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Abstract

The calculation of dynamical properties for matter under extreme conditions is a challenging

task. The popular Kubo-Greenwood model exploits elements from equilibrium density functional

theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely

phenomenological; traditional kinetic theories have a more secure foundation but are limited to

weak ion-electron interactions. The objective here is to show how a combination of the two evolves

naturally from the short time limit for the generator of the effective single electron dynamics

governing time correlation functions, without such limitations. This provides a theoretical context

for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of

its corrections. The method is to calculate the short time dynamics in the single electron subspace

for a given configuration of the ions. This differs from the usual kinetic theory approach in which

an average over the ions is performed as well. In this way the effective ion-electron interaction

includes strong Coulomb coupling and is shown to be determined from DFT. The correlation

functions have the form of the random phase approximation for an inhomogeneous system, but

with renormalized ion-electron and electron-electron potentials. The dynamic structure function,

density response function, and electrical conductivity are calculated as examples. The static local

field corrections in the dielectric function are identified in this way. The current analysis is limited

to semi-classical electrons (quantum statistical potentials), so important quantum conditions are

excluded. However, a quantization of the kinetic theory is identified for broader application while

awaiting its detailed derivation.
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I. INTRODUCTION

Recent interest in matter under extreme conditions (e.g., high pressure materials, warm

dense matter, and high temperature plasmas) has been stimulated in part by new experimen-

tal access to such states [1]. Thermodynamic properties can be addressed in a controlled way

by finite temperature density functional theory (DFT) for the electrons [2] in conjunction

with ab initio molecular dynamics (AIMD) for the ions [3]. The two tools of DFT and MD

are appropriate for such states since strong coupling and bound states can be treated with

well developed approximations. Dynamical phenomena are more problematical, particularly

for the electrons which require quantum dynamics in general. Current many-body theo-

ries of condensed matter physics or plasma physics have questionable applicability. Kinetic

theories, classical or quantum, are typically limited to free electrons and weak ion-electron

correlations. Models which utilize DFT quantities (such as the Kubo-Greenwood model [4]

below) remove this restriction at the price of phenomenology and unknown context. The

objective here is to demonstrate a kinetic theory for electrons in a given configuration of

ions, obtained in a limit that incorporates the DFT model and well-known many-body ef-

fects of electron dynamics. The derivation is semi-classical but makes no explicit restrictions

regarding coupling among the ions and electrons, or bound and free electron states.

The system of interest here is that of electrons in equilibrium with a frozen disordered

configuration of ions in the grand canonical ensemble. In applications, properties for this

system are found by averaging over different ionic configurations. The properties of interest

are time correlation functions that determine transport coefficients, scattering cross sections,

and other equilibrium dynamic electron fluctuations of linear response. The state conditions

include possible strong coupling and other effects of correlations such as dynamical fluctua-

tions. These are the types of difficult cases that are handled well by DFT for thermodynamic

calculations, and it is tempting to think (hope) that such detailed information can be ex-

ploited somehow for the analysis of dynamics as well. A practical implementation of this

idea, the Kubo-Greenwood model (KG) [4], is obtained by replacing the many-body electron-

ion Hamiltonian by a sum of single particle Hamiltonians. Though in principle arbitrary,

invariably they are chosen to be non-interacting particles governed by the Kohn-Sham po-

tential which includes the external ion field. This potential appears in the variational Euler

equation of DFT and is determined from the exchange-correlation free energy as a functional
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of the equilibrium density [2]. In the KG model the Kohn-Sham Hamiltonian, originally de-

fined to determine the equilibrium density, is promoted to a generator for the dynamics.

Furthermore, it is assumed to represent in a mean field way the effects of the true Coulomb

interactions which it replaces. The origin of this picture of Kohn-Sham quasi-particles and

the conditions for its validity have not been established. Doing so is a primary objective of

the present work.

In earlier work the authors considered time correlation functions for a semi-classical

electron gas in the presence of a single fixed ion, and derived a kinetic equation whose

form is obtained from the short time limit [5]. It has a single particle dynamics with a

”renormalized” external potential from the electron - ion interaction. In addition, there is

a collective Vlasov (random phase approximation) dynamics with a renormalized electron

- electron interaction. Both of these effective interactions are determined from derivatives

of the semi-classical exchange - correlation free energy. In particular, the electron - ion

interaction is precisely the Kohn-Sham potential of the KG model. Here, that description

is extended to time correlation functions for electrons in a disordered many-ion background

with configurations sampled from an equilibrium ensemble. An important distinguishing

feature of this kinetic equation relative to others is that only electron degrees of freedom

are averaged out to define the single electron subspace. No ion average is performed. This

allows a detailed description of the average electron interaction with each ion, setting the

framework for connection with DFT. A brief summary of these ideas is given in reference

[6].

