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According to the asymptotic equipartition property, sufficiently long sequences of random variables
converge to a set that is typical. While the size and probability of this set are central to information
theory and statistical mechanics, they can often only be estimated accurately in the asymptotic
limit due to the exponential growth in possible sequences. Here, we derive a time-inhomogeneous
dynamics that constructs the properties of the typical set for all finite length sequences of inde-
pendent and identically distributed random variables. These dynamics link the finite properties of
the typical set to asymptotic results and allow the typical set to be applied to small and transient
systems. The main result is a geometric mapping — the triangle map — relating sequences of random
variables of length n to those of length n + 1. We show that the number of points in this map
needed to quantify the properties of the typical set grows linearly with sequence length, despite
the exponential growth in the number of typical sequences. We illustrate the framework for the
Bernoulli process and the Schlégl model for autocatalytic chemical reactions and demonstrate both
the convergence to asymptotic limits and the ability to reproduce exact calculations.
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of a partitioned dynamical system [22]. The AEP states
that for sequences of length n, @, = (wi,ws,...,wn),

o Typical behaviors lie at the heart of statistical me- # I the limit where n — oo, the sample entropy of
chanics [1]. Asymptotic theories, such as large devi- the typicalAsequences converges to the entropy rate h,:
ation theory [2-4] and equilibrium statistical mechan- * —n~tInpu(@n) — hy,. These sequences occur with prob-
ics [5, 6], are effective, in part, because random vari- * ability ZaneA;L/v‘(@n) ~ 1, constitute the typical set,
ables converge to their “typical” value in the appropriate 4 and determine average behavior. In dynamical systems
asymptotic limits. Take a monatomic gas of N atoms ¢« theory language, the entropy rate hH is the KOlmOgOI‘OV—
in thermal equilibrium with a heat bath. For this sys- s Sinai (KS) entropy [23, 24]. There are recent applications
16 tem, the relative standard deviation of the energy is 4 of the AEP to irreversibility in stationary Markov pro-
o(E)/(E) = O(N-Y2) [7]. As the number of atoms s cesses [25], relations to the Fisher information [26], and
becomes large, the size of deviations from the mean be- = the harnessing of fluctuations for thermodynamic func-
come relatively small. For example, when the number s tion [27]. These results all rely on an asymptotic limit, a
of atoms is 108, the relative error is o(E) ~ 1072(E). s3 situation we avoid here.
Only when this relative error is small can systems be s  The existence of the typical set was first shown for
well described by their mean or typical behavior. Many . finite alphabets generating independent identically dis-
tools are available to describe systems at and away from s tributed (i.i.d.) sequences by Shannon [28] and McMil-
equilibrium, prominent examples being fluctuation theo- & lan [29]. It was generalized to stationary-ergodic pro-
rems [8-10] and maximum entropy approaches [11, 12]. s cesses by Breiman for finite alphabets. Chung extended
s What remains open is how to precisely and accurately s the typical set to countably infinite alphabets under the
quantify the typical states of systems that cannot solely & condition h,, < oo [30, 31]. As an aside, caution is neces-
be described by their mean behavior. Systems, including ¢ sary for infinite alphabets [32] and correlated finite alpha-
molecular machines [13-15] and single molecules [16, 17], ¢ bets [19] where there are examples of divergent entropy
can exhibit large fluctuations [18] in structure, energy, or ¢ rates. The typical set is fundamental to information the-
position. 6 ory, where it is essential to limits on the coding and trans-
Another definition of typicality exists in information ¢ mission of information. For example, the logarithm of the
theory. There, the asymptotic equipartition property e size of the typical set (per symbol) is a bound on the rate
(AEP) [19, 20] says that sequences of random vari- ¢ that information can be transmitted [33].
ables converge to a high-probability subset — the typ-
ical set, A?. Take a system described by a finite set
w of random variables or states, w, of size |w| = M.
The states could represent the sides of a coin, differ-
ent chemical species [21], or the coarse-grained regions
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e  Though underappreciated, the typical set does exist for
e finite sequences. However, there are challenges to an ac-
7 curate and predictive theory for its properties. One chal-
= lenge is that the convergence rate theories based on sta-
7 tistical moments do not always give accurate bounds [34—
73 37].  Another challenge is that for long, but finite se-
7 quences, there is an exponential growth in possibili-
* Corresponding author: jason.green@umb.edu s ties and explicitly generating each sequence becomes in-
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% tractable. Given a system with M states, the number of
77 possible sequences often grows as M™ = e™or where n is
7 the length of a sequence of states and h¢op = In M is the
79 growth rate or topological entropy rate [38—40]. Given
s only M = 8 states and n = 12, there are 8'2 = 4.4 x 102
&1 possible sequences, which is comparable to the number
a2 of galaxies in the known universe [41]. In this work, we
address these challenges.

