

change from ING to PING. In the comparison between ING and PING, the magnitude of

ZE is most sensitive to the generation mechanism. In the case of ING, the amplitude of ZE

is zero because I cells are not excited by E cells and so perturbations of the E cells will not

affect the I cells. The amplitude of ZE grows as the parameter changes from ING to PING,

reflecting the increasing involvement of excitation from E cells. As shown in panel F-H,

when the frequency of the oscillation and the amplitude of ZI are similar, the amplitude of

ZE reflects the degree of attendance of E cells to rhythmogenesis of the gamma oscillation,

which makes it easier to distinguish the generation mechanism of the gamma oscillation is

ING-like or PING-like.

In addition, there are important consistent differences between the shapes of ZI and ZE.

Most obvious is that ZE is always smaller in magnitude than ZI so that the network will

be less sensitive to inputs to the E population than to those in the I population. Another

interesting difference is that the skew of ZE is toward the left while that of ZI is toward the

right. In [31, 32], the authors showed that PRFs that skew to the right are more conducive

to synchronization.

E. A purely positive phase response function

In order to further investigate the properties of PING type oscillations, we computed

the PRF over several parameters. First, we conducted a bifurcation analysis for the PING

type oscillation with pII = 0. We fix the EI coupling parameters as (pIE, pEI) = (0.05, 0.1)

and vary pEE and IE for the bifurcation parameters. The result of this analysis is shown

in Fig. 5A. Next, we computed PRFs along the marked points in Fig. 5A, marked as a

circle, cross, triangle and square. In Fig. 5B-E, the PRFs for each parameters are shown.
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Figure 4. Comparison of phase response function between different paramaters. (A) Parameter

region of gamma oscillations and representative parameters. (B, C) PRF transition from blue cross

to green dot (left to right). (D, E) PRF transition from orange cross to green dot (bottom to top).

(F) Parameter region of gamma oscillations and representative parameters. Note that blue and red

dot corresponds to ING and PING, respectively. (G, H) PRF transition from ING (blue dot) to

PING (red dot). (B, D, G) main panel: ZI . AI(t) is plotted in inset at right top. (C, E, H) main

panel: ZE . AE(t) is plotted in inset at right top
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Figure 5. A non-negative PRF. (A) Parameter region of the four and representative parameters.

(B, C, D, E) PRF computed at the representative parameters. Red is ZI . Blue is ZE . (B) PRF at

circle. (C) PRF at cross. (D) PRF at triangle. (E) PRF at square.

The excitatory PRF (ZE) appears to always be non-negative, while the inhibitory PRF

(ZI) has both negative and positive lobes near the Hopf bifurcation as expected [33]. As

we progress away from the bifurcation point, both PRFs become non-negative. They both

become smaller in magnitude as well, but barely change once past the bifurcation point.
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Figure 6. Locking regions of the gamma oscillations under external pulsatile stimuli. ∆ωout =

ωforced − ωapp represents the difference between the observed frequency (ωforced) and the applied

frequency (ωapp). When ∆ωout is close to zero, that means the gamma oscillation is locking to

the pulsatile stimulus. Iapp represents the strength of pulsatile stimulus. ∆ωin = ωapp − ωnat

represents the difference between the frequency of the applied pulsatile stimulus ωapp and the

natural (unforced) frequency of the gamma oscillation ωnat. The surface plot shows the result

of direct simulation of the spiking population and the black triangle represents locking regions

derived from the phase reduction method. (A, B, C) Entraniment ability of gamma oscillation

whose parameters are taken from the green square in Fig.4 A. (A) Pulsatile stimuli applied to the

inhibitory population. (B) Pulsatile stimuli applied to the excitatory population. (C) Enlarged view

of (B). (D) Entraniment ability of gamma oscillation whose parameters are taken from PING type

oscillation(II = 0, pIE = 0.07 in Fig.4 F). Note that the phase reduction theory (black triangle)

successfully predicts the locking regions which is confirmed by the direct simulations of the spiking

population (surface plot). Also, note that the inhibitory population has a larger locking region than

that of the excitatory population. In panel D, the locking region is wider than that of in panel C.

F. Entrainment of the pulsatile stimuli

According to a recent experimental study, response of gamma oscillations to an external

periodic stimulus varies depending on what kind of the cell is being stimulated. For example,

in the case of mouse cortex, when inhibitory cells are stimulated by a gamma-band periodic

pulse trains, the increase of power of gamma oscillation is larger than that for the excitatory

case[34]. We claim that the origin of the cell-type-specific response comes from the difference
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of the entrainment ability to the pulsatile stimuli between I and E populations. To test

our assertion, we evaluate the entrainment abilities of I and E populations through direct

simulation of the spiking network and via weak coupling using our PRF.

