This is the accepted manuscript made available via CHORUS. The article has been published as:

Entrance and escape dynamics for the typical set

Schuyler B. Nicholson, Jonah S. Greenberg, and Jason R. Green
Phys. Rev. E 97, 012146 - Published 29 January 2018
DOI: 10.1103/PhysRevE.97.012146

Schuyler B. Nicholson, ${ }^{1}$ Jonah S. Greenberg, ${ }^{1}$ and Jason R. Green ${ }^{1,2,3, *}$
${ }^{1}$ Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125
${ }^{2}$ Department of Physics, University of Massachusetts Boston, Boston, MA 02125
${ }^{3}$ Center for Quantum and Nonequilibrium Systems, University of Massachusetts Boston, Boston, MA 02125

(Dated: January 9, 2018)

Abstract

According to the asymptotic equipartition property, sufficiently long sequences of random variables converge to a set that is typical. While the size and probability of this set are central to information theory and statistical mechanics, they can often only be estimated accurately in the asymptotic limit due to the exponential growth in possible sequences. Here, we derive a time-inhomogeneous dynamics that constructs the properties of the typical set for all finite length sequences of independent and identically distributed random variables. These dynamics link the finite properties of the typical set to asymptotic results and allow the typical set to be applied to small and transient systems. The main result is a geometric mapping - the triangle map - relating sequences of random variables of length n to those of length $n+1$. We show that the number of points in this map needed to quantify the properties of the typical set grows linearly with sequence length, despite the exponential growth in the number of typical sequences. We illustrate the framework for the Bernoulli process and the Schlögl model for autocatalytic chemical reactions and demonstrate both the convergence to asymptotic limits and the ability to reproduce exact calculations.

Typical behaviors lie at the heart of statistical mechanics [1]. Asymptotic theories, such as large deviation theory $[2-4]$ and equilibrium statistical mechanics $[5,6]$, are effective, in part, because random variables converge to their "typical" value in the appropriate asymptotic limits. Take a monatomic gas of N atoms in thermal equilibrium with a heat bath. For this system, the relative standard deviation of the energy is $\sigma(E) /\langle E\rangle=\mathcal{O}\left(N^{-1 / 2}\right)$ [7]. As the number of atoms becomes large, the size of deviations from the mean become relatively small. For example, when the number of atoms is 10^{18}, the relative error is $\sigma(E) \simeq 10^{-9}\langle E\rangle$. Only when this relative error is small can systems be well described by their mean or typical behavior. Many tools are available to describe systems at and away from equilibrium, prominent examples being fluctuation theorems [8-10] and maximum entropy approaches [11, 12]. What remains open is how to precisely and accurately quantify the typical states of systems that cannot solely be described by their mean behavior. Systems, including molecular machines [13-15] and single molecules [16, 17], can exhibit large fluctuations [18] in structure, energy, or position.

Another definition of typicality exists in information theory. There, the asymptotic equipartition property (AEP) [19, 20] says that sequences of random variables converge to a high-probability subset - the typical set, A_{ϵ}^{n}. Take a system described by a finite set of random variables or states, ω, of size $|\omega|=M$. The states could represent the sides of a coin, different chemical species [21], or the coarse-grained regions

[^0]of a partitioned dynamical system [22]. The AEP states that for sequences of length $n, \hat{\omega}_{n}=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$, in the limit where $n \rightarrow \infty$, the sample entropy of the typical sequences converges to the entropy rate h_{μ} : $-n^{-1} \ln \mu\left(\hat{\omega}_{n}\right) \rightarrow h_{\mu}$. These sequences occur with probability $\sum_{\hat{\omega}_{n} \in A_{\epsilon}^{n}} \mu\left(\hat{\omega}_{n}\right) \sim 1$, constitute the typical set, and determine average behavior. In dynamical systems theory language, the entropy rate h_{μ} is the KolmogorovSinai (KS) entropy [23, 24]. There are recent applications of the AEP to irreversibility in stationary Markov processes [25], relations to the Fisher information [26], and the harnessing of fluctuations for thermodynamic function [27]. These results all rely on an asymptotic limit, a situation we avoid here.

The existence of the typical set was first shown for finite alphabets generating independent identically distributed (i.i.d.) sequences by Shannon [28] and McMillan [29]. It was generalized to stationary-ergodic processes by Breiman for finite alphabets. Chung extended the typical set to countably infinite alphabets under the condition $h_{\mu}<\infty[30,31]$. As an aside, caution is necessary for infinite alphabets [32] and correlated finite alphabets [19] where there are examples of divergent entropy rates. The typical set is fundamental to information theory, where it is essential to limits on the coding and transmission of information. For example, the logarithm of the size of the typical set (per symbol) is a bound on the rate that information can be transmitted [33].

Though underappreciated, the typical set does exist for finite sequences. However, there are challenges to an accurate and predictive theory for its properties. One challenge is that the convergence rate theories based on statistical moments do not always give accurate bounds [3437]. Another challenge is that for long, but finite sequences, there is an exponential growth in possibilities and explicitly generating each sequence becomes in-

$$
102
$$

120

121

122

123

tractable. Given a system with M states, the number of possible sequences often grows as $M^{n}=e^{n h_{\mathrm{top}}}$, where n is the length of a sequence of states and $h_{\text {top }}=\ln M$ is the growth rate or topological entropy rate [38-40]. Given only $M=8$ states and $n=12$, there are $8^{12}=4.4 \times 10^{12}$ possible sequences, which is comparable to the number of galaxies in the known universe [41]. In this work, we address these challenges.
Here we present a quantitative framework for the typical set [19] that bridges the gap between brute force calculations of all possible sequences and asymptotic approximations. In this framework, we evolve densities of sequences which represent observables of the typical set, such as size $\left|A_{\epsilon}^{n}\right|$ or probability $\mu\left\{A_{\epsilon}^{n}\right\}$. Previous work introduced a variational version of the typical set [20] that avoids asymptotic limits. The complementary formalism introduced here avoids the combinatorial explosion of sequences. We will introduce the framework in several parts. The space of finite length sequences will be partitioned into three sets or "macrosequences": one typical and two atypical sets. These macrosequences describe how ensembles of typical and atypical sequences change as a function of the sequence length. Transitions in and out of the typical set are described by a timeinhomogeneous dynamics. For these dynamics, we define a discrete dynamical system with a geometric interpretation that maps the exact size and probability of the typical set over n. Together the macrosequences and associated dynamics form an object similar to ϵ-machines in computational mechanics [42-44]. Both our geometric construction and ϵ-machines provide a simplified description of a system by encoding all possible histories into possible futures.

