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According to the asymptotic equipartition property, sufficiently long sequences of random variables
converge to a set that is typical. While the size and probability of this set are central to information
theory and statistical mechanics, they can often only be estimated accurately in the asymptotic
limit due to the exponential growth in possible sequences. Here, we derive a time-inhomogeneous
dynamics that constructs the properties of the typical set for all finite length sequences of inde-
pendent and identically distributed random variables. These dynamics link the finite properties of
the typical set to asymptotic results and allow the typical set to be applied to small and transient
systems. The main result is a geometric mapping – the triangle map – relating sequences of random
variables of length n to those of length n + 1. We show that the number of points in this map
needed to quantify the properties of the typical set grows linearly with sequence length, despite
the exponential growth in the number of typical sequences. We illustrate the framework for the
Bernoulli process and the Schlögl model for autocatalytic chemical reactions and demonstrate both
the convergence to asymptotic limits and the ability to reproduce exact calculations.

I. INTRODUCTION8

Typical behaviors lie at the heart of statistical me-9

chanics [1]. Asymptotic theories, such as large devi-10

ation theory [2–4] and equilibrium statistical mechan-11

ics [5, 6], are effective, in part, because random vari-12

ables converge to their “typical” value in the appropriate13

asymptotic limits. Take a monatomic gas of N atoms14

in thermal equilibrium with a heat bath. For this sys-15

tem, the relative standard deviation of the energy is16

σ(E)/ 〈E〉 = O(N−1/2) [7]. As the number of atoms17

becomes large, the size of deviations from the mean be-18

come relatively small. For example, when the number19

of atoms is 1018, the relative error is σ(E) ' 10−9〈E〉.20

Only when this relative error is small can systems be21

well described by their mean or typical behavior. Many22

tools are available to describe systems at and away from23

equilibrium, prominent examples being fluctuation theo-24

rems [8–10] and maximum entropy approaches [11, 12].25

What remains open is how to precisely and accurately26

quantify the typical states of systems that cannot solely27

be described by their mean behavior. Systems, including28

molecular machines [13–15] and single molecules [16, 17],29

can exhibit large fluctuations [18] in structure, energy, or30

position.31

Another definition of typicality exists in information32

theory. There, the asymptotic equipartition property33

(AEP) [19, 20] says that sequences of random vari-34

ables converge to a high-probability subset – the typ-35

ical set, Anε . Take a system described by a finite set36

of random variables or states, ω, of size |ω| = M .37

The states could represent the sides of a coin, differ-38

ent chemical species [21], or the coarse-grained regions39
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of a partitioned dynamical system [22]. The AEP states40

that for sequences of length n, ω̂n = (ω1, ω2, . . . , ωn),41

in the limit where n → ∞, the sample entropy of42

the typical sequences converges to the entropy rate hµ:43

−n−1 lnµ(ω̂n) → hµ. These sequences occur with prob-44

ability
∑
ω̂n∈Anε

µ(ω̂n) ∼ 1, constitute the typical set,45

and determine average behavior. In dynamical systems46

theory language, the entropy rate hµ is the Kolmogorov-47

Sinai (KS) entropy [23, 24]. There are recent applications48

of the AEP to irreversibility in stationary Markov pro-49

cesses [25], relations to the Fisher information [26], and50

the harnessing of fluctuations for thermodynamic func-51

tion [27]. These results all rely on an asymptotic limit, a52

situation we avoid here.53

The existence of the typical set was first shown for54

finite alphabets generating independent identically dis-55

tributed (i.i.d.) sequences by Shannon [28] and McMil-56

lan [29]. It was generalized to stationary-ergodic pro-57

cesses by Breiman for finite alphabets. Chung extended58

the typical set to countably infinite alphabets under the59

condition hµ <∞ [30, 31]. As an aside, caution is neces-60

sary for infinite alphabets [32] and correlated finite alpha-61

bets [19] where there are examples of divergent entropy62

rates. The typical set is fundamental to information the-63

ory, where it is essential to limits on the coding and trans-64

mission of information. For example, the logarithm of the65

size of the typical set (per symbol) is a bound on the rate66

that information can be transmitted [33].67

Though underappreciated, the typical set does exist for68

finite sequences. However, there are challenges to an ac-69

curate and predictive theory for its properties. One chal-70

lenge is that the convergence rate theories based on sta-71

tistical moments do not always give accurate bounds [34–72

37]. Another challenge is that for long, but finite se-73

quences, there is an exponential growth in possibili-74

ties and explicitly generating each sequence becomes in-75
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tractable. Given a system with M states, the number of76