We applied a periodic force Iext(t), whose frequency is slightly different from the natural

frequency of gamma oscillation, as

Iext(t) = IappR(t) (14)

and

R(t) =











1 t mod ( 2π
ωapp

) ≤ tapp

0 t mod ( 2π
ωapp

) > tapp

(15)

where, Iapp, ωapp and tapp represent the strength, frequency and pulse length of each pulse

train. tapp is set as 1ms to imitate the light pulses used in [34]. Iext is added to the bias

currents, II , IE of either the inhibitory or excitatory cells to investigate the difference of the

synchronization differences between the two populations. When Iapp is applied to the X

population whose natural frequency is ωnat, the phase equation of macroscopic phase φ is

written as

φ̇ = ωnat + ZX(φ) · Iapp(
ψ

ωapp

) (16)

where ψ = (ωapp · t mod 2π) is the phase of Iapp.

Introducing a new dynamical variable Φ = φ − ψ which describes the phase difference

between the macroscopic oscillation φ and external periodic force ψ, the dynamics of Φ is

described as

Φ̇ = (ωnat − ωapp) + ΓX(Φ) (17)

where ΓX(Φ) = 1
2π

∫ 2π

0
ZX(Φ + ψ) · Iapp(ψ/ωapp)dψ is called phase coupling function[28].

Φ̇ = 0 is achieved when the frequency difference ∆ωin = ωapp − ωnat satisfies min(ΓX(Φ)) ≤

∆ωin ≤ max(ΓX(Φ)), which means phase locking between φ and ψ.

To validate the prediction of the phase reduction theory, we computed the locking region

by direct simulation of the spiking population. The frequency of the simulated gamma

oscillation is evaluated by the mean frequency for the simulated time span. The simulated

time span is 2× 104(ms) for Fig. 6.
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We chose two representative parameters. One is (pIE, pII) = (0.0375, 0.4), green square

in Fig. 4A, which is close to ING. The other is (pIE, II) = (0.07, 0) in Fig. 4F, which is

a PING type oscillation. We computed the coupling region for the external periodic pulse

train. In Fig.6, the locking region predicted from the phase response function is shown

as black triangles, while the result of simulation of periodic forcing in spiking population

is shown by the surface plot. The locking region predicted by the phase reduction and

direct simulations are similar in Fig.6. The consistency indicates the phase reduction theory

on macroscopic gamma oscillation correctly predicts result of direct simulations of spiking

population. We also remark the computation of the locking region was much faster by the

phase reduction theory than by the direct simulations. This indicates the macroscopic phase

reduction of gamma oscillation gives an efficient way to analyze synchronization phenomena

of gamma oscillations. In addition, comparing Fig.6 A and B, the locking region of inhibitory

population is wider than that of excitatory population. This indicates that I population has

higher entrainment ability to gamma-band pulsatile stimuli than E population. Moreover,

comparing C and D, D has wider locking region than C, which suggest that E cells in PING

oscillation has higher entrainment ability than that in ING-flavored gamma oscillations.

IV. DISCUSSION

We extended the modified theta model [16] to coupled excitatory and inhibitory popu-

lations in order to describe the dynamics of the emergent gamma oscillations. There are

several kinds of mathematical models capable of describing the population dynamics of

neurons. Firing rate models, such as Wilson-Cowan model are widely used to describe such

systems. Although firing rate models are popular and simple to implement, it is hard to con-

nect them to fast oscillatory activity such as gamma oscillations because the time-constant

of the firing rate model restricts the upper limit of the frequency which can be reproduced

in the model [12]. In this research, we use a Fokker-Planck equation to describe and analyze

the fast neural oscillations. Fig.1 shows that the FPE describes the macroscopic oscillations

from spiking models of neurons quite well. While individual neurons spike irregularly, the

macroscopic rhythm is quite robust and regular, as shown experimentally [35].