s  Here we present a quantitative framework for the typ-
ical set [19] that bridges the gap between brute force
s calculations of all possible sequences and asymptotic ap-
a7 proximations. In this framework, we evolve densities of
s sequences which represent observables of the typical set,
such as size |A"| or probability u{A”}. Previous work
introduced a variational version of the typical set [20]
o that avoids asymptotic limits. The complementary for-
92 malism introduced here avoids the combinatorial explo-
o3 sion of sequences. We will introduce the framework in
a several parts. The space of finite length sequences will
os be partitioned into three sets or “macrosequences”: one
typical and two atypical sets. These macrosequences de-
or scribe how ensembles of typical and atypical sequences
s change as a function of the sequence length. Transitions
o in and out of the typical set are described by a time-
inhomogeneous dynamics. For these dynamics, we define
a discrete dynamical system with a geometric interpre-
tation that maps the exact size and probability of the
typical set over n. Together the macrosequences and as-
sociated dynamics form an object similar to e-machines
in computational mechanics [42-44]. Both our geometric
construction and e-machines provide a simplified descrip-
tion of a system by encoding all possible histories into
possible futures.
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II. BACKGROUND AND NOTATION

109

uo  Consider a particular sequence generated by some dy-
namical process @, with joint probability u(&,,). Though
we will refer to n as the length of the sequence, it could
also be a dimensionless measure of time, n = t/At. In-
dividual states will be labeled by j = 1,2,..., M. We
will assume all states are independent and the probabil-
ity distribution over the states p;, such that Zj p; =1,
is stationary with respect to n. Sequences are then inde-
us pendent, identically distributed (i.i.d.) random variables.
ue While the marginal probability p is stationary, the joint
120 probability over sequences need not be stationary. The
121 dynamics can generate M"™ possible sequences and only
122 in the infinite limit does the difference in probability be-
123 tween any two sequences go to zero through the AEP,

(1)

111
112
113
114
115
116

117

lim (1) = p(@n) ~ e (el —1) ~ 0.
n—oo
124 For i.i.d. random variables, the entropy growth rate
s by, is equivalent to the Shannon entropy, h, = H =
126 *Zj p;Inp;, which only depends on p; and measures
127 the average surprise of observing state j. More generally,

128 however, the entropy rate

hy = hu(n) = —n~! Zu(cﬁn) In pu(@n),

n

(2)

120 depends on the joint distribution. The entropy rate is
central to the definition of the typical set for all sequences
of length n [19],

130

131

3)

The parameter ¢ € Rt is fixed and, together with n,
defines the neighborhood of typical sequences around the
entropy rate. The choice of € is arbitrary, so long as n is
sufficiently large. In our calculations, to avoid the trivial
solution of an empty typical set of finite length sequences,
we choose € so that u{A”} # 0 for all n.

An asymptotic upper bound on the size of the typical
set is [19]

A? = {6_”(hu+€) < M(d}n) < e_"(hu_e)} .
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A7| < enlhuto),

(4)

In the infinite n limit, ¢ can be made arbitrarily small
and |A"| ~ e™u. For n < oo, the upper bound can be a
poor approximation of the size of the typical set. Fig. (1)
shows the normalized size of the typical set, |A?|/M™
(solid line), for a biased coin with the probability of heads
being 0.7 and 0.3 for tails. The normalized upper bound
exp[n(h,+e—In M)] is a monotonic function of n (dashed
line) but |A?| is not: sequences enter and escape from
the typical set. To account for the fluctuating size of the
typical set, we next introduce a partition over the space
of sequences.
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FIG. 1. Comparison of the exact fraction of sequences in the

typical set, |AZ|/M™, as a function of the sequence length, n,

from enumeration (solid line) to the asymptotic upper bound,

|AZ|/M™ ~ emhute=In M) (ashed line) for a biased coin with
1, P=10.7,0.3] and € = 0.02.
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III. EVOLUTION OF TYPICAL AND