The reduction of the generator for the dynamics at short times to a practical form at

present has been established only for semi-classical electrons. Thus strong degeneracy and

other extreme quantum effects are not captured in the analysis here. This limits the con-

ditions for applicability, as described briefly in section VI. However, the primary objective

here is to show by example how the many-body problem can be controlled, and to indicate

a pathway to the basis for the KG model. In section V a straightforward quantization of

this semi-classical result is given as a temporary ”placeholder” for the detailed quantum

derivation paralleling that given here.

In the next section, the time correlation functions and their representation in terms of

linear kinetic theory are introduced. The formal definition of the generator for the electron

dynamics in the single electron subspace is defined. While generally time dependent, its form
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is evaluated at t = 0 in Appendix A. No limitations are placed on the strength of correlations

or coupling. This gives a Markov dynamics for the time correlation functions in which the

generator is taken to have the same form at later times as well. The result has the structure of

a kinetic theory in the random phase approximation, extended to an inhomogeneous system

due to the external forces of the ions. However, that force is renormalized to be derived

from the Kohn-Sham potential (the ion field plus the first functional derivative of the excess

free energy), and the electron-electron Coulomb potential is renormalized to the electron-

electron direct correlation function (second functional derivative of the excess free energy).

As illustrations, the dynamical structure function, density response function, and frequency

dependent electrical conductivity are determined from this kinetic equation. The dielectric

function is considered, and the associated static local field corrections are identified. In the

last section these results are summarized and discussed.

II. TIME CORRELATION FUNCTIONS FROM KINETIC THEORY

Consider a system of Ne electrons in equilibrium with Ni fixed ions. The Hamiltonian is

H =
Ne∑

α=1

(
1

2
mv2α + Vei(rα, {R})

)
+

1

2

Ne∑

α6=γ=1

Vee(rαγ) (1)

where the interaction potential for the electrons with the Ni fixed ions is

Vei(rα, {R}) ≡

Ni∑

γ=1

Vei(|rα −Rγ|). (2)

The notation {R} denotes a dependence on the collection of Ni fixed ion coordinates Rγ.

Also, rα and vα are the position and velocity of electron α. In the quantum case all interac-

tions are pure Coulomb. However, the analysis below is entirely within classical mechanics

for both ions and electrons. Residual quantum effects must be retained to prevent collapse

due to the electron-ion singularity at zero separation. In the quantum case such collapse is

avoided due to diffraction effects. These can be accounted for in the classical representation

by regularizing the Coulomb potential within a distance of the order of the thermal de Broglie

wavelength. Similar effects occur for the electron-electron interaction, which also has an ad-

ditional effect due to Pauli exclusion. The use of such modified potentials has a long history,

leading to many different forms originating from different contexts for their derivation [7].

4



The resulting classical representation allows MD simulation of opposite charge components.

One of the first was an application to hydrogen plasmas [8]; a more recent simulation in the

current context is that of references [9, 10]. The specific forms, or their limitations, are not

central to the discussion here. Instead, the objective is to demonstrate how the many-body

physics can be analysed in a controlled way to make contact with current phenomenology

and to clarify its context.

The equilibrium time correlation functions for two observables A and B in the grand

canonical ensemble are

〈A(t)δB; {R}〉 =
∑

Ne

∫
d {x} ρe ({R} , {x})A(t, {R} , {x})δB ({R} , {x}) , (3)

ρe ({R} , {x}) = eβΩ({R})e−β(H({R})−µ) (4)

where δB = (B − 〈B〉). The set of phase variables {x} = {x1, . . . , xNe
} denote the positions

and velocities of each electron, e.g., x1 ⇐⇒ r1,v1. The passive dependence on the ion

coordinates has been made explicit here, but will be suppressed in the following for simplicity

of notation, except where needed.

The time dependence of A(t, {x}) is generated by the Hamiltonian (1) from the initial

value A({x}). The phase functions A({x}) and B({x}) denote some observables of interest,

composed of sums of single particle functions

A =

Ne∑

α=1

a(xα), B =

Ne∑

α=1

b(xα). (5)

The special form (5) allows reduction of the Ne electron average to a corresponding average

in the single electron subspace, by partial integration over Ne − 1 degrees of freedom (see

Appendix A)

〈A(t)δB〉 =

∫
dxn(r)φ (v) a(x)b(x, t). (6)

Here, n(r) is the equilibrium number density for electrons at a position r, and φ (v) is the

Maxwell-Boltzmann velocity distribution. The function b(x, t) is

b(x, t) =
1

n(r)φ(v)

∫
dx′G(x, x′; t)b(x′), (7)

where the phase space density autocorrelation function is

G(x, x′; t) = 〈f (x, t) (f (x′)− 〈f (x′)〉)〉 , f (x) =

Ne∑

α=1

δ (x− xα) . (8)
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The time derivative of b(x, t) is

∂tb(x, t) =
1

n(r)φ(v)

∫
dx′∂tG(x, x

′; t)b(x′). (9)

Both (7) and (8) are linear maps of b(x′). Eliminating the latter gives the formal kinetic

equation in the single particle phase space

∂tb(x, t) +

∫
dx′L (x, x′; t) b(x′, t) = 0, (10)

with

L(x, x′; t) ≡ −
1

n(r)φ(v)

∫
dx′′ (∂tG(x, x

′′; t))G−1(x′′, x′; t)n(r′)φ(v′). (11)

The initial value for this equation is

b(x, 0) = b(x) = b(x) +

∫
dx′n(r′)φ (v′) (g (r, r′)− 1) b(x′), (12)

and g(r, r′) is the pair correlation function for two electrons at r and r′ in the presence of the

ion configuration {R}. Note that the equation is inherently linear. An elaboration of this

approach to time correlation functions via a formal linear kinetic theory is given in reference

[12].