possible sequences often grows asMn = enhtop , where n is77

the length of a sequence of states and htop = lnM is the78

growth rate or topological entropy rate [38–40]. Given79

only M = 8 states and n = 12, there are 812 = 4.4×1012
80

possible sequences, which is comparable to the number81

of galaxies in the known universe [41]. In this work, we82

address these challenges.83

Here we present a quantitative framework for the typ-84

ical set [19] that bridges the gap between brute force85

calculations of all possible sequences and asymptotic ap-86

proximations. In this framework, we evolve densities of87

sequences which represent observables of the typical set,88

such as size |Anε | or probability µ{Anε }. Previous work89

introduced a variational version of the typical set [20]90

that avoids asymptotic limits. The complementary for-91

malism introduced here avoids the combinatorial explo-92

sion of sequences. We will introduce the framework in93

several parts. The space of finite length sequences will94

be partitioned into three sets or “macrosequences”: one95

typical and two atypical sets. These macrosequences de-96

scribe how ensembles of typical and atypical sequences97

change as a function of the sequence length. Transitions98

in and out of the typical set are described by a time-99

inhomogeneous dynamics. For these dynamics, we define100

a discrete dynamical system with a geometric interpre-101

tation that maps the exact size and probability of the102

typical set over n. Together the macrosequences and as-103

sociated dynamics form an object similar to ε-machines104

in computational mechanics [42–44]. Both our geometric105

construction and ε-machines provide a simplified descrip-106

tion of a system by encoding all possible histories into107

possible futures.108

II. BACKGROUND AND NOTATION109

Consider a particular sequence generated by some dy-110

namical process ω̂n with joint probability µ(ω̂n). Though111

we will refer to n as the length of the sequence, it could112

also be a dimensionless measure of time, n = t/∆t. In-113

dividual states will be labeled by j = 1, 2, . . . ,M . We114

will assume all states are independent and the probabil-115

ity distribution over the states pj , such that
∑
j pj = 1,116

is stationary with respect to n. Sequences are then inde-117

pendent, identically distributed (i.i.d.) random variables.118

While the marginal probability p is stationary, the joint119

probability over sequences need not be stationary. The120

dynamics can generate Mn possible sequences and only121

in the infinite limit does the difference in probability be-122

tween any two sequences go to zero through the AEP,123

lim
n→∞

µ(ω̂n+1)− µ(ω̂n) ∼ e−nhµ(ehµ − 1) ∼ 0. (1)

For i.i.d. random variables, the entropy growth rate124

hµ is equivalent to the Shannon entropy, hµ = H =125

−
∑
j pj ln pj , which only depends on pj and measures126

the average surprise of observing state j. More generally,127

however, the entropy rate128

hµ ≡ hµ(n) = −n−1
∑
ω̂n

µ(ω̂n) lnµ(ω̂n), (2)

depends on the joint distribution. The entropy rate is129

central to the definition of the typical set for all sequences130

of length n [19],131

Anε ≡
{
e−n(hµ+ε) ≤ µ(ω̂n) ≤ e−n(hµ−ε)

}
. (3)

The parameter ε ∈ R+ is fixed and, together with n,132

defines the neighborhood of typical sequences around the133

entropy rate. The choice of ε is arbitrary, so long as n is134

sufficiently large. In our calculations, to avoid the trivial135

solution of an empty typical set of finite length sequences,136

we choose ε so that µ{Anε } 6= 0 for all n.137

An asymptotic upper bound on the size of the typical138

set is [19]139

|Anε | ≤ en(hµ+ε). (4)

In the infinite n limit, ε can be made arbitrarily small140

and |Anε | ∼ enhµ . For n�∞, the upper bound can be a141

poor approximation of the size of the typical set. Fig. (1)142

shows the normalized size of the typical set, |Anε |/Mn
143

(solid line), for a biased coin with the probability of heads144

being 0.7 and 0.3 for tails. The normalized upper bound145

exp[n(hµ+ε−lnM)] is a monotonic function of n (dashed146

line) but |Anε | is not: sequences enter and escape from147

the typical set. To account for the fluctuating size of the148

typical set, we next introduce a partition over the space149

of sequences.150
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FIG. 1. Comparison of the exact fraction of sequences in the
typical set, |Anε |/Mn, as a function of the sequence length, n,
from enumeration (solid line) to the asymptotic upper bound,

|Anε |/Mn ∼ en(hµ+ε−lnM) (dashed line) for a biased coin with
p = [0.7, 0.3] and ε = 0.02.

151

152

III. EVOLUTION OF TYPICAL AND153

ATYPICAL SEQUENCES154

The biased coin example highlights the need to predict155

the typical set for sequences that are longer than those ac-156
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cessible from direct enumeration and shorter than those157

well-approximated by the asymptotic limit. Fluctuations158

in properties of the typical set arise from the interplay159

between the changing sample entropy −n−1 lnµ(ω̂n) and160

the bounds hµ − ε and hµ + ε. A consequence of this161

interplay is that typical (atypical) sequences of length n162

can give rise to atypical (resp. typical) sequences at n+1.163

Since the number and probability of sequences entering164

and leaving the typical set is a function of n, we can165

represent changes in these quantities through transition166

probabilities. The transition probabilities are between167

groups of sequences we call “macrosequences”. All se-168

quences belonging to the same macrosequence have the169

same average behavior. The typical set is one macrose-170

quence. For an alphabet of size M , sequences of length n171

can be sub-sequences to at most M sequences of length172

n+1. In this way, sequences can be seen as transitioning173

from one macrosequence to another through their off-174

spring. If a sequence transitions from typical to atypical,175

for example, the size of the typical set will decrease by176

1/Mn+1. The probability in the typical set will decrease177

by the joint probability of that sequence, which is not178

necessarily 1/Mn+1. Consequently, both the number of179

sequences in each macrosequence and their corresponding180

probabilities evolve under two different dynamics.181

We next make the relationship between ω̂n, µ(ω̂n) and182

the macrosequences more precise. Doing so will allow183

us to predict which sequences will be typical at n. We184

begin by defining a partition using the typical set over185

the space of all sequences of length n, Ωn.186

A. Macrosequence dynamics187

For each n, a natural partition over the sequences uses188

Anε and its complement, which represents all atypical se-189

quences190

Cnε ≡ {Ωn\Anε } . (5)