ATYPICAL SEQUENCES

153
154

The biased coin example highlights the need to predict
156 the typical set for sequences that are longer than those ac-
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cessible from direct enumeration and shorter than those
well-approximated by the asymptotic limit. Fluctuations
in properties of the typical set arise from the interplay
between the changing sample entropy —n~! In (&, ) and
the bounds h, — € and h, +¢e. A consequence of this
interplay is that typical (atypical) sequences of length n
can give rise to atypical (resp. typical) sequences at n+1.
Since the number and probability of sequences entering
and leaving the typical set is a function of n, we can
represent changes in these quantities through transition
probabilities. The transition probabilities are between
groups of sequences we call “macrosequences”. All se-
quences belonging to the same macrosequence have the
same average behavior. The typical set is one macrose-
quence. For an alphabet of size M, sequences of length n
can be sub-sequences to at most M sequences of length
n+1. In this way, sequences can be seen as transitioning
from one macrosequence to another through their off-
spring. If a sequence transitions from typical to atypical,
for example, the size of the typical set will decrease by
1/M"™+1, The probability in the typical set will decrease
by the joint probability of that sequence, which is not
necessarily 1/M™*1. Consequently, both the number of
sequences in each macrosequence and their corresponding
probabilities evolve under two different dynamics.

We next make the relationship between &,,, u(&,) and
the macrosequences more precise. Doing so will allow
us to predict which sequences will be typical at n. We
begin by defining a partition using the typical set over
the space of all sequences of length n, Q™.

A. Macrosequence dynamics

For each n, a natural partition over the sequences uses
A? and its complement, which represents all atypical se-
quences

Ce={Q"\A}. ()
We can further divide the complement C}* into the lower
complement, CI* = {@, : u(@,) < e ™ H+9} and the
upper complement, C? = {@, : u(@,) > e "H =9}, The
union of the three macrosequences cover Q"

3
o= J sz =crJarJer
a=1
a# B, (6)

where S} represents an arbitrary macrosequence. Ev-
ery sequence belonging to the same macrosequence has
qualitatively the same average behavior. Each atypi-
cal macrosequence has a distinct average behavior, mo-
tivating the definition of two atypical macrosequences,
C' and C7, instead of just one. For example, it is of-

SansSg=10 for

u
ten the case that Pr[C/""'|CP'] = 1 and C; acts as an
absorbing state for relatively small n. In comparison,
from the geometric structure to follow, the self-transition
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probability for the other atypical macrosequence is often
Pr[C?*1C"] = 1—6 where § < 1, meaning this macrose-
quence will continually leak probability, even for large n.
The macrosequences provide an alternate dynamics for
the sequences. Every sequence can be generated and the
properties of the typical set calculated directly or, as we
show here, the macrosequences can be evolved to com-
pute the properties of A", Fig. (2).

To describe how the number of sequences in each
macrosequence evolves with n, we need to make the
idea of transitions between macrosequences more pre-
cise. Every sequence is given by an ordered list of states,
Wp = (w1,wa, ..., wy). All sequences of length n + 1, are
created by appending w,y1 to @,. Since the states are
ordered, the sequence w,, will be a subsequence of at most
M sequences of length n 4+ 1. We call this set of length
n + 1 sequences the “children” of @,,,

Clon) = {Wns1

(7)

In this nomenclature, sequences transition between the
typical and atypical sets by producing “offspring”. The
second generation children are

P Wny1 = w71wn+l}-

C2(@n) = {&)n-‘rQ : a’n—i—2 = @n-ﬁ—lwn-l-% wn+1 € C(‘Dn)}
(8)
Every sequence w,, has M children in the subsequent gen-
eration, M? children in the next generation, and so on.
The dynamics for the number of sequences in a
macrosequence is given by the transition probability
Rap(n) = Pr(C(@n,) € ST &y, € SE]. (9)
The transition matrix is right stochastic, > Rag(n) =
1. The probability a sequence occupies each macrose-
quence is