III. MARKOVIAN KINETIC EQUATION AND ITS RELATION TO DFT

The generator of dynamics, L (x, x′; t) is an appropriate point for the introduction of

approximations. Typically, matter under extreme conditions does not admit any small pa-

rameter expansions because the treatment must include possible strong Coulomb coupling.

Here, a Markov approximation is chosen that does not prejudice such conditions. Further-

more there is no scattering context so that the electrons may be free or bound to the ions.

A Markov kinetic equation has a generator whose form does not change in time. Hence, a

practical expression can be determined from L (x, x′; t = 0) and assumed to hold as well for

all later times. One of the first developments of this idea for classical time correlation func-

tions was given by Lebowitz, Percus, and Sykes [11], and for the quantum case by Boercker

and Dufty [12]. The primary difference here is the presence of the external forces due to

the ions. The analysis follows that of reference [5], and the details are given in Appendix B

with the resulting kinetic equation
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(
∂t + v · ∇r −m−1∇rVie (r) · ∇v

)
b(x, t) = −v · ∇rβ

∫
dx′Vee (r, r

′)φ (v′)n (r′) b(x′, t).

(13)

To understand this result, note that if Vie and Vee were their (regularized) Coulomb interac-

tions (13) would be the random phase approximation (RPA) in the presence of the external

ion potential. Here, however, those potentials have been renormalized by the initial equilib-

rium correlations. The left hand side of (13) describes single particle motion in an external

renormalized ion - electron potential Vie (r)

Vie (r, {R}) ≡ −β−1 lnn (r, {R}) . (14)

The right side describes dynamical correlations for this single particle motion with a renor-

malized electron - electron potential

Vee (r, r
′, {R}) = −β−1c (r, r′, {R}) . (15)

Here c (r, r′, {R}) is the electron direct correlation function determined in terms of

g (r, r′, {R}) through the Ornstein-Zernicke equation [13], (A13). For weak coupling, (14)

and (15) reduce to their Coulomb forms. The explicit dependence on {R} has been restored

at this point to emphasize that the electron subsystem is non-uniform due to the presence

of the ions.

These renormalizations are due to static correlations of the equilibrium ensemble and

provide the desired connection to DFT. To see this, note that the electron system is an

inhomogeneous electron gas due to the presence of the ions. The associated equilibrium free

energy F is a functional of the corresponding inhomogeneous density, and is traditionally

separated into a non-interacting part, F (0), and an interacting part, F (1),

F (β | n) = F (0)(β | n) + F (1)(β | n). (16)

The equilibrium density for evaluation of these functionals is determined from the ion -

electron potential by
δF (β | n)

δn (r, {R})
= µ− Vei(r, {R}), (17)

with Vei(r, {R}) given by (2). Equation (17) can be rearranged as

δF (0)(β | n)

δn (r, {R})
= µ− vKS(r, {R}), (18)
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where vKS(r, {R}) is known in DFT as the Kohn-Sham potential

vKS(r, {R}) ≡ Vei (r, {R}) +
δF (1)(β | n)

δn (r, {R})
. (19)

Furthermore, for the classical system considered here F (0)(β | n) can be evaluated to give

δF (0)(β | n)

δn (r, {R})
= β−1 lnn (r, {R}) . (20)

Consequently the renormalized ion - electron potential (14) becomes

Vie (r, {R}) = −
δF (0)(β | n)

δn (r, {R})
= vKS(r, {R})− µ. (21)

With this identification it is instructive to write the kinetic equation (13) as

∂tb(x, t)−
{
hKS (x) , b(x, t)

}
=

1

φ (v)n (r)

∫
dx′

{
Vee (r, r

′) , φ (v)n (r)φ (v′)n (r′) b(x′, t)
}
.

(22)

Here {, } denotes the Poisson bracket, and hKS is the Kohn - Sham Hamiltonian,

hKS (x) =
1

2
mv2 + vKS(r). (23)

As noted in the Introduction a common approximation for evaluating Green - Kubo time

correlation expressions for transport coefficients is the replacement of the actual Hamiltonian

with Coulomb interactions by a sum of single particle Kohn - Sham Hamiltonians [4]. The

resulting kinetic theory representation is the same as (22) with zero on the right side. The

semi-classical analysis here provides an important context for that approximation, justifying

the introduction of the Kohn - Sham dynamics and making the connection to DFT.