II. BACKGROUND AND NOTATION

Consider a particular sequence generated by some dynamical process $\hat{\omega}_{n}$ with joint probability $\mu\left(\hat{\omega}_{n}\right)$. Though we will refer to n as the length of the sequence, it could also be a dimensionless measure of time, $n=t / \Delta t$. Individual states will be labeled by $j=1,2, \ldots, M$. We will assume all states are independent and the probability distribution over the states p_{j}, such that $\sum_{j} p_{j}=1$, is stationary with respect to n. Sequences are then independent, identically distributed (i.i.d.) random variables. While the marginal probability p is stationary, the joint probability over sequences need not be stationary. The dynamics can generate M^{n} possible sequences and only in the infinite limit does the difference in probability between any two sequences go to zero through the AEP,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu\left(\hat{\omega}_{n+1}\right)-\mu\left(\hat{\omega}_{n}\right) \sim e^{-n h_{\mu}}\left(e^{h_{\mu}}-1\right) \sim 0 \tag{1}
\end{equation*}
$$ ${ }^{126}-\sum_{j} p_{j} \ln p_{j}$, which only depends on p_{j} and measures 127 the average surprise of observing state j. More generally,

${ }_{128}$ however, the entropy rate

$$
\begin{equation*}
h_{\mu} \equiv h_{\mu}(n)=-n^{-1} \sum_{\hat{\omega}_{n}} \mu\left(\hat{\omega}_{n}\right) \ln \mu\left(\hat{\omega}_{n}\right) \tag{2}
\end{equation*}
$$

FIG. 1. Comparison of the exact fraction of sequences in the typical set, $\left|A_{\epsilon}^{n}\right| / M^{n}$, as a function of the sequence length, n, from enumeration (solid line) to the asymptotic upper bound, $\left|A_{\epsilon}^{n}\right| / M^{n} \sim e^{n\left(h_{\mu}+\epsilon-\ln M\right)}$ (dashed line) for a biased coin with $p=[0.7,0.3]$ and $\epsilon=0.02$.

III. EVOLUTION OF TYPICAL AND ATYPICAL SEQUENCES

The biased coin example highlights the need to predict the typical set for sequences that are longer than those ac-

$$
\begin{equation*}
C_{\epsilon}^{n} \equiv\left\{\Omega^{n} \backslash A_{\epsilon}^{n}\right\} \tag{5}
\end{equation*}
$$

We can further divide the complement C_{ϵ}^{n} into the lower complement, $C_{l}^{n}=\left\{\hat{\omega}_{n}: \mu\left(\hat{\omega}_{n}\right)<e^{-n(H+\epsilon)}\right\}$, and the upper complement, $C_{u}^{n}=\left\{\hat{\omega}_{n}: \mu\left(\hat{\omega}_{n}\right)>e^{-n(H-\epsilon)}\right\}$. The union of the three macrosequences cover Ω^{n},

$$
\begin{gather*}
\Omega^{n}=\bigcup_{\alpha=1}^{3} S_{\alpha}^{n}=C_{l}^{n} \bigcup A_{\epsilon}^{n} \bigcup C_{u}^{n} \\
\quad S_{\alpha}^{n} \cap S_{\beta}^{n}=\emptyset \quad \text { for } \quad \alpha \neq \beta \tag{6}
\end{gather*}
$$

where S_{α}^{n} represents an arbitrary macrosequence. Every sequence belonging to the same macrosequence has qualitatively the same average behavior. Each atypical macrosequence has a distinct average behavior, motivating the definition of two atypical macrosequences, C_{l}^{n} and C_{u}^{n}, instead of just one. For example, it is of- ${ }_{23}$
cessible from direct enumeration and shorter than those 20 well-approximated by the asymptotic limit. Fluctuations 20 in properties of the typical set arise from the interplay 202 between the changing sample entropy $-n^{-1} \ln \mu\left(\hat{\omega}_{n}\right)$ and ${ }_{203}$ the bounds $h_{\mu}-\epsilon$ and $h_{\mu}+\epsilon$. A consequence of this interplay is that typical (atypical) sequences of length $n{ }^{205}$ can give rise to atypical (resp. typical) sequences at $n+1.20$ Since the number and probability of sequences entering 208 and leaving the typical set is a function of n, we can 209 represent changes in these quantities through transition 210 probabilities. The transition probabilities are between 21 groups of sequences we call "macrosequences". All se- 21 quences belonging to the same macrosequence have the same average behavior. The typical set is one macrosequence. For an alphabet of size M, sequences of length n can be sub-sequences to at most M sequences of length $n+1$. In this way, sequences can be seen as transitioning from one macrosequence to another through their offspring. If a sequence transitions from typical to atypical, for example, the size of the typical set will decrease by $1 / M^{n+1}$. The probability in the typical set will decrease by the joint probability of that sequence, which is not necessarily $1 / M^{n+1}$. Consequently, both the number of sequences in each macrosequence and their corresponding probabilities evolve under two different dynamics.

We next make the relationship between $\hat{\omega}_{n}, \mu\left(\hat{\omega}_{n}\right)$ and the macrosequences more precise. Doing so will allow us to predict which sequences will be typical at n. We begin by defining a partition using the typical set over the space of all sequences of length n, Ω^{n}.

A. Macrosequence dynamics

For each n, a natural partition over the sequences uses A_{ϵ}^{n} and its complement, which represents all atypical sequences 199 from the geometric structure to follow, the self-transition
probability for the other atypical macrosequence is often $\operatorname{Pr}\left[C_{u}^{n+1} \mid C_{u}^{n}\right]=1-\delta$ where $\delta \ll 1$, meaning this macrosequence will continually leak probability, even for large n. The macrosequences provide an alternate dynamics for the sequences. Every sequence can be generated and the properties of the typical set calculated directly or, as we show here, the macrosequences can be evolved to compute the properties of A_{ϵ}^{n}, Fig. (2).