_ |on € S5l

sul) = (10)

such that 22:1 sn(a) = 1. The quantity |, € S%| is
the number of sequences in the macrosequence S7;. The
transition matrices can be used to evolve the occupation
probabilities s,, from n to n’

s =R(n' —1)R(n' —2)...R(n+1)R(n)s,  (11)
where n’ > n. Recall that the rate of growth of all se-
quences is given by the topological entropy, htop. Us-
ing hiop, the size of each macrosequence is |S7|
Sy (z)emreor

B. Probability of macrosequences

Unless p(@y,) is a uniform distribution, the total joint
probability in a macrosequence is not equal to s,(z).
Just as we did in the last section, we need to find the
overlap of u(&,) and the three macrosequences. As the
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FIG. 2. With increasing n, the joint probability tends towards a uniform distribution and the sample entropy, —n ! In w(in),
distribution concentrates. The changes in distribution occur as individual sequences move between typical (blue) and atypical
(red) macrosequences. The dynamics of these macrosequences are an alternative route to quantify the size and probability in

the typical set.

length of the sequences tends to infinity, the joint prob-
ability u(@,) ~ e ™ tends to zero due to conserva-
tion of probability. The number of sequences, however,
grows exponentially |A"| ~ e™. The entropy rate hy
then uniquely determines the growth in the number of
sequences and the decay of the individual sequence prob-
ability [27]. As n grows, these asymptotic results for
the growth in the number of sequences and the decay
of probability hides the more subtle dynamics between
macrosequences. Thus, we scale the joint

[i(@n) = p(@n)Prmax (12)

to fix max[fi(@,)] = 1 and we scale the marginal p;
Pj/Pmax SO that max[p;] = 1. Scaled distributions are in-
dicated by overbars. The scaled joint is evolved through
the discrete map C, : [0,1] — [0, 1]

Cp(ﬂ(wn)) = {ﬂ(‘z)n) ®15}

where ® is the standard Kronecker product, in this case,
between two vectors. The total joint occupation proba-
bility of belonging to a macrosequence, S7,

qﬂ(a):pzlax Z /j‘(d}’ﬂ)7

Wn ESZ;'

(13)

(14)

is normalized so 22:1 gn(a) = 1. Using the definition of
children in this case, Eq. (13), the time-dependent tran-
sition probabilities are

Qap(n) = Pr(Cp(fi(en)) € Sa™| i(dn) € SE]-

These right-stochastic transition matrices evolve the
marginal probability of each macrosequence S} forward

(15)

251

25,

)

25,

@

25

X

25!

o

256

25

g

25

o

259

260

261

262

263

26

=

265

266

267

268

26!

©

270

271

272

273

274

275

276

inn

G = Q' = 1)Q( —2)...Q(n+1)Q(n)g,  (16)
where n’ > n. Together, the set of transition matrices
R ={R(n),R(n—1),...,R(1)} and the set of macrose-
quences, S = {87, Sn=1 .. S1} describe how the num-
ber of both typical and atypical sequences change as a
function of n. Likewise, @ = {Q(n),Q(n —1),...,Q(1)}
and S together describe how probability moves in and
out of the macrosequences with n. These two ordered
pairs, (R,S) and (Q,S), are what we wish to calculate
for a given system.

C. Triangle map

A Dbrute force approach to calculating (R,S) and
(Q,S) is to explicitly generate all M™ sequences. To by-
pass a complete enumeration, we introduce a geometric
picture of u(&,) and the resulting children for a simpli-
fied descriptions of ¢, and s,,.

Every sequence has M children. The probability of
each child is iterated through C,, Eq. (13). Because we
order the joint probabilities such that f(w,) < (W, +1),
plotting Cp,(f(wy)) against fi(&,,) gives a picture like that
shown in Fig. (3a-b). Most striking from this picture
of the joint probabilities is the triangular form of the
forward mapping in the case of i.i.d. random variables.