We can further divide the complement Cnε into the lower
complement, Cnl = {ω̂n : µ(ω̂n) < e−n(H+ε)}, and the

upper complement, Cnu = {ω̂n : µ(ω̂n) > e−n(H−ε)}. The
union of the three macrosequences cover Ωn,

Ωn =

3⋃
α=1

Snα = Cnl
⋃
Anε
⋃
Cnu ,

Snα ∩ Snβ = ∅ for α 6= β, (6)

where Snα represents an arbitrary macrosequence. Ev-191

ery sequence belonging to the same macrosequence has192

qualitatively the same average behavior. Each atypi-193

cal macrosequence has a distinct average behavior, mo-194

tivating the definition of two atypical macrosequences,195

Cnl and Cnu , instead of just one. For example, it is of-196

ten the case that Pr[Cn+1
l |Cnl ] = 1 and Cl acts as an197

absorbing state for relatively small n. In comparison,198

from the geometric structure to follow, the self-transition199

probability for the other atypical macrosequence is often200

Pr[Cn+1
u |Cnu ] = 1−δ where δ � 1, meaning this macrose-201

quence will continually leak probability, even for large n.202

The macrosequences provide an alternate dynamics for203

the sequences. Every sequence can be generated and the204

properties of the typical set calculated directly or, as we205

show here, the macrosequences can be evolved to com-206

pute the properties of Anε , Fig. (2).207208

To describe how the number of sequences in each209

macrosequence evolves with n, we need to make the210

idea of transitions between macrosequences more pre-211

cise. Every sequence is given by an ordered list of states,212

ω̂n = (ω1, ω2, . . . , ωn). All sequences of length n+ 1, are213

created by appending ωn+1 to ω̂n. Since the states are214

ordered, the sequence ω̂n will be a subsequence of at most215

M sequences of length n + 1. We call this set of length216

n+ 1 sequences the “children” of ω̂n,217

C(ω̂n) = {ω̂n+1 : ω̂n+1 = ω̂nωn+1}. (7)

In this nomenclature, sequences transition between the218

typical and atypical sets by producing “offspring”. The219

second generation children are220

C2(ω̂n) = {ω̂n+2 : ω̂n+2 = ω̂n+1ωn+2, ω̂n+1 ∈ C(ω̂n)}.
(8)

Every sequence ω̂n has M children in the subsequent gen-221

eration, M2 children in the next generation, and so on.222

The dynamics for the number of sequences in a223

macrosequence is given by the transition probability224

Rαβ(n) = Pr[C(ω̂n) ∈ Sn+1
α | ω̂n ∈ Snβ ]. (9)

The transition matrix is right stochastic,
∑
αRαβ(n) =225

1. The probability a sequence occupies each macrose-226

quence is227

sn(α) =
|ω̂n ∈ Snα|
Mn

(10)

such that
∑3
α=1 sn(α) = 1. The quantity |ω̂n ∈ Snα| is

the number of sequences in the macrosequence Snα. The
transition matrices can be used to evolve the occupation
probabilities sn from n to n′

sn′ = R(n′ − 1)R(n′ − 2) . . . R(n+ 1)R(n)sn (11)

where n′ > n. Recall that the rate of growth of all se-228

quences is given by the topological entropy, htop. Us-229

ing htop, the size of each macrosequence is |Snx | =230

sn(x)enhtop .231

B. Probability of macrosequences232

Unless µ(ω̂n) is a uniform distribution, the total joint233

probability in a macrosequence is not equal to sn(x).234

Just as we did in the last section, we need to find the235

overlap of µ(ω̂n) and the three macrosequences. As the236



4

P
r[
−

1 n
ln
µ
(ω̂

n
)]

− 1
n lnµ(ω̂n)

An
ε

Cn
l Cn

u

n > 0

P
r[
−

1 n
′
ln
µ
(ω̂

n
′ )
]

− 1
n′ lnµ(ω̂n′)

An′
ε

Cn′
l Cn′

u

n′ > n

Aε

Cl Cu

.

. .

.

FIG. 2. With increasing n, the joint probability tends towards a uniform distribution and the sample entropy, −n−1 lnµ(ω̂n),
distribution concentrates. The changes in distribution occur as individual sequences move between typical (blue) and atypical
(red) macrosequences. The dynamics of these macrosequences are an alternative route to quantify the size and probability in
the typical set.

length of the sequences tends to infinity, the joint prob-237

ability µ(ω̂n) ∼ e−nhµ tends to zero due to conserva-238

tion of probability. The number of sequences, however,239

grows exponentially |Anε | ∼ enhµ. The entropy rate hµ240

then uniquely determines the growth in the number of241

sequences and the decay of the individual sequence prob-242

ability [27]. As n grows, these asymptotic results for243

the growth in the number of sequences and the decay244

of probability hides the more subtle dynamics between245

macrosequences. Thus, we scale the joint246

µ̄(ω̂n) = µ(ω̂n)p−nmax (12)

to fix max[µ̄(ω̂n)] = 1 and we scale the marginal p̄j =247

pj/pmax so that max[p̄j ] = 1. Scaled distributions are in-248

dicated by overbars. The scaled joint is evolved through249

the discrete map Cp : [0, 1] 7→ [0, 1]250

Cp(µ̄(ω̂n)) = {µ̄(ω̂n)⊗ p̄} (13)

where ⊗ is the standard Kronecker product, in this case,
between two vectors. The total joint occupation proba-
bility of belonging to a macrosequence, Snα,

qn(α) = pnmax

∑
ω̂n∈Snα

µ̄(ω̂n), (14)

is normalized so
∑3
α=1 qn(α) = 1. Using the definition of

children in this case, Eq. (13), the time-dependent tran-
sition probabilities are