In addition, the renormalized electron - electron potential (15) is related to the excess

free energy functional by

Vee (r, r
′, {R}) = c (r, r′, {R}) = −

δ2βF (1)(β, {R} | n)

δn (r, {R}) δn (r′, {R})
=
δβvKS(r, {R})

δn (r′, {R})
. (24)

Thus all of the input for the kinetic equation can be obtained from DFT, even for conditions

of interest for strong coupling.

IV. DYNAMIC STRUCTURE, RESPONSE, AND CONDUCTIVITY

The correlation functions for the dynamic structure factor, density response function,

and electrical conductivity are closely related. The dynamic structure factor is determined
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from the Fourier transform of the density-density time correlation function

C(r, r′, t) = 〈n̂(r, t)δn̂(r′)〉 , n̂(r) =
Ne∑

α=1

δ(rα − r). (25)

The density response function is proportional to its time derivative [14]

χ(r, r′, t) = β∂tC(r, r
′, t). (26)

Finally, using the continuity equation

∂tn̂(r, t) +∇ · ĵ(r, t) = 0, ĵ(r) =
Ne∑

α=1

δ(rα − r)vα, (27)

the response function is related to the current-current correlation function

∂tχ(r, r
′, t) = −β

〈
∇·̂j(r, t)∇′·̂j(r′)

〉
, (28)

which determines the electrical conductivity.

The general solution to the kinetic equation is given in Appendix C. When applied to

C(r, r′, t) and χ(r, r′, t) integral equations for each are obtained,

C(r, r′, t) = C0(r, r
′, t) +

∫ t

0

dτ

∫
dr′′χKG(r, r

′′, t− τ)

∫
dr′′′Vee (r

′′, r′′′)C(r′′′, r′, τ) (29)

and

χ(r, r′, t) = χKG(r, r
′, t) +

∫ t

0

dτ

∫
dr′′χKG(r, r

′′, t− τ)

∫
dr′′′Vee (r

′′, r′′′)χ(r′′′, r′, τ). (30)

In each of these the non-interacting Kubo-Greenwood response function occurs

χKG(r, r
′, t− τ) = −β

∫
dvφ (v)n (r) e−LKG(t−τ)v · ∇rδ (r− r′) . (31)

Here LKG is the generator for the Kubo-Greenwood dynamics

LKG ≡ v · ∇r −m−1∇rVie (r) · ∇v. (32)

The correlation function C0(r, r
′, t) has the same dynamics but also the true initial conditions

C0(r, r
′, t) =

∫
dvφ (v)n (r) e−LKGt (δ (r− r′) + n(r′) (g (r, r′)− 1)) . (33)

The solutions to (29) and (30) are obtained by first taking their Laplace transforms

C̃(r, r′, z) =

∫ ∞

0

dτe−ztC(r, r′, t), χ̃(r, r′, z) =

∫ ∞

0

dτe−ztχ(r, r′, t). (34)
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Then the solutions are

C̃(r, r′, z) =

∫
dr′′ǫ−1(r, r′′, z)C̃0(r

′′, r′, z) (35)

and

χ̃(r, r′, z) =

∫
dr′′ǫ−1(r, r′′, z)χ̃KG(r

′′, r′, z), (36)

where ǫ−1(r, r′′, z) is the inverse function for

ǫ(r, r′, z) = δ (r− r′)−

∫
dr′′χ̃KG(r, r

′′, z)Vee (r
′′, r′) . (37)

A. Dielectric function and local field corrections

The function ǫ(r, r′, z) is closely related to the dielectric function defined by

∫
dr′′V (r− r′′)χ̃(r′′, r′, z) =

∫
dr′′ǫ−1(r, r′′, z) (ǫ(r′′, r′, z)− δ (r′′−r′)) . (38)

It has the form

ǫ(r, r′, z) = δ (r− r′) +

∫
dr′′

∫
dr′′′V (r− r′′)χKG(r

′′, r′′′, z)D−1(r′′′, r′, z) (39)

with

D(r, r′, z) = δ (r− r′)−

∫
dr′′∆(r, r′′, z)χKG(r

′′, r′, z). (40)

The leading term on the right side of (40) gives the random phase approximation. The

second term contains the ”dynamic local field corrections” ∆(r, r′′, z). In the present case

with χ̃(r, r′, z) given by (36) the local field corrections ∆(r, r′, z) are found to be

∆(r, r′, z) → Vee (r, r
′)− V (r− r′). (41)

These are the static field corrections due to correlations in the definition of Vee (r, r
′), (24)

Vee (r, r
′) = −β−1cee (r, r

′) =
δ2F (1)(β, {R} | n)

δn (r, {R}) δn (r′, {R})
. (42)

If the Hartree energy is subtracted from F (1) the remainder is the exchange-correlation free

energy Fxc and

Vee (r, r
′)− V (r− r′) =

δ2Fxc(β, {R} | n)