Up to M lines can be drawn from the origin (0,0) to
(1,p,). Each line will intersect the re-scaled joint proba-
bility of M™ sequences (App. (VIA)), the children, can
be thought of as lying on the hypotenuse of a triangle [45].



FIG. 3. Plotting C,(fi(wn)) against fi(wn) in (a) for a random distribution with M = 10 states. Every point represents the
probability of one of the M™"! children. Blue points denote children in A” while red denotes C;* and C?. The vertical dashed
lines mark the scaled bounds on A", e ™t and e "!». Horizontal dashed lines are the scaled bounds for A7+, e~ (»+D1 apd
e~ (" D1u  These bounds divide Cp(fi(Wn))n into nine cells which determine the transition probabilities for both R(n) and Q(n).
The left lower and upper two points highlighted with black circles are fi(W2)p1 and (@2 + 1)par respectively. The right-hand
circles highlight fi(&2 4+ 1)p1 and fi(@2 + 1)par, which become stretched vertically because fi(w2) < (@2 + 1), thereby creating
the triangle structure. (b) The hypotenuses of one of the M triangles intersects the probability of M™ children (highlighted

with black circles).

One triangle is shown in Fig. (3b) in black with the in-
tersecting children highlighted in green. This geometric
picture, where the probability of sequences lie on the hy-
potenuses of triangles, will help us to calculate the num-
ber, s,(a), and probability, ¢,(«), of sequences in each
macrosequence. We will call the mapping Cp,(fi(wr)) the
triangle map.
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The upper and lower bounds of the typical set at n and
n+ 1 over Cp(fi(wy,)) divides the space fi(wn+1) X f(wy,)
into nine regions (dashed lines in Fig. (3)). These regions
can be used to define a dynamics for entrance into and es-
cape from the macrosequences, including the typical set.
250 The number of points in each cell defines the transition
200 probability for R(n) between any two macrosequences.
21 The total probability in each cell defines the transition
202 probability for Q(n) between any two macrosequences,
23 ST to SPTL. Vertical dashed lines in Fig. (3) are given
204 by the scaled bounds of the typical set A: the lower
25 bound e~ where I} = H + € + In pmax, and the upper
206 bound e ™%, where I, = H —e+1n ppmax. The horizontal

207 dashed lines are the scaled bounds at n+1: e~ ("t and
—(n+1)I,
208 € .

284
285
286
287

288

200 Mapping consecutive joint distributions to a triangle
a0 gives a geometric representation of the macrosequence
sn dynamics. These dynamics are what we wish to predict.
sz One difficulty is that points along any hypotenuse are
303 not uniform. Accounting for this distribution of points
s 18 qualitatively explained in the next section. Additional
s0s details of our derivation and the construction of (R,S)
w6 and (Q,S) are in App. VI

IV. EXAMPLES

307

ws  Now we apply the framework to examples that will il-
300 lustrate how the formalism generates the exact size and
310 probability of the macrosequences over n. These exam-
su ples also serve to show how other observables can be cal-
culated from the formalism.

Let us briefly summarize the procedure: Given p; and
the entropy rate h, = H, the triangle map C,(fi(&1)) can
be calculated. The upper and lower bounds (e*Il,e’I“)
and (et e=2!+) follow and divide Cp(ju(@1)) into nine
cells defining the transition probabilities, Eq. (9) and
Eq. (15). In App. VI, we show that at most (2M + 3)n
values of the triangle map must be known to construct
the transition probabilities. From the structure of the
triangle map and the known distribution p;, the total
probabilities of each macrosequence, ¢, and s,, can, in
principle, be calculated exactly to any desired n.
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324 A. Bernoulli process and the redundancy

The Bernoulli process is a benchmark for the typical
set that can be enumerated completely such that, for
sufficiently large n, the asymptotic bounds begin to con-
verge. This fact allows us to test the framework. Fig. (4)
again shows results for a biased coin where the proba-
s bility of heads is 0.7 and tails is 0.3, p = [0.7,0.3]. The
s joint probability of a sequence is p(w,) = [, p(w;).
The asymptotic bounds for the size of the typical set can
be quite poor for n < co. As n becomes larger, though,
both the bound and our measure of |A?| converge to the
asymptotic limit (dashed line with crosses). In the limit
36 14(Wy) =~ e~ so the upper bound (dashed line repre-
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senting Eq. (4) will have an error of at least e™©. In this