To describe how the number of sequences in each macrosequence evolves with n, we need to make the idea of transitions between macrosequences more precise. Every sequence is given by an ordered list of states, $\hat{\omega}_{n}=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$. All sequences of length $n+1$, are created by appending ω_{n+1} to $\hat{\omega}_{n}$. Since the states are ordered, the sequence $\hat{\omega}_{n}$ will be a subsequence of at most M sequences of length $n+1$. We call this set of length $n+1$ sequences the "children" of $\hat{\omega}_{n}$,

$$
\begin{equation*}
\mathcal{C}\left(\hat{\omega}_{n}\right)=\left\{\hat{\omega}_{n+1}: \hat{\omega}_{n+1}=\hat{\omega}_{n} \omega_{n+1}\right\} \tag{7}
\end{equation*}
$$

In this nomenclature, sequences transition between the typical and atypical sets by producing "offspring". The 220 second generation children are

$$
\begin{equation*}
\mathcal{C}^{2}\left(\hat{\omega}_{n}\right)=\left\{\hat{\omega}_{n+2}: \hat{\omega}_{n+2}=\hat{\omega}_{n+1} \omega_{n+2}, \hat{\omega}_{n+1} \in \mathcal{C}\left(\hat{\omega}_{n}\right)\right\} . \tag{8}
\end{equation*}
$$

2 Every sequence $\hat{\omega}_{n}$ has M children in the subsequent generation, M^{2} children in the next generation, and so on.

The dynamics for the number of sequences in a 224 macrosequence is given by the transition probability

$$
\begin{equation*}
R_{\alpha \beta}(n)=\operatorname{Pr}\left[\mathcal{C}\left(\hat{\omega}_{n}\right) \in S_{\alpha}^{n+1} \mid \hat{\omega}_{n} \in S_{\beta}^{n}\right] . \tag{9}
\end{equation*}
$$

${ }_{25}$ The transition matrix is right stochastic, $\sum_{\alpha} R_{\alpha \beta}(n)=$ 226

$$
\begin{equation*}
s_{n}(\alpha)=\frac{\left|\hat{\omega}_{n} \in S_{\alpha}^{n}\right|}{M^{n}} \tag{10}
\end{equation*}
$$

such that $\sum_{\alpha=1}^{3} s_{n}(\alpha)=1$. The quantity $\left|\hat{\omega}_{n} \in S_{\alpha}^{n}\right|$ is the number of sequences in the macrosequence S_{α}^{n}. The transition matrices can be used to evolve the occupation probabilities s_{n} from n to n^{\prime}

$$
\begin{equation*}
s_{n^{\prime}}=R\left(n^{\prime}-1\right) R\left(n^{\prime}-2\right) \ldots R(n+1) R(n) s_{n} \tag{11}
\end{equation*}
$$

228 where $n^{\prime}>n$. Recall that the rate of growth of all se229 quences is given by the topological entropy, $h_{\text {top }}$. Us${ }_{30}$ ing $h_{\text {top }}$, the size of each macrosequence is $\left|S_{x}^{n}\right|=$ $s_{n}(x) e^{n h_{\text {top }}}$.

B. Probability of macrosequences

Unless $\mu\left(\hat{\omega}_{n}\right)$ is a uniform distribution, the total joint probability in a macrosequence is not equal to $s_{n}(x)$. Just as we did in the last section, we need to find the overlap of $\mu\left(\hat{\omega}_{n}\right)$ and the three macrosequences. As the

FIG. 2. With increasing n, the joint probability tends towards a uniform distribution and the sample entropy, $-n^{-1} \ln \mu\left(\hat{\omega}_{n}\right)$, distribution concentrates. The changes in distribution occur as individual sequences move between typical (blue) and atypical (red) macrosequences. The dynamics of these macrosequences are an alternative route to quantify the size and probability in the typical set.
length of the sequences tends to infinity, the joint probability $\mu\left(\hat{\omega}_{n}\right) \sim e^{-n h_{\mu}}$ tends to zero due to conservation of probability. The number of sequences, however, grows exponentially $\left|A_{\epsilon}^{n}\right| \sim e^{n h \mu}$. The entropy rate h_{μ} then uniquely determines the growth in the number of sequences and the decay of the individual sequence probability [27]. As n grows, these asymptotic results for the growth in the number of sequences and the decay of probability hides the more subtle dynamics between macrosequences. Thus, we scale the joint

$$
\begin{equation*}
\bar{\mu}\left(\hat{\omega}_{n}\right)=\mu\left(\hat{\omega}_{n}\right) p_{\max }^{-n} \tag{12}
\end{equation*}
$$

7 to fix $\max \left[\bar{\mu}\left(\hat{\omega}_{n}\right)\right]=1$ and we scale the marginal $\bar{p}_{j}=$ ${ }_{8} p_{j} / p_{\text {max }}$ so that $\max \left[\bar{p}_{j}\right]=1$. Scaled distributions are in29 dicated by overbars. The scaled joint is evolved through so the discrete $\operatorname{map} \mathcal{C}_{p}:[0,1] \mapsto[0,1]$

$$
\begin{equation*}
\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{n}\right)\right)=\left\{\bar{\mu}\left(\hat{\omega}_{n}\right) \otimes \bar{p}\right\} \tag{13}
\end{equation*}
$$

where \otimes is the standard Kronecker product, in this case, between two vectors. The total joint occupation probability of belonging to a macrosequence, S_{α}^{n},

$$
\begin{equation*}
q_{n}(\alpha)=p_{\max }^{n} \sum_{\hat{\omega}_{n} \in S_{\alpha}^{n}} \bar{\mu}\left(\hat{\omega}_{n}\right), \tag{14}
\end{equation*}
$$

is normalized so $\sum_{\alpha=1}^{3} q_{n}(\alpha)=1$. Using the definition of children in this case, Eq. (13), the time-dependent transition probabilities are

$$
\begin{equation*}
Q_{\alpha \beta}(n)=\operatorname{Pr}\left[\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{n}\right)\right) \in S_{\alpha}^{n+1} \mid \bar{\mu}\left(\hat{\omega}_{n}\right) \in S_{\beta}^{n}\right] . \tag{15}
\end{equation*}
$$

These right-stochastic transition matrices evolve the marginal probability of each macrosequence S_{α}^{n} forward
in n

$$
\begin{equation*}
q_{n^{\prime}}=Q\left(n^{\prime}-1\right) Q\left(n^{\prime}-2\right) \ldots Q(n+1) Q(n) q_{n} \tag{16}
\end{equation*}
$$

where $n^{\prime}>n$. Together, the set of transition matrices $\mathcal{R}=\{R(n), R(n-1), \ldots, R(1)\}$ and the set of macrosequences, $\mathcal{S}=\left\{S_{\alpha}^{n}, S_{\alpha}^{n-1}, \ldots, S_{\alpha}^{1}\right\}$ describe how the number of both typical and atypical sequences change as a function of n. Likewise, $\mathcal{Q}=\{Q(n), Q(n-1), \ldots, Q(1)\}$ and \mathcal{S} together describe how probability moves in and out of the macrosequences with n. These two ordered pairs, $(\mathcal{R}, \mathcal{S})$ and $(\mathcal{Q}, \mathcal{S})$, are what we wish to calculate for a given system.