In this paper, we introduced variability through external noise much as earlier work by

Brunel et al have done in the leaky integrate and fire model [13]. Recently [14, 36, 38]
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have explored the macroscopic dynamics of spiking networks of neurons that have quenched

variability; that is, rather than external noise as in the present paper, they have introduced

randomness in the parameters, mainly the applied currents to the neurons. By using the

quadratic integrate and fire (or, equivalently, the theta neuron), they are able to use the

Ott-Antonsen ansatz [37], to reduce the FPE to a low-dimensional dynamical system as

long as the random parameters are taken from a Lorentzian distribution. For example,

with instantaneous synaptic connections, an EI network becomes a simple four-dimensional

dynamical system that produces PING type oscillations.

[38] used this method to compute the phase response functions of such an EI network and

compared the results to the full spiking simulations. The techniques used in [38] should be

applicable to the present model albeit with quenched variability. Furthermore, the resulting

system will be a higher dimensional model primarily due to the time-dependence of the

synapses in our paper.

We studied the shapes of the phase response functions (PRFs) of the EI network by com-

puting the adjoint eigenfunctions for the linearized Fokker-Planck operator in order to see if

there was any clear difference between them depending on the strength of synaptic connec-

tions and the mechanism underlying the gamma oscillations. In Fig.3 A-B, ZI are generally

sinusoidal because the parameters are close to Hopf bifurcation point and the dynamics be-

comes similar to the normal form of Hopf bifurcation [33]. We found the amplitude of PRF

becomes smaller as the parameter moves away from the bifurcation point as shown in Fig.

4B and E. The transition of amplitude of PRF is consistent with the normal form of Hopf

bifurcation [33]. In contrast, in Fig.4C, the amplitude of ZE became larger. This is because

the increase of pIE causes an increase of effect of the E population on the I population.

Overall, we found that the PRFs were similar in shape independent of the mechanism of

gamma generation with the excitatory response consistently weaker than the inhibitory.

We also found, the amplitude of ZE is quite different between the ING case and the

PING case, as shown in Fig. 4 G and H, while the frequency of the oscillation and ZI have

smaller differences. This is because the contribution of E population to the rhythmogenesis

is largely different in ING and PING cases. In ING case, the driver for I cells is just bias

current II , and excitatory cells are essentially disconnected to I cells. Therefore, the rhythm

is insensitive to stimulation of the E cells and the amplitude of ZE is zero. In PING case, E

cells are driving I cells, so the amplitude of ZE is larger than that of ING. As these results
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show the amplitude of ZE reflects the inner structure of the neuronal population, in this

case how strong the E cells are connected to I cells, which is difficult to measure directly

in physiological experiments. Also estimating ZE makes it easier to distinguish whether the

generation mechanism of the gamma oscillation is more ING-like or PING-like.

Curiously, for some combinations of parameters (c.f. Fig. 5), the PRF is non-negative

even close to the Hopf bifurcation. Non-negative PRFs are characteristic of Type I excita-

bality and a saddle-node on a circle bifurcation [39]. Further study of the FPE is needed

to better understand why the PRF is non-negative near the bifurcation. We remark that

Akam et al [9](figure 5) computed the PRF for hippocampal gamma rhythms and found it

to be quite similar to those shown in Fig. 3 of this paper.

In order to explore the consequences of differences between the PRFs of excitatory ver-

sus inhibitory populations, we also studied the locking regimes to periodic pulsatile stimuli

to either the E or the I populations. We found that the locking region of the inhibitory

population is wider than that of the excitatory population showing that stimulating the I

population is better for entrainment of gamma-band frequencies. This result supports our

assertion that the origin of the cell-type-specific response, which Cardin et al. found[34],

comes from the difference of the entrainment ability to pulsatile stimuli. In addition, com-

paring ING and PING, we found that stimulating E cells in the PING oscillation had a

wider locking region than was the case for ING based oscillations. This result suggests such

differences in the spiking population could lead to an efficient way to distinguish ING and

PING in biological experiments. Also, we remark that we can roughly infer the entrainment

ability to the pulsatile stimuli from just the amplitude of phase response function ZX . In Fig.

4, the amplitude of ZI was larger than that of ZE, which implies that the I population has

wider locking region. This analysis shows that macroscopic phase response reduction, which

is based on the macroscopic phase response function, provides a rigorous and efficient way

to analyze the synchronization phenomena of gamma oscillations, even in large networks.

We finally note that using the PRFs that we have computed here, it will be possible

to study the effects of coupling and synchronization across multiple regions in the brain.

That is, we can apply weak coupling theory and use this to study large scale phase models

of cortical networks in which the interactions are based on the rigorous reduction of noisy

spiking networks. We remark that, since most long range connections in cortical networks

are excitatory, PING will be much better at communicating synchrony than will ING.
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