Qαβ(n) = Pr[Cp(µ̄(ω̂n)) ∈ Sn+1
α | µ̄(ω̂n) ∈ Snβ ]. (15)

These right-stochastic transition matrices evolve the
marginal probability of each macrosequence Snα forward

in n

qn′ = Q(n′ − 1)Q(n′ − 2) . . . Q(n+ 1)Q(n)qn (16)

where n′ > n. Together, the set of transition matrices251

R = {R(n), R(n− 1), . . . , R(1)} and the set of macrose-252

quences, S = {Snα, Sn−1
α , . . . , S1

α} describe how the num-253

ber of both typical and atypical sequences change as a254

function of n. Likewise, Q = {Q(n), Q(n− 1), . . . , Q(1)}255

and S together describe how probability moves in and256

out of the macrosequences with n. These two ordered257

pairs, (R,S) and (Q,S), are what we wish to calculate258

for a given system.259

C. Triangle map260

A brute force approach to calculating (R,S) and261

(Q,S) is to explicitly generate all Mn sequences. To by-262

pass a complete enumeration, we introduce a geometric263

picture of µ(ω̂n) and the resulting children for a simpli-264

fied descriptions of qn and sn.265

Every sequence has M children. The probability of266

each child is iterated through Cp, Eq. (13). Because we267

order the joint probabilities such that µ̄(ω̂n) ≤ µ̄(ω̂n+1),268

plotting Cp(µ̄(ω̂n)) against µ̄(ω̂n) gives a picture like that269

shown in Fig. (3a-b). Most striking from this picture270

of the joint probabilities is the triangular form of the271

forward mapping in the case of i.i.d. random variables.272

Up to M lines can be drawn from the origin (0, 0) to273

(1, p̄j). Each line will intersect the re-scaled joint proba-274

bility of Mn sequences (App. (VI A)), the children, can275

be thought of as lying on the hypotenuse of a triangle [45].276
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FIG. 3. Plotting Cp(µ̄(ω̂n)) against µ̄(ω̂n) in (a) for a random distribution with M = 10 states. Every point represents the
probability of one of the Mn+1 children. Blue points denote children in Anε while red denotes Cnl and Cnu . The vertical dashed
lines mark the scaled bounds on Anε , e−nIl and e−nIu . Horizontal dashed lines are the scaled bounds for An+1

ε , e−(n+1)Il and
e−(n+1)Iu . These bounds divide Cp(µ̄(ω̂n))n into nine cells which determine the transition probabilities for both R(n) and Q(n).
The left lower and upper two points highlighted with black circles are µ̄(ω̂2)p̄1 and µ̄(ω̂2 + 1)p̄M respectively. The right-hand
circles highlight µ̄(ω̂2 + 1)p̄1 and µ̄(ω̂2 + 1)p̄M , which become stretched vertically because µ̄(ω̂2) < µ̄(ω̂2 + 1), thereby creating
the triangle structure. (b) The hypotenuses of one of the M triangles intersects the probability of Mn children (highlighted
with black circles).