C. Triangle map

A brute force approach to calculating $(\mathcal{R}, \mathcal{S})$ and $(\mathcal{Q}, \mathcal{S})$ is to explicitly generate all M^{n} sequences. To bypass a complete enumeration, we introduce a geometric picture of $\mu\left(\hat{\omega}_{n}\right)$ and the resulting children for a simplified descriptions of q_{n} and s_{n}.

Every sequence has M children. The probability of each child is iterated through \mathcal{C}_{p}, Eq. (13). Because we order the joint probabilities such that $\bar{\mu}\left(\hat{\omega}_{n}\right) \leq \bar{\mu}\left(\hat{\omega}_{n}+1\right)$, plotting $\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{n}\right)\right)$ against $\bar{\mu}\left(\hat{\omega}_{n}\right)$ gives a picture like that shown in Fig. (3a-b). Most striking from this picture of the joint probabilities is the triangular form of the forward mapping in the case of i.i.d. random variables.

Up to M lines can be drawn from the origin $(0,0)$ to $\left(1, \bar{p}_{j}\right)$. Each line will intersect the re-scaled joint probability of M^{n} sequences (App. (VIA)), the children, can be thought of as lying on the hypotenuse of a triangle [45].

FIG. 3. Plotting $\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{n}\right)\right)$ against $\bar{\mu}\left(\hat{\omega}_{n}\right)$ in (a) for a random distribution with $M=10$ states. Every point represents the probability of one of the M^{n+1} children. Blue points denote children in A_{ϵ}^{n} while red denotes C_{l}^{n} and C_{u}^{n}. The vertical dashed lines mark the scaled bounds on $A_{\epsilon}^{n}, e^{-n I_{l}}$ and $e^{-n I_{u}}$. Horizontal dashed lines are the scaled bounds for $A_{\epsilon}^{n+1}, e^{-(n+1) I_{l}}$ and $e^{-(n+1) I_{u}}$. These bounds divide $\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{n}\right)\right)_{n}$ into nine cells which determine the transition probabilities for both $R(n)$ and $Q(n)$. The left lower and upper two points highlighted with black circles are $\bar{\mu}\left(\hat{\omega}_{2}\right) \bar{p}_{1}$ and $\bar{\mu}\left(\hat{\omega}_{2}+1\right) \bar{p}_{M}$ respectively. The right-hand circles highlight $\bar{\mu}\left(\hat{\omega}_{2}+1\right) \bar{p}_{1}$ and $\bar{\mu}\left(\hat{\omega}_{2}+1\right) \bar{p}_{M}$, which become stretched vertically because $\bar{\mu}\left(\hat{\omega}_{2}\right)<\bar{\mu}\left(\hat{\omega}_{2}+1\right)$, thereby creating the triangle structure. (b) The hypotenuses of one of the M triangles intersects the probability of M^{n} children (highlighted with black circles).

One triangle is shown in Fig. (3b) in black with the in- 307 tersecting children highlighted in green. This geometric picture, where the probability of sequences lie on the hypotenuses of triangles, will help us to calculate the number, $s_{n}(\alpha)$, and probability, $q_{n}(\alpha)$, of sequences in each macrosequence. We will call the mapping $\mathcal{C}_{p}\left(\bar{\mu}\left(\omega_{n}\right)\right)$ the triangle map.

The upper and lower bounds of the typical set at n and $n+1$ over $\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{n}\right)\right)$ divides the space $\bar{\mu}\left(\omega_{n+1}\right) \times \bar{\mu}\left(\omega_{n}\right)$ into nine regions (dashed lines in Fig. (3)). These regions can be used to define a dynamics for entrance into and escape from the macrosequences, including the typical set. The number of points in each cell defines the transition probability for $R(n)$ between any two macrosequences. The total probability in each cell defines the transition probability for $Q(n)$ between any two macrosequences, S_{β}^{n} to S_{α}^{n+1}. Vertical dashed lines in Fig. (3) are given by the scaled bounds of the typical set A_{ϵ}^{n} : the lower bound $e^{-n I_{l}}$, where $I_{l}=H+\epsilon+\ln p_{\max }$, and the upper bound $e^{-n I u}$, where $I_{u}=H-\epsilon+\ln p_{\max }$. The horizontal dashed lines are the scaled bounds at $n+1: e^{-(n+1) I_{l}}$ and $e^{-(n+1) I_{u}}$.

Mapping consecutive joint distributions to a triangle gives a geometric representation of the macrosequence dynamics. These dynamics are what we wish to predict. One difficulty is that points along any hypotenuse are ${ }_{332}$ not uniform. Accounting for this distribution of points ${ }_{33}$ is qualitatively explained in the next section. Additional details of our derivation and the construction of $(\mathcal{R}, \mathcal{S})$ and $(\mathcal{Q}, \mathcal{S})$ are in App. VI.

IV. EXAMPLES

Now we apply the framework to examples that will il${ }^{09}$ lustrate how the formalism generates the exact size and probability of the macrosequences over n. These examples also serve to show how other observables can be calculated from the formalism.

Let us briefly summarize the procedure: Given p_{j} and 14 the entropy rate $h_{\mu}=H$, the triangle map $\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{1}\right)\right)$ can be calculated. The upper and lower bounds $\left(e^{-I_{l}}, e^{-I_{u}}\right)$ and $\left(e^{-2 I_{l}}, e^{-2 I_{u}}\right)$ follow and divide $\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{1}\right)\right)$ into nine cells defining the transition probabilities, Eq. (9) and Eq. (15). In App. VI, we show that at most $(2 M+3) n$ values of the triangle map must be known to construct the transition probabilities. From the structure of the triangle map and the known distribution p_{j}, the total probabilities of each macrosequence, q_{n} and s_{n}, can, in principle, be calculated exactly to any desired n.