FIG. 4. The dashed black line is the upper bound
enH+e=InM) and crosses are the e = 0 bound ¢~ M) that
is only guaranteed for n — co. The fractional size of |AY|/M™
from enumeration (solid black line) and the calculation from
our framework (blue line). The parameter € is 0.02 in all
cases. The method here matches the brute force enumeration
of sequences exactly up to where enumeration is tractable,
n = 25, and agrees with the asymptotic limit near n = 50.

example, we use (2M + 3)n = 300 points on Cp(f(@wy,))
to calculate |A?| for n = 50. In contrast, 2°0 ~ 105
sequences would have to be enumerated by brute force
calculation.

While the asymptotic upper bound |A?| < en(hute)
is poor for n <K o0, it does motivate an important
observable-the redundancy [28],

r=InM—h,. (17)
The redundancy measures the information carrying ca-
pacity of the alphabet. If r # 0, there are correlations
in the sequences [44]. Loosely speaking, the redundancy
measures how closely a process is to maximizing the infor-
mation rate over the alphabet. In general, for finite i.i.d.
sequences, the maximum of the entropy h, is In M [19].
The redundancy for finite n can then be defined as
1

rnzlnM7E1n|A?|. (18)
The quantity r, is a measure of the information per sym-
bol used by the sequences in the typical set of length n. In
the limit n — oo, |A?| a2 e+ and € can be set arbitrarily
close to zero, meaning r, — 7. In the next section, the
Schlogl model illustrates how observables, such as the re-
dundancy, can be calculated with our framework beyond
where enumeration is tractable.

B. Schlogl model

Biological and chemical systems are often comprised
of intricate relationships, across many spatial and time
scales, making these systems good candidates for the
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application of the typical set at finite n. Schlogl’s sec-
ond model [46] is a well studied set of chemical reac-
tions [47, 48] defined by

A+ 2X = 3X
X = B.

(19)
(20)

The second equation is modified [49] from Schlégl’s initial
work. The intermediate species X is commonly the one
of interest when the reactant A and product B have fixed
concentrations, a and b. Applying the law of mass-action,
the kinetic equation for the concentration, x, of X is an
ordinary differential equation,

dz

i kiax? — kox® — ks + kab.

(21)
Setting this equation equal to zero gives the steady-state
solutions. The number of real, steady-state solutions
comes from the discriminant,

4k3aksb — k¥a*k? + 4koki — 18kokyakyksb 4 27Tk3k3b%.

(22)
Fixing the rate constant parameters, k;, i = 1,2,...,4,
but varying the concentrations a and b, changes the
number of real solutions, Fig. (5). Here, we will look
at the bistable region (green), where two stable steady-
states are separated by a single unstable steady-state [50].
Though the bistable region will be our focus, the method
is applicable to any region. For input into the method,

ot

1 Solution

b
[V wW =

1.0

1.5 2.0 2.5 3.0

FIG. 5. Holding ki through k4 fixed and varying a and b,
Eq. (21) generates one, two, or three real fixed points. There
are two solutions at each point on the black line that divides
the regions with one and three steady-state solutions.

we construct a marginal distribution for each fixed point
from the concentrations

p(s) =

S

m, where s = {a,b,x}.

(23)
We use concentrations of X that correspond to a par-
ticular zero of Eq. (22). From this marginal probability
distribution, we construct the macrosequence dynamics
of ¢, () and |S”| with € = 0.1, as shown in Fig. (6). As
an example, we take one of the stable fixed points z, and
the parameter values of k1 = 3, ko = 0.6, k3 = 0.25,
ks =295, a =1, and b = 1. Fig. (6a-b) shows that we
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FIG. 6. The (a) size of and (b) the amount of probability in S§; for a stable fixed point of the Schlogl model (black lines) when
e =0.1: C* (open circles), Cy; (stars), and A7 (black dashed line). Colored symbols are the results from the method here. The
(c) size and (d) the probability of S§ for the unstable fixed point at the same parameter values. There is a second stable fixed
point that exhibits qualitatively the same high redundancy behavior as the stable fixed point (data not shown).

reproduce the exact values for S7 through enumeration
(black) from the triangle-map construction of the dynam-
ics (color). The dashed lines with circles are the typical
set, A”, the lines with open circles are the macrosequence
C}', and the lines with stars are the macrosequence Cf;.
Fig. (6a) shows that |A?| is small, meaning the redun-
dancy is near In M. This steady state then has large
correlations between the states in a sequence. It should
be noted that the second stable fixed point (not shown)
exhibits qualitatively the same results.