One triangle is shown in Fig. (3b) in black with the in-277

tersecting children highlighted in green. This geometric278

picture, where the probability of sequences lie on the hy-279

potenuses of triangles, will help us to calculate the num-280

ber, sn(α), and probability, qn(α), of sequences in each281

macrosequence. We will call the mapping Cp(µ̄(ωn)) the282

triangle map.283

The upper and lower bounds of the typical set at n and284

n+ 1 over Cp(µ̄(ω̂n)) divides the space µ̄(ωn+1)× µ̄(ωn)285

into nine regions (dashed lines in Fig. (3)). These regions286

can be used to define a dynamics for entrance into and es-287

cape from the macrosequences, including the typical set.288

The number of points in each cell defines the transition289

probability for R(n) between any two macrosequences.290

The total probability in each cell defines the transition291

probability for Q(n) between any two macrosequences,292

Snβ to Sn+1
α . Vertical dashed lines in Fig. (3) are given293

by the scaled bounds of the typical set Anε : the lower294

bound e−nIl , where Il = H + ε+ ln pmax, and the upper295

bound e−nIu, where Iu = H−ε+ln pmax. The horizontal296

dashed lines are the scaled bounds at n+1: e−(n+1)Il and297

e−(n+1)Iu .298

Mapping consecutive joint distributions to a triangle299

gives a geometric representation of the macrosequence300

dynamics. These dynamics are what we wish to predict.301

One difficulty is that points along any hypotenuse are302

not uniform. Accounting for this distribution of points303

is qualitatively explained in the next section. Additional304

details of our derivation and the construction of (R,S)305

and (Q,S) are in App. VI.306

IV. EXAMPLES307

Now we apply the framework to examples that will il-308

lustrate how the formalism generates the exact size and309

probability of the macrosequences over n. These exam-310

ples also serve to show how other observables can be cal-311

culated from the formalism.312

Let us briefly summarize the procedure: Given pj and313

the entropy rate hµ = H, the triangle map Cp(µ̄(ω̂1)) can314

be calculated. The upper and lower bounds
(
e−Il , e−Iu

)
315

and
(
e−2Il , e−2Iu

)
follow and divide Cp(µ̄(ω̂1)) into nine316

cells defining the transition probabilities, Eq. (9) and317

Eq. (15). In App. VI, we show that at most (2M + 3)n318

values of the triangle map must be known to construct319

the transition probabilities. From the structure of the320

triangle map and the known distribution pj , the total321

probabilities of each macrosequence, qn and sn, can, in322

principle, be calculated exactly to any desired n.323

A. Bernoulli process and the redundancy324

The Bernoulli process is a benchmark for the typical325

set that can be enumerated completely such that, for326

sufficiently large n, the asymptotic bounds begin to con-327

verge. This fact allows us to test the framework. Fig. (4)328

again shows results for a biased coin where the proba-329

bility of heads is 0.7 and tails is 0.3, p = [0.7, 0.3]. The330

joint probability of a sequence is µ(ω̂n) =
∏n
i=1 p(ωi).331

The asymptotic bounds for the size of the typical set can332

be quite poor for n�∞. As n becomes larger, though,333

both the bound and our measure of |Anε | converge to the334

asymptotic limit (dashed line with crosses). In the limit335

µ(ω̂n) ' e−nhµ , so the upper bound (dashed line repre-336
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senting Eq. (4) will have an error of at least enε. In this337
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FIG. 4. The dashed black line is the upper bound
en(H+ε−lnM) and crosses are the ε = 0 bound en(H−lnM) that
is only guaranteed for n→∞. The fractional size of |Anε |/Mn

from enumeration (solid black line) and the calculation from
our framework (blue line). The parameter ε is 0.02 in all
cases. The method here matches the brute force enumeration
of sequences exactly up to where enumeration is tractable,
n ≈ 25, and agrees with the asymptotic limit near n ≈ 50.

338

339

example, we use (2M + 3)n = 300 points on Cp(µ̄(ω̂n))340

to calculate |Anε | for n = 50. In contrast, 250 ≈ 1015
341

sequences would have to be enumerated by brute force342

calculation.343

While the asymptotic upper bound |Anε | ≤ en(hµ+ε)
344

is poor for n � ∞, it does motivate an important345

observable–the redundancy [28],346

r = lnM − hµ. (17)

The redundancy measures the information carrying ca-347

pacity of the alphabet. If r 6= 0, there are correlations348

in the sequences [44]. Loosely speaking, the redundancy349

measures how closely a process is to maximizing the infor-350

mation rate over the alphabet. In general, for finite i.i.d.351

sequences, the maximum of the entropy hµ is lnM [19].352

The redundancy for finite n can then be defined as353

rn = lnM − 1

n
ln |Anε |. (18)

The quantity rn is a measure of the information per sym-354

bol used by the sequences in the typical set of length n. In355

the limit n→∞, |Anε | ≈ enhµ and ε can be set arbitrarily356

close to zero, meaning rn → r. In the next section, the357

Schlögl model illustrates how observables, such as the re-358

dundancy, can be calculated with our framework beyond359

where enumeration is tractable.360

B. Schlögl model361

Biological and chemical systems are often comprised362

of intricate relationships, across many spatial and time363

scales, making these systems good candidates for the364

application of the typical set at finite n. Schlögl’s sec-365

ond model [46] is a well studied set of chemical reac-366

tions [47, 48] defined by367

A + 2X 
 3X (19)

X 
 B. (20)

The second equation is modified [49] from Schlögl’s initial368

work. The intermediate species X is commonly the one369

of interest when the reactant A and product B have fixed370

concentrations, a and b. Applying the law of mass-action,371

the kinetic equation for the concentration, x, of X is an372

ordinary differential equation,373

dx

dt
= k1ax

2 − k2x
3 − k3x+ k4b. (21)

Setting this equation equal to zero gives the steady-state374

solutions. The number of real, steady-state solutions375

comes from the discriminant,376

4k3
1a

3k3b− k2
1a

2k2
4 + 4k2k

3
4 − 18k2k1ak4k3b+ 27k2

2k
2
3b

2.
(22)

Fixing the rate constant parameters, ki, i = 1, 2, . . . , 4,377

but varying the concentrations a and b, changes the378

number of real solutions, Fig. (5). Here, we will look379

at the bistable region (green), where two stable steady-380

states are separated by a single unstable steady-state [50].381

Though the bistable region will be our focus, the method382

is applicable to any region. For input into the method,383

0.5 1.0 1.5 2.0 2.5 3.0

a

0

1

2

3

4

5

6

b 1 Solution

3 Solutions

FIG. 5. Holding k1 through k4 fixed and varying a and b,
Eq. (21) generates one, two, or three real fixed points. There
are two solutions at each point on the black line that divides
the regions with one and three steady-state solutions.