A. Bernoulli process and the redundancy

The Bernoulli process is a benchmark for the typical 326 set that can be enumerated completely such that, for sufficiently large n, the asymptotic bounds begin to converge. This fact allows us to test the framework. Fig. (4) again shows results for a biased coin where the probability of heads is 0.7 and tails is $0.3, p=[0.7,0.3]$. The joint probability of a sequence is $\mu\left(\hat{\omega}_{n}\right)=\prod_{i=1}^{n} p\left(\omega_{i}\right)$. The asymptotic bounds for the size of the typical set can be quite poor for $n \ll \infty$. As n becomes larger, though, both the bound and our measure of $\left|A_{\epsilon}^{n}\right|$ converge to the asymptotic limit (dashed line with crosses). In the limit ${ }_{36} \mu\left(\hat{\omega}_{n}\right) \simeq e^{-n h_{\mu}}$, so the upper bound (dashed line repre-
${ }_{337}$ senting Eq. (4) will have an error of at least $e^{n \epsilon}$. In this

FIG. 4. The dashed black line is the upper bound $e^{n(H+\epsilon-\ln M)}$ and crosses are the $\epsilon=0$ bound $e^{n(H-\ln M)}$ that is only guaranteed for $n \rightarrow \infty$. The fractional size of $\left|A_{\epsilon}^{n}\right| / M^{n}$ from enumeration (solid black line) and the calculation from our framework (blue line). The parameter ϵ is 0.02 in all cases. The method here matches the brute force enumeration of sequences exactly up to where enumeration is tractable,

The redundancy measures the information carrying capacity of the alphabet. If $r \neq 0$, there are correlations in the sequences [44]. Loosely speaking, the redundancy measures how closely a process is to maximizing the information rate over the alphabet. In general, for finite i.i.d. sequences, the maximum of the entropy h_{μ} is $\ln M$ [19]. The redundancy for finite n can then be defined as

$$
\begin{equation*}
r_{n}=\ln M-\frac{1}{n} \ln \left|A_{\epsilon}^{n}\right| \tag{18}
\end{equation*}
$$

The quantity r_{n} is a measure of the information per symbol used by the sequences in the typical set of length n. In the limit $n \rightarrow \infty,\left|A_{\epsilon}^{n}\right| \approx e^{n h_{\mu}}$ and ϵ can be set arbitrarily close to zero, meaning $r_{n} \rightarrow r$. In the next section, the Schlögl model illustrates how observables, such as the redundancy, can be calculated with our framework beyond where enumeration is tractable.

Biological and chemical systems are often comprised of intricate relationships, across many spatial and time scales, making these systems good candidates for the

365 application of the typical set at finite n. Schlögl's sec366 ond model [46] is a well studied set of chemical reac367 tions [47, 48] defined by

$$
\begin{align*}
\mathrm{A}+2 \mathrm{X} & \rightleftharpoons 3 \mathrm{X} \tag{19}\\
\mathrm{X} & \rightleftharpoons \mathrm{~B} \tag{20}
\end{align*}
$$

368
The second equation is modified [49] from Schlögl's initial work. The intermediate species X is commonly the one of interest when the reactant A and product B have fixed concentrations, a and b. Applying the law of mass-action, the kinetic equation for the concentration, x, of X is an ordinary differential equation,

$$
\begin{equation*}
\frac{d x}{d t}=k_{1} a x^{2}-k_{2} x^{3}-k_{3} x+k_{4} b \tag{21}
\end{equation*}
$$

 375 376$$
\begin{equation*}
4 k_{1}^{3} a^{3} k_{3} b-k_{1}^{2} a^{2} k_{4}^{2}+4 k_{2} k_{4}^{3}-18 k_{2} k_{1} a k_{4} k_{3} b+27 k_{2}^{2} k_{3}^{2} b^{2} \tag{22}
\end{equation*}
$$

377 Fixing the rate constant parameters, $k_{i}, i=1,2, \ldots, 4$, but varying the concentrations a and b, changes the number of real solutions, Fig. (5). Here, we will look at the bistable region (green), where two stable steady381 states are separated by a single unstable steady-state [50]. ${ }_{32}$ Though the bistable region will be our focus, the method 383 is applicable to any region. For input into the method,

FIG. 5. Holding k_{1} through k_{4} fixed and varying a and b, Eq. (21) generates one, two, or three real fixed points. There are two solutions at each point on the black line that divides the regions with one and three steady-state solutions.

36 we construct a marginal distribution for each fixed point ${ }_{87}$ from the concentrations

$$
\begin{equation*}
p(s)=\frac{s}{a+b+x}, \quad \text { where } s=\{a, b, x\} \tag{23}
\end{equation*}
$$

388 We use concentrations of X that correspond to a par39 ticular zero of Eq. (22). From this marginal probability ${ }_{900}$ distribution, we construct the macrosequence dynamics 392 of $q_{n}(\alpha)$ and $\left|S_{\alpha}^{n}\right|$ with $\epsilon=0.1$, as shown in Fig. (6). As an example, we take one of the stable fixed points x, and the parameter values of $k_{1}=3, k_{2}=0.6, k_{3}=0.25$, $k_{4}=2.95, a=1$, and $b=1$. Fig. (6a-b) shows that we

FIG. 6. The (a) size of and (b) the amount of probability in S_{α}^{n} for a stable fixed point of the Schlögl model (black lines) when $\epsilon=0.1: C_{l}^{n}$ (open circles), C_{u}^{n} (stars), and A_{ϵ}^{n} (black dashed line). Colored symbols are the results from the method here. The (c) size and (d) the probability of S_{α}^{n} for the unstable fixed point at the same parameter values. There is a second stable fixed point that exhibits qualitatively the same high redundancy behavior as the stable fixed point (data not shown).
reproduce the exact values for S_{α}^{n} through enumeration 419 the exponential growth in the sequence space. Here we (black) from the triangle-map construction of the dynam- 420 have shown that the dynamics of macrosequences cirics (color). The dashed lines with circles are the typical 421 cumvents this exponential growth and avoids both enuset, A_{ϵ}^{n}, the lines with open circles are the macrosequence 422 meration and asymptotic limits. For independent and C_{l}^{n}, and the lines with stars are the macrosequence C_{u}^{n}. ${ }^{423}$ identically distributed random variables, these dynamFig. (6a) shows that $\left|A_{\epsilon}^{n}\right|$ is small, meaning the redun- ${ }^{424} \mathrm{ics}$, and therefore the future properties of the typical set, dancy is near $\ln M$. This steady state then has large 425 are entirely determined by a single marginal distribution. correlations between the states in a sequence. It should ${ }_{426}$ We found that the number of points needed to quantify be noted that the second stable fixed point (not shown) exhibits qualitatively the same results.