δn (r, {R}) δn (r′, {R})
. (43)

Thus the static local field corrections are the second functional derivative of Fxc.
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B. Electrical conductivity

The frequency dependent electron conductivity is given by its classical Green-Kubo form

[14]

σ (ω) = Re

∫ ∞

0

dteiωtψ (t) , ψ (t) =
β

3V

〈〈
Ĵ(t) · Ĵ

〉〉
i
. (44)

The double brackets 〈〈〉〉i denote an average over the electron degrees of freedom, followed

by an average over the ion configurations (see below). The total current Ĵ is the volume

integral of the current density ĵ(r)

Ĵ = j̃(k = 0), j̃(k) =

∫
dreik·r̂j(r). (45)

The Fourier transform of (28) gives

∂t 〈χ(k,k
′, t)〉i = βkmk

′
n

〈〈
j̃m(k, t)j̃n(k

′)
〉〉

i
. (46)

Once the ion configuration average has been performed the system is isotropic so this be-

comes

∂t 〈χ(k,k
′, t)〉i = −

1

3
βk2

〈〈
j̃(k, t) · j̃(−k)

〉〉
i
δ−k k′. (47)

Therefore the current autocorrelation function in the expression for the conductivity, (44),

is

ψ (t) = −
1

V
lim
k→0

k−2∂t 〈χ(k,−k, t)〉i , (48)

where the response function is given by (36). If the electron screening of ǫ(r, r′, z) could be

neglected the Kubo-Greenwood model would be obtained,

ψ (t) → −
1

V
lim
k→0

k−2∂t 〈χKG(k,−k, t)〉i . (49)

In practice, the conductivity is calculated directly from
〈
j̃(0, t) · j̃(0)

〉
in the Kubo-

Greenwood approximation for each ion configuration, without reference to the density re-

sponse function. These conductivities for the disordered systems are then averaged over ion

configurations sampled from an AIMD simulation.

The above properties, and the solution to the kinetic equation more generally, are given

in terms of the KG response function χKG. For example, the density response function is

obtained from (36) and (37)

χ̃(r, r′, z) = χ̃KG(r, r
′, z) +

∫
dr′′

∫
dr′′′χ̃KG(r, r

′′, z)Vee (r
′′, r′′′) χ̃(r′′′, r′, z) (50)
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There are well-developed computational codes for Kubo-Greenwood properties and the ex-

cess free energy needed for Vee (r
′′, r′) (e.g., VASP). Consequently the additional computa-

tional difficulty to implement the additional physics obtained here is solution to the linear

integral equation (50).

V. QUANTUM KINETIC EQUATION

The above detailed reduction of the short time generator to a practical representation in

terms of the renormalized potentials expressed as functional derivatives of the free energy

functional was accomplished within the limits of the semi-classical limit. The use of quantum

potentials to represent diffraction and degeneracy is an uncontrolled approximation. Instead

the above kinetic theory should be understood as reliable only for conditions where such

effects are weak. For example, a description of conditions where multiple bound electron-

ion populations occur would be excluded. However, conditions with electron coupling of

the order of unity are included and hence some of the ”extreme conditions” of interest are

relevant.

In the quantum case the electron correlation function (6) becomes

〈A(t)δB〉 = Tr1f (1) a(1)b(1, t), (51)

where the trace is taken over a single electron Hilbert space, and the classical equilibrium

one electron distribution function n(r)φ (v) has been replaced by its corresponding quantum

operator f (1), the equilibrium single electron density operator. Similarly, a(1) and b(1, t)

are the operators generalizing the phase space functions a(x) and b(x, t). The analysis of

Appendix A follows in an analogous way [12]. However, the simplifications of the higher

order correlations from the equilibrium hierarchy, (B11) and (B12), are more complex. Fur-

thermore, recognition of lnn(r) as the functional derivative of the non-interacting free energy

functional no longer applies in the quantum case. Hence, to date the corresponding practical

simplification of the generator for the dynamics L (t = 0) in the quantum case has not been

accomplished.

In the meantime an alternative route is to quantize the classical result derived here. The

most direct path is to write the kinetic equation in the equivalent form

∂tb(1, t)−
{
hKS (1) , b(1, t)

}
= f−1 (1)Tr2

{
Vee (1, 2) , f (1) f (2) b(2, t)

}
, (52)
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and to quantize it by replacing Poisson brackets by their corresponding commutators. This

gives the operator equation

∂tb(1, t) + i
[
hKS (1) , b(1, t)

]
= −f−1 (1) Tr2i

[
Vee (1, 2) , f (1) f (2)P (12)b(2, t)

]
. (53)

The Kohn-Sham Hamiltonian is the operator corresponding to (23) with the Kohn-Sham

potential determined in the same way as (19) from the free energy functional for the quantum

system. Similarly, Vee (1, 2) is determined from that functional as given in (15) and (24).

Also, a two particle symmetrization operator P (12) has been included to represent exchange

effects.