384

385

we construct a marginal distribution for each fixed point386

from the concentrations387

p(s) =
s

a+ b+ x
, where s = {a, b, x}. (23)

We use concentrations of X that correspond to a par-388

ticular zero of Eq. (22). From this marginal probability389

distribution, we construct the macrosequence dynamics390

of qn(α) and |Snα| with ε = 0.1, as shown in Fig. (6). As391392

an example, we take one of the stable fixed points x, and393

the parameter values of k1 = 3, k2 = 0.6, k3 = 0.25,394

k4 = 2.95, a = 1, and b = 1. Fig. (6a-b) shows that we395
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FIG. 6. The (a) size of and (b) the amount of probability in Snα for a stable fixed point of the Schlögl model (black lines) when
ε = 0.1: Cnl (open circles), Cnu (stars), and Anε (black dashed line). Colored symbols are the results from the method here. The
(c) size and (d) the probability of Snα for the unstable fixed point at the same parameter values. There is a second stable fixed
point that exhibits qualitatively the same high redundancy behavior as the stable fixed point (data not shown).

reproduce the exact values for Snα through enumeration396

(black) from the triangle-map construction of the dynam-397

ics (color). The dashed lines with circles are the typical398

set, Anε , the lines with open circles are the macrosequence399

Cnl , and the lines with stars are the macrosequence Cnu .400

Fig. (6a) shows that |Anε | is small, meaning the redun-401

dancy is near lnM . This steady state then has large402

correlations between the states in a sequence. It should403

be noted that the second stable fixed point (not shown)404

exhibits qualitatively the same results.405

The unstable fixed point for the same parameter values406

gives a different picture, Fig. (6c-d). Now |Anε |M−n ≈407

Pr[Anε ] ≈ 1 for n > 3, almost all sequences are typical,408

and r ≈ 0. The joint distribution for the unstable fixed409

point is almost uniform and there is a lack of correlations410

in the sequences. While both examples are fixed points411

of the steady-state solution, they illustrate that the in-412

formation content of their sequences is quite different.413

V. CONCLUSIONS414

The probability and size of the typical set are of fun-415

damental importance to statistical mechanics and infor-416

mation theory. However, away from asymptotic limits,417

the tractable calculation of the typical set is limited by418

the exponential growth in the sequence space. Here we419

have shown that the dynamics of macrosequences cir-420

cumvents this exponential growth and avoids both enu-421

meration and asymptotic limits. For independent and422

identically distributed random variables, these dynam-423

ics, and therefore the future properties of the typical set,424

are entirely determined by a single marginal distribution.425

We found that the number of points needed to quantify426

the macrosequences grows linearly in both the number of427

states and the length of sequences as ≤ (2M + 3)n. As428

a consequence, this method could be applied to systems429

with a larger state space, or to longer sequence lengths,430

than the proof-of-principle examples shown here. The431

method is computationally efficient, applies to the en-432

tire class of i.i.d. systems, and enables the calculation433

of information-theoretic observables, such as the redun-434

dancy, for finite length sequences without asymptotic ap-435

proximations.436

VI. APPENDIX437

There are three ingredients in the exact construction438

of the transition probabilities R(n) and Q(n) that avoid439

the need to evaluate all Mn sequences. First, all children440

can be thought of as lying on the hypotenuse of as many441
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as M triangles. Using this continuous geometric repre-442

sentation as a set of M triangles compactly describes all443

children. Second, we show that at most 2M + 3 values of444

the triangle map must be known to calculate each tran-445

sition matrix, R(n) and Q(n), for a given n. To describe446

the probability and size of macrosequences up to length447

n, (2M + 3)n values of the triangle map are necessary.448

Third, we use two cumulative density functions (CDFs)449

to find these 2M + 3 points. We derive exact formulas450

for the CDFs at n in terms of the marginal distribution,451

p.452

A. Children of each sequence intersect similar453

triangles454

We now prove that each child Cp(µ̄(ω̂n)) falls on the455

hypotenuse of a triangle, one of (at most) M triangles,456

which will be useful later. To prove this, we use the scaled457

variables, Eq. (12), and the fact that the hypotenuse of458

each triangle is given by459

lj = p̄jx, (24)

when the continuous variable x ∈ [0, 1] and the index460

j = 1, 2, . . . ,M . Note, later we will also refer to the461

continuous variable y ∈ [0, 1], which will always belong to462

the y-axis of Cp(µ̄(ω̂n)). Define the triangle, 4j , through463

the points (0, 0), (1, 0), and (1, p̄j). The length of the464

hypotenuse for 4j is rj =
√

1 + p̄2
j and the angles are465

θj = cos−1
[
(1 + p̄2

j )
−1/2

]
, 90, and 180− 90− θj .466

Define a second triangle formed from µ̄(ω̂n) and one
child from Cp(µ̄(ω̂n)) as 4′ with points (0, 0), (µ̄(ω̂n), 0),
and (µ̄(ω̂n), µ̄(ω̂n)p̄j). The length of the hypotenuse for

4′ is r′ =
√
µ̄(ω̂n)2 + (µ̄(ω̂n)p̄j)2. Meaning that the

angles of 4′ are, θ′, 90, and 180− 90− θ′ where

θ′ = cos−1

[
µ̄(ω̂n)√

µ̄(ω̂n)2 + (µ̄(ω̂n)p̄j)2

]
,

= θj (25)