The unstable fixed point for the same parameter values gives a different picture, Fig. (6c-d). Now $\left|A_{\epsilon}^{n}\right| M^{-n} \approx{ }^{430}$ $\operatorname{Pr}\left[A_{\epsilon}^{n}\right] \approx 1$ for $n>3$, almost all sequences are typical, and $r \approx 0$. The joint distribution for the unstable fixed point is almost uniform and there is a lack of correlations in the sequences. While both examples are fixed points of the steady-state solution, they illustrate that the information content of their sequences is quite different.

V. CONCLUSIONS

The probability and size of the typical set are of fun- ${ }_{438}$ damental importance to statistical mechanics and infor- ${ }_{439}$ mation theory. However, away from asymptotic limits, 440 the tractable calculation of the typical set is limited by
${ }_{427}$ 428

29 430 431 432 43 of information-theoretic observables, such as the redun${ }_{434}$ of information-theoretic observables, such as the redun-
dancy for finite length sequences without asymptotic ap436 proximations. the macrosequences grows linearly in both the number of states and the length of sequences as $\leq(2 M+3) n$. As a consequence, this method could be applied to systems with a larger state space, or to longer sequence lengths, than the proof-of-principle examples shown here. The method is computationally efficient, applies to the enire class of i.i.d. systems, and enables the calculation

437

There are three ingredients in the exact construction of the transition probabilities $R(n)$ and $Q(n)$ that avoid the need to evaluate all M^{n} sequences. First, all children can be thought of as lying on the hypotenuse of as many

A. Children of each sequence intersect similar triangles

We now prove that each child $\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{n}\right)\right)$ falls on the hypotenuse of a triangle, one of (at most) M triangles, which will be useful later. To prove this, we use the scaled variables, Eq. (12), and the fact that the hypotenuse of each triangle is given by

$$
\begin{equation*}
l_{j}=\bar{p}_{j} x \tag{24}
\end{equation*}
$$

460

464

 465
${ }_{466} \theta$

$$
\theta_{j}=\cos ^{-1}\left[\left(1+\bar{p}_{j}^{2}\right)^{-1 / 2}\right], 90, \text { and } 180-90-\theta_{j}
$$

Define a second triangle formed from $\bar{\mu}\left(\hat{\omega}_{n}\right)$ and one child from $\mathcal{C}_{p}\left(\bar{\mu}\left(\hat{\omega}_{n}\right)\right)$ as \triangle^{\prime} with points $(0,0),\left(\bar{\mu}\left(\hat{\omega}_{n}\right), 0\right)$, and $\left(\bar{\mu}\left(\hat{\omega}_{n}\right), \bar{\mu}\left(\hat{\omega}_{n}\right) \bar{p}_{j}\right)$. The length of the hypotenuse for \triangle^{\prime} is $r^{\prime}=\sqrt{\bar{\mu}\left(\hat{\omega}_{n}\right)^{2}+\left(\bar{\mu}\left(\hat{\omega}_{n}\right) \bar{p}_{j}\right)^{2}}$. Meaning that the angles of Δ^{\prime} are, $\theta^{\prime}, 90$, and $180-90-\theta^{\prime}$ where

$$
\begin{align*}
\theta^{\prime} & =\cos ^{-1}\left[\frac{\bar{\mu}\left(\hat{\omega}_{n}\right)}{\sqrt{\bar{\mu}\left(\hat{\omega}_{n}\right)^{2}+\left(\bar{\mu}\left(\hat{\omega}_{n}\right) \bar{p}_{j}\right)^{2}}}\right] \\
& =\theta_{j} \tag{25}
\end{align*}
$$

$$
478
$$

B. Exact construction of macrosequence dynamics

Now we derive the exact construction of the transition probabilities $(R(n), Q(n))$ and show that at most $(2 M+$ $3) n$ values of the triangle map can describe the size and probability of the macrosequences for any n. As opposed 78 to the possible M^{n} sequences normally needed in a brute 479 force approach.

As described in the main text, the boundaries of the typical set at n and $n+1$, $\left\{e^{-n I_{l}}, e^{-n I_{u}}, e^{-(n+1) I_{l}}, e^{-(n+1) I_{u}}\right\}$, divide the triangle map into nine cells, Fig. (7). Each hypotenuse can only cross a typical set boundary once. To count how many sequences, or how much probability is in each cell, we need the points where l_{j} enters and exits each boundary. We use the location of the intersections mapped to the x axis, x_{j}^{o} and x_{j}^{f}. These intersection points of l_{j} are given by the logical rules in Tbl. I. For example, the contribution l_{j} makes to the transition probability, $\operatorname{Pr}\left[C_{l}^{n+1} \mid A_{\epsilon}^{n}\right]$, is determined by where l_{j} crosses the boundaries at the two points,

$$
\begin{align*}
x_{j}^{f} & =\min \left[\bar{p}_{j} e^{-n I_{u}}, e^{-(n+1) I_{l}}\right] \bar{p}_{j}^{-1}=l_{j}(x) \bar{p}_{j}^{-1} \\
x_{j}^{o} & =e^{-n I_{l}}=l_{j}(x) . \tag{26}
\end{align*}
$$

480 Cells of the triangle map, marked by bounds of the 481 typical set, define the transition probabilities between ${ }_{482}$ the macrosequences S_{β}^{n} and S_{α}^{n+1}. To calculate $R_{\alpha \beta}=$ ${ }_{483} \operatorname{Pr}\left[S_{\alpha}^{n+1} \mid S_{\beta}^{n}\right]$ the number of sequences in each cell must 484 be counted. The goal is to find $R(n)$ given the scaled dis485 tributions for each state \bar{p}_{j} and each sequence $\bar{\mu}\left(\hat{\omega}_{n}\right)$. For 486 the joint distribution, there is a cumulative distribution ${ }_{487}$ function $(\mathrm{CDF}) \rho_{n}(x), x \in[0, \infty)$ given by

$$
\rho_{n}(x)=\left\{\begin{array}{cl}
M^{-n} \sum_{\hat{\omega}_{n}} \int_{0}^{x} \delta\left[\bar{\mu}\left(\hat{\omega}_{n}\right)-s\right] d s & \text { if } x \leq 1 \tag{27}\\
1 & \text { if } x>1
\end{array} .\right.
$$