The unstable fixed point for the same parameter values
gives a different picture, Fig. (6¢c-d). Now |[AF|M ™" =~
Pr[A”] = 1 for n > 3, almost all sequences are typical,
and 7 =~ 0. The joint distribution for the unstable fixed
point is almost uniform and there is a lack of correlations
in the sequences. While both examples are fixed points
of the steady-state solution, they illustrate that the in-
formation content of their sequences is quite different.

V. CONCLUSIONS

The probability and size of the typical set are of fun-
damental importance to statistical mechanics and infor-
mation theory. However, away from asymptotic limits,
the tractable calculation of the typical set is limited by
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the exponential growth in the sequence space. Here we
have shown that the dynamics of macrosequences cir-
cumvents this exponential growth and avoids both enu-
meration and asymptotic limits. For independent and
identically distributed random variables, these dynam-
ics, and therefore the future properties of the typical set,
are entirely determined by a single marginal distribution.
We found that the number of points needed to quantify
the macrosequences grows linearly in both the number of
states and the length of sequences as < (2M + 3)n. As
a consequence, this method could be applied to systems
with a larger state space, or to longer sequence lengths,
than the proof-of-principle examples shown here. The
method is computationally efficient, applies to the en-
tire class of i.i.d. systems, and enables the calculation
of information-theoretic observables, such as the redun-
dancy, for finite length sequences without asymptotic ap-
proximations.

VI. APPENDIX

There are three ingredients in the exact construction
of the transition probabilities R(n) and Q(n) that avoid
the need to evaluate all M™ sequences. First, all children
can be thought of as lying on the hypotenuse of as many



as M triangles. Using this continuous geometric repre-
sentation as a set of M triangles compactly describes all
children. Second, we show that at most 2M + 3 values of
the triangle map must be known to calculate each tran-
sition matrix, R(n) and Q(n), for a given n. To describe
the probability and size of macrosequences up to length
n, (2M + 3)n values of the triangle map are necessary.
Third, we use two cumulative density functions (CDFs)
to find these 2M + 3 points. We derive exact formulas
ss1 for the CDFs at n in terms of the marginal distribution,

452 P.

442
443
444
445
446
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449

450

A. Children of each sequence intersect similar
triangles

453

454

We now prove that each child Cp,(fi(wy,)) falls on the
hypotenuse of a triangle, one of (at most) M triangles,
which will be useful later. To prove this, we use the scaled
variables, Eq. (12), and the fact that the hypotenuse of
each triangle is given by
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45;
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i = By, (24)

w0 when the continuous variable z € [0,1] and the index
w j = 1,2,..., M. Note, later we will also refer to the
continuous variable y € [0, 1], which will always belong to
the y-axis of C,,(fi(Wy)). Define the triangle, A;, through
the points (0,0), (1,0), and (1,p;). The length of the

hypotenuse for A; is r; = (/14 p; and the angles are
0; = cos™ [(1+ p2)~1/?], 90, and 180 — 90 — 6.
Define a second triangle formed from f(&,) and one
child from C,(fi(wy,)) as A with points (0,0), (@(w,),0),
and (’(A ) ﬂ(d}n)pj) The length of the hypotenuse for
A s v’ = \/ii(Wn)? + (i(@n)p;)?. Meaning that the
angles of A’ are, ', 90 and 180 — 90 — 6" where

462

463

464

465

466

0" = cos™! [

=0; (25)
a7 Therefore, A’ and A; are similar, meaning at least one
ws child intersects the hypotenuse, Cp(u(w,)) € l;. The
wo consequence of forming similar triangles is that, since
a0 Cp((Wn)) = Pju(Wyp), for each p; there are at least M™
an points intersecting one line /;. And, together, the set of

a2 lines {I;} must intersect all M points on Cp(ji(wy)).