Equation (53) is the quantum random phase approximation for a system of electrons

among a configuration of the ions, with renormalized potentials. Its classical limit is (13).

The random phase approximation without renormalization (weak coupling limit) has been

established directly for the quantum case [12] and is given correctly by (53). More generally,

it predicts a density response function in agreement with the corresponding result from time

dependent density functional theory [16].

VI. DISCUSSION

The objectives here have been two-fold. The first is to describe a kinetic theory for elec-

trons in a disordered array of ions that is both practical and free from any assumptions

regarding electron-electron or ion-electron coupling. In particular, the purpose is to do so

without the need for distinction of free and bound electrons. This was accomplished by an

evaluation of the generator for time dependence at t = 0, followed by the assumption that

this generator is a reasonable approximation at all later times (Markov assumption). The

second objective is to make contact between a controlled many-body theory and the phe-

nomenology of the Kubo-Greenwood model. This was accomplished by observing that the

short time generator has a single particle dynamics that is the same as the Kubo-Greenwood

model, including the ion-electron force determined from the Kohn-Sham potential of equilib-

rium DFT. In addition, the context of that model was exposed, requiring additional effects

of electron-electron screening via a renormalized potential also determined from DFT. The

correlation functions have the structure of the random phase approximation for an inhomo-

geneous system, modified by these potentials from DFT.
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Although these conceptual issues of strong coupling, connection to DFT, and clarification

of the Kubo-Greenwood model have been addressed, the practical application of the kinetic

equation developed here is limited by its semi-classical nature. Some of the most interest-

ing state conditions of warm, dense matter include strong electron degeneracy, outside the

domain of the regularized quantum potentials assumed here. For these cases the quantum

theory of section V should be a useful practical tool. The detailed origin for this equa-

tion and its limitations (e.g., absence of electron-electron collisional effects) will be provided

elsewhere.

The semi-classical electrons assumed here nevertheless have an important domain of valid-

ity where degeneracy is weak but electron-electron and electron-ion coupling can be strong.

They have been used in early MD simulations of hydrogen plasmas [8], where electron cou-

pling strengths of order one were studied at weak to moderate degeneracy. Subsequent

simulations have demonstrated that such potentials can describe the transition from fully

ionized to atomic states, but fail for molecular formation [15]. More recently simulations to

test the accuracy of different forms of these effective quantum potentials have been reported

[9, 10].

The role of the frozen ion configuration is passive in this analysis of the electron dynamics.

In practice the systems of interest are ions and electrons in which both species are mobile.

It is assumed, however, that the ions are effectively static on the time scale for electron

properties. In this case the latter properties are calculated as here for a given configuration,

and then an average performed over configurations. The latter are sampled from an ab initio

simulation of the ions [2]. A discussion of the effect of ion motion is deferred to a later point

[5].
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Appendix A: Kinetic theory

The dynamics of 〈A(t)δB〉 is conveniently expressed in terms of the fundamental corre-

lation function G(x, x′; t)

〈A(t)δB〉 =

∫
dxdx′a(x)G(x, x′; t)b(x′), (A1)

G(x, x′; t) = 〈f (x, t) (f (x′)− 〈f (x′)〉)〉 , f (x) =

Ne∑

α=1

δ (x− xα) . (A2)

This gives the representation (6)

〈A(t)δB〉 =

∫
dxn(r)φ (v) a(x)b(x, t), (A3)

with the identification

b(x, t) =
1

n(r)φ(v)

∫
dx′G(x, x′; t)b(x′). (A4)

The initial value is

b(x, 0) = b(x) =
1

n(r)φ(v)

∫
dx′G(x, x′; 0)b (x′) . (A5)

Evaluation of G(x, x′; 0) is straightforward from the definitions of the one and two particle

equilibrium distribution functions

n(r1)φ(v1) =
∑

Ne>1

NeTr2,..Nρ ({R} , {x}) , (A6)

n(r1)n(r2)g (r1, r2)φ(v1)φ(v2) =
∑

Ne>2

Ne (Ne − 1)Tr3e,..Ne
ρ ({R} , {x}) , (A7)

where ρ ({R} , {x}) is the N electron grand canonical distribution function of (4). The result

is

G(x, x′; 0) = n (r)φ (v) (δ (x− x′) + φ (v′)n (r′)h (r, r′)) , (A8)

with the hole function defined by h (r, r′) = g (r, r′)− 1. This leads to (12)

b(x) = b(x) +

∫
dx′n(r′)φ (v′) h (r, r′) b(x′). (A9)

A kinetic equation follows from the definition of the inverse for G(x, x′; t)

∫
dx′′G−1(x, x′′; t)G(x′′, x′; t) = δ (x− x′) (A10)
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and differentiation of (A4)

∂tb(x, t) =
1

n(r)φ(v)

∫
dx′∂tG(x, x

′; t)b(x′)

=
1

n(r)φ(v)

∫
dx′dx′′ (∂tG(x, x

′; t))G−1(x′, x′′; t)n(r′′)φ(v′′)b(x′′, t). (A11)