Therefore, 4′ and 4j are similar, meaning at least one467

child intersects the hypotenuse, Cp(µ(ω̂n)) ∈ lj . The468

consequence of forming similar triangles is that, since469

Cp(µ̄(ω̂n)) = p̄j µ̄(ω̂n), for each p̄j there are at least Mn
470

points intersecting one line lj . And, together, the set of471

lines {lj} must intersect all Mn+1 points on Cp(µ̄(ω̂n)).472

B. Exact construction of macrosequence dynamics473

Now we derive the exact construction of the transition474

probabilities (R(n), Q(n)) and show that at most (2M +475

3)n values of the triangle map can describe the size and476

probability of the macrosequences for any n. As opposed477

to the possible Mn sequences normally needed in a brute478

force approach.479

As described in the main text, the bound-
aries of the typical set at n and n + 1,
{e−nIl , e−nIu , e−(n+1)Il , e−(n+1)Iu}, divide the tri-
angle map into nine cells, Fig. (7). Each hypotenuse
can only cross a typical set boundary once. To count
how many sequences, or how much probability is in
each cell, we need the points where lj enters and exits
each boundary. We use the location of the intersections

mapped to the x axis, xoj and xfj . These intersection
points of lj are given by the logical rules in Tbl. I. For
example, the contribution lj makes to the transition

probability, Pr[Cn+1
l |Anε ], is determined by where lj

crosses the boundaries at the two points,

xfj = min[p̄je
−nIu , e−(n+1)Il ]p̄−1

j = lj(x)p̄−1
j ,

xoj = e−nIl = lj(x). (26)

Cells of the triangle map, marked by bounds of the480

typical set, define the transition probabilities between481

the macrosequences Snβ and Sn+1
α . To calculate Rαβ =482

Pr[Sn+1
α |Snβ ] the number of sequences in each cell must483

be counted. The goal is to find R(n) given the scaled dis-484

tributions for each state p̄j and each sequence µ̄(ω̂n). For485

the joint distribution, there is a cumulative distribution486

function (CDF) ρn(x), x ∈ [0,∞) given by487

ρn(x) =

M
−n ∑̂

ωn

∫ x
0
δ[µ̄(ω̂n)− s]ds if x ≤ 1,

1 if x > 1.
. (27)

The analytic expressions for the intersection points cor-488

respond to locations on the CDF ρn(x). The transition489

probability for the sequence dynamics is then given by490

the contribution from each line lj that enters the same491

transition cell492

Rαβ(n) =
1

ZRα

∑
j

[
ρn(xfj )− ρn(xoj)

]
. (28)

The normalization factor ZRα ensures R(n) is right493

stochastic,
∑
αRαβ(n) = 1.494

The length of the line segment lj in a particular cell495

corresponds to a certain amount of cumulative probabil-496

ity,497

%n(x) =


∑

ω̂n|µ(ω̂n)≤x
µ(ω̂n) if x ≤ 1

1 if x > 1
, (29)

or Pr[lj(x
f
j )− lj(xoj)] = pj

[
%n(xfj )− %n(xoj)

]
, where lj is498

written in terms of the un-barred distribution lj = pjx,499

and the transition probabilities are built from this CDF500

Qαβ(n) =
1

ZQα

∑
j

pj

[
%n(xfj )− %n(xoj)

]
. (30)

Now, we show that the number of points needed to501

construct the transition matrices grows linearly in M502
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Sny → Sn+1
x xfj xoj

Cnl → Cn+1
l min[p̄je

−nIl , e−(n+1)Il ]p̄−1
j 0

Cnl → An+1
ε min[p̄je

−nIl , e−(n+1)Iu ]p̄−1
j e−(n+1)Il p̄−1

j

Cnl → Cn+1
u e−nIl e−(n+1)Iu p̄−1

j

Anε → Cn+1
l min[p̄je

−nIu , e−(n+1)Il ]p̄−1
j e−nIl

Anε → An+1
ε min[p̄je

−nIu , e−(n+1)Iu ]p̄−1
j max[p̄je

−nIl , e−(n+1)Il ]p̄−1
j

Anε → Cn+1
u e−nIu max[p̄je

−nIl , e−(n+1)Iu ]p̄−1
j

Cnu → Cn+1
l min[p̄j , e

−(n+1)Il ]p̄−1
j e−nIu

Cnu → An+1
ε min[p̄j , e

−(n+1)Iu ]p̄−1
j max[p̄je

−nIu , e−(n+1)Il ]p̄−1
j

Cnu → Cn+1
u 1 max[p̄je

−nIu , e−(n+1)Iu ]p̄−1
j

TABLE I. The above rules determine the two points xfj and xoj , which determine the contribution each lj makes to the transition
probabilities R(n) and Q(n).