${ }_{488}$ The analytic expressions for the intersection points cor489 respond to locations on the $\operatorname{CDF} \rho_{n}(x)$. The transition 490 probability for the sequence dynamics is then given by 491 the contribution from each line l_{j} that enters the same 492 transition cell

$$
\begin{equation*}
R_{\alpha \beta}(n)=\frac{1}{\mathcal{Z}_{\alpha}^{R}} \sum_{j}\left[\rho_{n}\left(x_{j}^{f}\right)-\rho_{n}\left(x_{j}^{o}\right)\right] \tag{28}
\end{equation*}
$$

${ }_{493}$ The normalization factor \mathcal{Z}_{α}^{R} ensures $R(n)$ is right 494 stochastic, $\sum_{\alpha} R_{\alpha \beta}(n)=1$.
495 The length of the line segment l_{j} in a particular cell 496 corresponds to a certain amount of cumulative probabil497 ity,

$$
\varrho_{n}(x)=\left\{\begin{array}{cl}
\sum_{\hat{\omega}_{n} \mid \mu\left(\hat{\omega}_{n}\right) \leq x} \mu\left(\hat{\omega}_{n}\right) & \text { if } x \leq 1 \tag{29}\\
1 & \text { if } x>1
\end{array}\right.
$$

498 or $\operatorname{Pr}\left[l_{j}\left(x_{j}^{f}\right)-l_{j}\left(x_{j}^{o}\right)\right]=p_{j}\left[\varrho_{n}\left(x_{j}^{f}\right)-\varrho_{n}\left(x_{j}^{o}\right)\right]$, where l_{j} is 499 written in terms of the un-barred distribution $l_{j}=p_{j} x$, 500 and the transition probabilities are built from this CDF

$$
\begin{equation*}
Q_{\alpha \beta}(n)=\frac{1}{\mathcal{Z}_{\alpha}^{Q}} \sum_{j} p_{j}\left[\varrho_{n}\left(x_{j}^{f}\right)-\varrho_{n}\left(x_{j}^{o}\right)\right] \tag{30}
\end{equation*}
$$

${ }_{501}$ Now, we show that the number of points needed to 502 construct the transition matrices grows linearly in M

$S_{y}^{n} \rightarrow S_{x}^{n+1}$	x_{j}^{f}	x_{j}^{o}
$C_{l}^{n} \rightarrow C_{l}^{n+1}$	$\min \left[\bar{p}_{j} e^{-n I_{l}}, e^{-(n+1) I_{l}}\right] \bar{p}_{j}^{-1}$	0
$C_{l}^{n} \rightarrow A_{\epsilon}^{n+1}$	$\min \left[\bar{p}_{j} e^{-n I_{l}}, e^{-(n+1) I_{u}}\right] \bar{p}_{j}^{-1}$	$e^{-(n+1) I_{l}} \bar{p}_{j}^{-1}$
$C_{l}^{n} \rightarrow C_{u}^{n+1}$	$e^{-n I_{l}}$	$e^{-(n+1) I_{u}} \bar{p}_{j}^{-1}$
$A_{\epsilon}^{n} \rightarrow C_{l}^{n+1}$	$\min \left[\bar{p}_{j} e^{-n I_{u}}, e^{-(n+1) I_{l}}\right] \bar{p}_{j}^{-1}$	$e^{-n I_{l}}$
$A_{\epsilon}^{n} \rightarrow A_{\epsilon}^{n+1}$	$\min \left[\bar{p}_{j} e^{-n I_{u}}, e^{-(n+1) I_{u}}\right] \bar{p}_{j}^{-1}$	$\max \left[\bar{p}_{j} e^{-n I_{l}}, e^{-(n+1) I_{l}}\right] \bar{p}_{j}^{-1}$
$A_{\epsilon}^{n} \rightarrow C_{u}^{n+1}$	$e^{-n I_{u}}$	$\max \left[\bar{p}_{j} e^{-n I_{l}}, e^{-(n+1) I_{u}}\right] \bar{p}_{j}^{-1}$
$C_{u}^{n} \rightarrow C_{l}^{n+1}$	$\min \left[\bar{p}_{j}, e^{-(n+1) I_{l}}\right] \bar{p}_{j}^{-1}$	$e^{-n I_{u}}$
$C_{u}^{n} \rightarrow A_{\epsilon}^{n+1}$	$\min \left[\bar{p}_{j}, e^{-(n+1) I_{u}}\right] \bar{p}_{j}^{-1}$	$\max \left[\bar{p}_{j} e^{-n I_{u}}, e^{-(n+1) I_{l}}\right] \bar{p}_{j}^{-1}$
$C_{u}^{n} \rightarrow C_{u}^{n+1}$	1	$\max \left[\bar{p}_{j} e^{-n I_{u}}, e^{-(n+1) I_{u}}\right] \bar{p}_{j}^{-1}$

TABLE I. The above rules determine the two points x_{j}^{f} and x_{j}^{o}, which determine the contribution each l_{j} makes to the transition probabilities $R(n)$ and $Q(n)$.

FIG. 7. The cumulative density $\rho_{n+1}(y)$ is proportional to all the sequences which lie below a particular y. Since each sequence lies on the function l_{j}, the point on $l_{j}(y)$ can be mapped to $\rho_{n}(x)$. If $y>\bar{p}_{j}$, as is shown with the right most ${ }^{53}$ grey line covering l_{1}, then the contribution from ρ_{n} at this point is one.
and n. From Tbl. I, the rule for calculating $C_{u}^{n} \rightarrow$ $C_{l}^{n+1}\left(\min \left[\bar{p}_{j}, e^{-(n+1) I_{l}}\right] \bar{p}_{j}^{-1}\right)$ means that in addition to the boundaries of the typical set at n and $n+$ 1, we also need to consider the end points of each line as a boundary. Including the end points with (at most) the four other boundaries l_{j} can cross, we need to evaluate ρ_{n} and ϱ_{n} at the set of points $\mathcal{I}=$ $\left\{e^{-n I_{l}}, e^{-n I_{u}}, 1, e^{-(n+1) I_{l}} / \bar{p}_{j}, e^{-(n+1) I_{u}} / \bar{p}_{j}\right\}$. Since $R(n)$ and $Q(n)$ are determined by the set of intersections \mathcal{I}, and the index j runs from 1 to M, at most $(2 M+3) n$ points are required to determine the macrosequence dynamics up to n.
property means some positions in the sum are repeated, such as, $y / \bar{p}_{k_{1}} \bar{p}_{j_{2}}=y / \bar{p}_{j_{1}} \bar{p}_{k_{2}}$. Counting the number of times \bar{p}_{j} appears, s_{j}, leads to a simplified form of the CDF

$$
\begin{equation*}
\rho_{n+1}(y)=\frac{n!}{M^{n}} \sum_{k=1}^{\binom{M+n-1}{n}} \frac{\rho_{1}\left(\frac{y}{\bar{r}_{k}}\right)}{N_{k}} \tag{34}
\end{equation*}
$$