The generator for the dynamics is identified as

∂tb(x, t) +

∫
dx′L (x, x′; t) b(x′, t) = 0, (A12)

L(x, x′; t) ≡ −
1

n(r)φ(v)

∫
dx′′ (∂tG(x, x

′′; t))G−1(x′′, x′; t)n(r′)φ(v′). (A13)

Appendix B: Evaluation of L(x, x′; 0)

The Markov approximation is based on using L(x, x′; 0) as the generator for dynamics,

L(x, x′; 0) =
1

n(r)φ(v)

∫
dx′′∂tG(x, x

′′; t) |t=0 G
−1(x′′, x′; 0)n(r′)φ(v′). (B1)

Consider first G−1(x′′, x′; 0) in the form

G−1(x, x′; 0) =
1

n (r)φ (v)
δ (x− x′)− c (r, r′) . (B2)

Then this obeys the inverse condition (A10) with (A8) if c (r, r′) obeys the equation

c (r, r′) = h (r, r′)−

∫
dr′′h (r, r′′)n (r′′) c (r′′, r′) . (B3)

This definition for c (r, r′) is the Ornstein-Zernicke equation [13].

Next ∂tG(x, x
′′; t) |t=0 is evaluated from its definition (A2) and Newton’s equations

(
∂t + v · ∇r −m−1∇rVie (r) · ∇v

)
f (x, t)

=

∫
dx′ (∇rVee (r, r

′)) ·m−1∇v (f (x, t) f (x
′, t)− δ (x− x′) f (x′, t)) . (B4)

This gives

∂tG(x, x
′; t) |t=0= −

(
v · ∇r −m−1∇rVie (r, ) · ∇v

)
G(x, x′; 0)

+

∫
dx′′ (∇rVee (r, r

′′)) ·m−1∇v 〈(f (x) f (x
′′)− δ (x− x′′) f (x′′)) (f (x′)− 〈f (x′)〉)〉 .

(B5)
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The average in the second term on the right side can be evaluated using the expressions

〈f (x)〉 = φ (v)n (r) (B6)

〈f (x) f (x′)〉 = δ (x− x′)φ (v)n (r) + φ (v)φ (v′)n (r)n (r′) g (r, r′) (B7)

〈(f (x) f (x′′)− δ (x− x′′) f (x′′)) f (x′)〉 = (δ (x− x′) + δ (x′′ − x′))φ (v)φ (v′′)n (r)n (r′′) g (r, r′′)

+ φ (v)φ (v′)φ (v′′)n (r)n (r′)n (r′′) g (r, r′, r′′) .

(B8)

Here g (r, r′, r′′) is defined from the three-electron reduced distribution function

n(r1)n(r2)n(r3)g (r1, r2, r3)φ(v1)φ(v2)φ(v3)

=
∑

Ne>3

Ne (Ne − 1) (Ne − 2)Tr3e,..Ne
ρ ({R} , {x}) . (B9)

Then (B5) becomes

∂tG(x, x
′; t) |t=0= −

(
v · ∇r −m−1∇rVie (r) · ∇v

)
G(x, x′; 0)

− βv · (∇rVee (r, r
′))φ (v)φ (v′)n (r)n (r′) g (r, r′)

+ n (r)m−1∇v · δ (x− x′)φ (v)

∫
dr′′ (∇rVee (r, r

′′))n (r′′) g (r, r′′)

− n (r)n (r′)φ (v′)φ (v)βv ·

∫
dr′′ (∇rVee (r, r

′′))n (r′′) (g (r, r′, r′′)− g (r, r′′)) .

(B10)

The two integrals on the right side can be evaluated using the first two equations of the

BBGKY hierarchy
∫
dr′′ (∇rVee (r, r

′′))n (r′′) g (r, r′′) = −β−1∇r lnn (r)−∇rVie (r) , (B11)

∫
dr′′ (∇rVee (r, r

′′))n (r′′) (g (r, r′, r′′)− g (r, r′′)) = − (∇rVee (r)) g (r, r
′)

−
(
∇rVie (r) + β−1∇r lnn (r)

)
h (r, r′)− β−1∇rh (r, r

′) (B12)

to get

∂tG(x, x
′; t) |t=0= −

(
v · ∇r −m−1∇rVie (r) · ∇v

)
G(x, x′; 0)

− n (r)m−1∇v · δ (x− x′)φ (v′)
(
β−1∇r lnn (r) +∇rVie (r)

)

+ n (r)n (r′)φ (v′)φ (v) βv ·
(
∇rVie (r, r

′) + β−1∇r lnn (r)
)
h (r, r′)

+ n (r)n (r′)φ (v′)φ (v) βv · β−1∇rh (r, r
′) . (B13)
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Finally, eliminate the delta function in the second term of the right side using (A6)

∂tG(x, x
′; t) |t=0= −

(
v · ∇r +m−1β−1∇r lnn (r) · ∇v

)
G(x, x′; 0)