0 0.2 0.4 0.6 0.8 1

µ̄(ω̂n)

0

0.2

0.4

0.6

0.8

1

µ̄
(ω̂

n
+
1
)

y

FIG. 7. The cumulative density ρn+1(y) is proportional to
all the sequences which lie below a particular y. Since each
sequence lies on the function lj , the point on lj(y) can be
mapped to ρn(x). If y > p̄j , as is shown with the right most
grey line covering l1, then the contribution from ρn at this
point is one.

and n. From Tbl. I, the rule for calculating Cnu →503

Cn+1
l (min[p̄j , e

−(n+1)Il ]p̄−1
j ) means that in addition504

to the boundaries of the typical set at n and n +505

1, we also need to consider the end points of each506

line as a boundary. Including the end points with507

(at most) the four other boundaries lj can cross, we508

need to evaluate ρn and %n at the set of points I =509 {
e−nIl , e−nIu , 1, e−(n+1)Il/p̄j , e

−(n+1)Iu/p̄j
}

. Since R(n)510

and Q(n) are determined by the set of intersections I,511

and the index j runs from 1 to M , at most (2M + 3)n512

points are required to determine the macrosequence dy-513

namics up to n.514

C. Calculating ρn and %n from pj515

In the last section, we showed that the macrosequence516

transition probabilities at any n can be calculated from517

the distributions (pj , ρn, %n). Now we derive a formula518

for the CDFs at n in terms of the marginal and CDFs at519

n = 1.520

Let us start with an important property of ρn+1. As-521

suming pj and ρ1 are known, the CDF at n+ 1, ρn+1(y),522

is proportional to the number of children lying below the523

point y on Cp(µ̄(ω̂n)). Fig. (7) illustrates this idea for a524

given y value. The sequences contributing to the CDF525

at n + 1 are highlighted in gray. Summing the number526

of points with lj ≤ y (black circles) gives the CDF at527

n + 1. Each point below y has a corresponding value of528

x on the µ̄(ω̂n) axis, y/p̄j = x. Then, for a given y value,529

the CDF ρn+1(y) is given in terms of the previous CDF530

ρn(x),531

ρn+1(y) =
1

M

M∑
j=1

ρn

(
y

p̄j

)
. (31)

We note, from the definition of the CDF, Eq. (27),532

if y/p̄j > p̄j , then ρn (y/p̄j) = 1. Letting y′ = y/p̄j ,533

ρn(y′) can be found the same way using Cp(µ̄(ω̂n−1)).534

Substituting ρn−1 into ρn gives,535

ρn+1(y) =
1

M2

M∑
j=1

M∑
k=1

ρn−1

(
y

p̄j p̄k

)
. (32)

Repeating until ρ1 gives536

ρn+1(y) =
1

Mn

∑
k1,k2,...,kn

ρ1

(
y

p̄k1 p̄k2 , . . . , p̄kn

)
. (33)

This expression gives the exact value of ρn(y) from ρ1537

and p̄j . To find R(n) and Q(n), the points where lj538

maps to the elements of I are needed. There are at most539

2M + 3 points. Unfortunately, this CDF has Mn entries540

in the summation for each value of y. So while it is a way541

to exactly calculate the values needed for the transition542

probabilities, it is not practical when n is large. However,543

Eq. (33) shows that Cp(µ̄(ω̂n)) and ρn are a potential way544

to describe the macrosequence dynamics for i.i.d. r.v.s545

when ρ1 and p̄j are known.546

To transform Eq. (33) into a more tractable form, we547

will use the fact that the random variables are i.i.d. This548
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property means some positions in the sum are repeated,549

such as, y/p̄k1 p̄j2 = y/p̄j1 p̄k2 . Counting the number of550

times p̄j appears, sj , leads to a simplified form of the551

CDF552

ρn+1(y) =
n!

Mn

(M+n−1
n )∑
k=1

ρ1( yr̄k )

Nk
. (34)

The sum runs over all multisets, i.e., combinations where553

order is ignored, of the number of times p̄j appears in554

the constraint
∑
j sj = n. The denominator r̄k shifts555

the position where ρ1 is evaluated, r̄k =
∏M
j=1 p̄

sj
j , and556

Nk =
∏M
j=1 sj !. Since the number of multisets for a given557

M and n grows far slower than Mn, Eq. (34) offers sub-558

stantial computational savings over enumerating all pos-559

sible sequences.560

Now we turn to %n. We find %n in terms of %1 with561

an argument similar to that for ρn and ρ1 above. Only562

now, the CDF %n(y/p̄j) must be multiplied by pj . Again,563

through Cp(µ̄(ω̂n)), %n+1(y) can be written in terms of564

%n(y/p̄j),565

%n+1(y) =
∑
j

pj%n

(
y

p̄j

)
. (35)

Writing y′ = y/p̄j gives,

%n+1(y) =
∑
j

pj
∑
l

pl%n−1

(
y′

p̄l

)
,

=
∑
j,l

pjpl%n−1

(
y

p̄j p̄l

)
. (36)

Continuing to %1, and again using the fact that the ran-566

dom variables are i.i.d., gives567

%n+1(y) = n!

(M+n−1
n )∑
k=1

rk
Nk

%1

(
y

r̄k

)
. (37)

Eq. (37) only differs from Eq. (34) in that we need %1568

instead of ρ1 and we have the probability rk =
∏M
j=1 p

sj
j569

associated with each entry of %1.570
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[46] F. Schlögl, Zeitschrift für Physik A Hadrons and Nuclei658

253, 147 (1972).659

[47] A. B. Goryachev and A. V. Pokhilko, FEBS Letters 582,660

1437 (2008).661

[48] R. G. Endres, PloS one 10, e0121681 (2015).662

[49] M. Vellela and H. Qian, Journal of the Royal Society663

Interface 6, 925 (2009).664

[50] J. Tyson, R. Albert, A. Goldbeter, P. Ruoff, and J. Sible,665

Journal of The Royal Society Interface 5, S1 (2008).666