553

 554$$
\begin{equation*}
\varrho_{n+1}(y)=\sum_{j} p_{j} \varrho_{n}\left(\frac{y}{\bar{p}_{j}}\right) \tag{35}
\end{equation*}
$$

Writing $y^{\prime}=y / \bar{p}_{j}$ gives,

$$
\begin{align*}
\varrho_{n+1}(y) & =\sum_{j} p_{j} \sum_{l} p_{l} \varrho_{n-1}\left(\frac{y^{\prime}}{\bar{p}_{l}}\right), \\
& =\sum_{j, l} p_{j} p_{l} \varrho_{n-1}\left(\frac{y}{\bar{p}_{j} \bar{p}_{l}}\right) . \tag{36}
\end{align*}
$$

${ }_{566}$ Continuing to ϱ_{1}, and again using the fact that the ran${ }_{567}$ dom variables are i.i.d., gives

$$
\begin{equation*}
\varrho_{n+1}(y)=n!\sum_{k=1}^{\binom{M+n-1}{n}} \frac{r_{k}}{N_{k}} \varrho_{1}\left(\frac{y}{\bar{r}_{k}}\right) \tag{37}
\end{equation*}
$$

${ }_{58}$ Eq. (37) only differs from Eq. (34) in that we need ϱ_{1} ${ }_{69}$ instead of ρ_{1} and we have the probability $r_{k}=\prod_{j=1}^{M} p_{j}^{s_{j}}$ 50 associated with each entry of ϱ_{1}.
[1] J. L. Lebowitz, Physica A 194, 1 (1993).
[2] H. Touchette, Physics Reports 478, 1 (2009).
[3] R. S. Ellis, Ann. Prob 12(1), 1 (1984).
[4] J. M. Meylahn, S. Sabhapandit, and H. Touchette, Physical Review E 92, 062148 (2015).
[5] G. E. Uhlenbeck and G. W. Ford, ${ }^{60}$ Lectures in Statistical Mechanics, Vol. 1 (American 609 Mathematical Society, 1963).
[6] T. L. Hill, An Introduction to Statistical Thermodynamicsar Vol. 2 (Dover, 1986).
[7] E. A. Jackson, Equilibrium Statistical Mechanics, Vol. 1 (Prentice-Hall, 1968).
[8] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[9] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[10] L. Bertini, A. D. Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Physical Review Letters 87, 040601 (2001).
[11] E. T. Jaynes, Physical Review 4 (1957).
12] R. Dewar, Journal of Physics A: Mathematical and General 36, 631 (2003).
[13] B. Yurke, A. Turberfield, A. P. Mills, F. C. Simmel, and ${ }^{622}$ J. L. Neumann, Nature 406, 605 (2000).
[14] R. Golestanian, T. B. Liverpool, and A. Ajdari, Physical ${ }_{62}$ Review letters 94, 220801 (2005).
[15] M. L. Dekhtyar and V. M. Rozenbaum, The Journal of 62 Chemical Physics 134, 044136 (2011).
[16] C. Bustamante, J. C. Macosko, and J. L. Wuite, Nature ${ }^{62}$ Reviews 1, 130 (2000).
[17] M. Manosas and F. Ritort, Biophysical Journal 88, 3224 (2005).
[18] S. Wennmalm, L. Edman, and R. Rigler, Proceedings of ${ }^{63}$ the National Academy of Sciences 94, 10641 (1997).
[19] T. M. Cover and J. A. Thomas, ${ }^{63}$ (1961).
[31] P. H. Algoet and T. M. Cover, The Annals of Probability 16, 899 (1988).
[32] V. Baccetti and M. Visser, Journal of Statistical Mechanics: Theory and Experiment 2013, P04010 (2013).
[33] R. W. Yeung, 1 (2002).
[34] H. Chernoff, The Annals of Probability 9, 533 (1981).
[35] K. Chung, H. Lam, Z. Liu, and M. Mitzenmacher, Symposium on Theoretical Aspects of Computer Science, 124 (2012).
[36] B. P. Rao and M. Sreehari, Journal of Statistical Plan-

635 ning and inference 63, 325 (1997).
${ }_{636}$ [37] A. D. Healy, Computational Complexity 17, 3 (2008). ${ }_{652}$
637 [38] R. L. Adler, A. G. Konheim, and M. H. McAndrew, 653 Transactions of the American Mathematical Society 114, 654 309 (1965).

655
39] R. Bowen, Transactions of the American Mathematical ${ }_{656}$ Society 153, 401 (1971).

657 40] C. Beck and F. Schlögl, 658 Thermodynamics of chaotic systems (Cambridge Uni- ${ }_{659}$ versity Press, 1993).
[41] C. Conselice, A. Wilkinson, K. Duncan, and A. Mort- 66 lock, The Astrophysical Journal 830, 83 (2016).
[42] J. P. Crutchfield and K. Young, Physical Review Letters 63, 105 (1989). Physics 104, 817 (2001).
[44] D. Feldman and J. P. Crutchfield (Santa Fe Institute, 1998).
[45] In general, all children will lie on the hypotenuse of a triangle. An exception is the uniform distribution. Since all sequences are equally likely, every sequence is typical independent of both ϵ and n. In this case, the triangle map would be a single point.
[46] F. Schlögl, Zeitschrift für Physik A Hadrons and Nuclei 253, 147 (1972).
[47] A. B. Goryachev and A. V. Pokhilko, FEBS Letters 582, 1437 (2008).
[48] R. G. Endres, PloS one 10, e0121681 (2015).
[49] M. Vellela and H. Qian, Journal of the Royal Society Interface 6, 925 (2009).
[50] J. Tyson, R. Albert, A. Goldbeter, P. Ruoff, and J. Sible, Journal of The Royal Society Interface 5, S1 (2008).

[^0]: * Corresponding author: jason.green@umb.edu