+ n (r)n (r′)φ (v′)φ (v) βv · β−1∇rh (r, r
′) . (B14)

Together with (B1), (B2), and (B3) this gives the desired result

L(x, x′; 0) =
(
v · ∇r −m−1β−1∇r lnn (r, {R}) · ∇v

)
δ (x− x′)

− n(r′, {R})φ(v′)v · ∇rc (r, r
′, {R}) . (B15)

Appendix C: Solution to Markov kinetic equation

A formal solution to the kinetic equation (13) for b(x, t) is

b(x, t) = e−LKGtb(x)−

∫ t

0

dτe−LKG(t−τ)v · ∇r

∫
dr′βVee (r, r

′) I(r′, τ), (C1)

where the generator for the effective single particle (Kubo-Greenwood) dynamics is

LKG ≡ v · ∇r −m−1∇rVie (r) · ∇v, (C2)

and the source term I(r, t) is

I(r, t) ≡

∫
dvφ (v)n (r) b(x, t). (C3)

Use of (C1)–(C3) gives an integral equation for I(r, t),

I(r, t) = I0(r, t) +

∫ t

0

dτ

∫
dr′χKG(r, r

′, t− τ)

∫
dr′′Vee (r

′, r′′) I(r′′, τ), (C4)

with

I0(r, t) ≡

∫
dvφ (v)n (r) e−LKGtb(x) (C5)

and

χKG(r, r
′, t− τ) = −β

∫
dvφ (v)n (r) e−LKG(t−τ)v · ∇rδ (r− r′) . (C6)
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1. Dynamic structure factor

The dynamic structure factor is determined from the density-density time correlation

function

C(r, r′, t) = 〈n̂(r, t)δn̂(r′)〉 , (C7)

which corresponds to a (x1) = δ (r1−r) and b (x1) = δ (r1−r′) in (6). Then with (C1) the

dynamic structure factor obeys the integral equation

C(r, r′, t) = C0(r, r
′, t) +

∫ t

0

dτ

∫
dr′′χKG(r, r

′′, t− τ)

∫
dr′′′Vee (r

′′, r′′′)C(r′′′, r′, τ), (C8)

where

C0(r, r
′, t) = n(r)

∫
dvφ (v) e−LKGt (δ (r− r′) + n(r′)h (r, r′)) . (C9)

The solution to the linear equation (C8) is obtained first by defining the Laplace transform

f̃(z) =

∫ ∞

0

dτe−ztf(t), (C10)

to get

C̃(r, r′, z) = C̃0(r, r
′, z) +

∫
dr′′χ̃KG(r, r

′′, z)

∫
dr′′′Vee (r

′′, r′′′) C̃(r′′′, r′, z). (C11)

Next define

ǫ(r, r′, z) = δ (r− r′)−

∫
dr′′χKG(r, r

′′, z)Vee (r
′′, r′) , (C12)

so the solution to (C11) is

C̃(r, r′, z) =

∫
dr′′ǫ−1(r, r′′, z)C̃0(r

′′, r′, z). (C13)

2. Density response function

The density response function is related to the density correlation function by (26)

χ(r, r′, t) = β∂tC(r, r
′, t). (C14)

Then differentiating (C8) gives
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χ(r, r′, t) = χ0(r, r
′, t) +

∫
dr′′χKG(r, r

′′, 0)

∫
dr′′′Vee (r

′′, r′′′)C(r′′′, r′, t)

−

∫ t

0

dτ

∫
dr′′β∂τχKG(r, r

′′, t− τ)

∫
dr′′′Vee (r

′′, r′′′)C(r′′′, r′, τ),

= χ0(r, r
′, t) +

∫
dr′′χKG(r, r

′′, t)

∫
dr′′′Vee (r

′′, r′′′)C(r′′′, r′, 0)

+

∫ t

0

dτ

∫
dr′′χKG(r, r

′′, t− τ)

∫
dr′′′Vee (r

′′, r′′′)χ(r′′′, r′, τ), (C15)

χ(r, r′, t) = χKG(r, r
′, t)

+

∫ t

0

dτ

∫
dr′′χKG(r, r

′′, t− τ)

∫
dr′′′Vee (r

′′, r′′′)χ(r′′′, r′, τ). (C16)

The Ornstien-Zernicke equation (B3) has been used to make the identification

χKG(r, r
′, t) = χ0(r, r

′, t) +

∫
dr′′χKG(r, r

′′, t)

∫
dr′′′Vee (r

′′, r′′′)C(r′′′, r′, 0). (C17)

Taking the Laplace transform of (C16) gives the solution

χ̃(r, r′, z) =

∫
dr′′ǫ−1(r, r′′, z)χ̃KG(r

′′, r′, z), (C18)

where ǫ−1(r, r′, z) is the inverse function associated with

ǫ(r, r′, z) = δ (r− r′)−

∫
dr′′χKG(r, r

′′, z)Vee (r
′′, r′) . (C19)
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