413 B. Exact construction of macrosequence dynamics

e Now we derive the exact construction of the transition
ws probabilities (R(n), Q(n)) and show that at most (2M +
a6 3)n values of the triangle map can describe the size and
a7 probability of the macrosequences for any n. As opposed
a3 10 the possible M™ sequences normally needed in a brute
e force approach.

As described in the main text, the bound-
aries of the typical set at n and n + 1,
{e=nli e=nlu =D o=(r+DL - divide the  tri-
angle map into nine cells, Fig. (7). Each hypotenuse
can only cross a typical set boundary once. To count
how many sequences, or how much probability is in
each cell, we need the points where /; enters and exits
each boundary. We use the location of the intersections
mapped to the z axis, 27 and 2f. These intersection
points of [; are given by the logical rules in Tbl. I. For
example, the contribution /; makes to the transition
probability, Pr[C’l"H\A?], is determined by where [;
crosses the boundaries at the two points,

F
T3 = min[p;e”

r] = e ™M =1 ().

nly e (n+1)11] j l‘(.%‘)ﬁj_l,

(26)

w0 Cells of the triangle map, marked by bounds of the
w1 typical set, define the transition probabilities between
w2 the macrosequences S and Sl To calculate Rap =
ws Pr[ST[SE] the number of sequences in each cell must
s« be counted. The goal is to find R(n) given the scaled dis-
s tributions for each state p; and each sequence fi(wy,). For
a6 the joint distribution, there is a cumulative distribution
a7 function (CDF) py,(z), z € [0,00) given by

"Zfo
1 > 1,

—slds ifx <1,

(27)

pn(x)

ws The analytic expressions for the intersection points cor-
a0 respond to locations on the CDF p,(x). The transition
a0 probability for the sequence dynamics is then given by
a1 the contribution from each line /; that enters the same
a2 transition cell

Rag(n (28)

,Zf?j{j[pn ~ ()]

The normalization factor ZZ ensures R(n) is right
stochastic, > Rag(n) = 1.

The length of the line segment [; in a particular cell
¢ corresponds to a certain amount of cumulative probabil-

ity,
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on(x) = § @nlu(@n)<z , (29)
1 ife>1
ws or Pr[li(a!) = 1;(29)] = p; | on(x)) = 0n(x2)|, where I; is
\Lj A Pj | On(T; OnlZj)|, j

a0 Written in terms of the un-barred distribution I; = p;z,

and the transition probabilities are built from this CDF
ZQ ij [Qn - Qn( )} .

Now, we show that the number of points needed to
construct the transition matrices grows linearly in M

500

Qap(n (30)
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A — AP min[pye " e~ (D5t max[pe "t e~ (D5
AT — ot e nu max[ﬁjefnll,efmﬂﬂﬂﬁj_l
cp — optt min[ﬁj,ef("ﬂ)ll]ﬁj_l e

cr A?“ min[ﬁﬁe—(nJrl)Iu]pj—l ma‘x[ﬁjefnlu’e*(n"rl)fl}ﬁj—l
cr—Ccrtt max[ﬁjefnlu,ef("ﬂﬂu];ﬁj_l

TABLE I. The above rules determine the two points a:f and 27, which determine the contribution each I; makes to the transition

probabilities R(n) and Q(n).

FIG. 7. The cumulative density pn+1(y) is proportional to
all the sequences which lie below a particular y. Since each
sequence lies on the function [;, the point on I;(y) can be
mapped to pn(x). If y > pj, as is shown with the right most
grey line covering !y, then the contribution from p, at this
point is one.

and n. From Tbl. I, the rule for calculating C;' —
optt (min[ﬁj,e‘("“)ll}pj_l) means that in addition
to the boundaries of the typical set at n and n +
1, we also need to consider the end points of each
line as a boundary. Including the end points with
(at most) the four other boundaries I; can cross, we
need to evaluate p, and p, at the set of points Z =
e M el 1, e= (DL /. e~ (D1 /54 Since R(n)
and Q(n) are determined by the set of intersections Z,
and the index j runs from 1 to M, at most (2M + 3)n
points are required to determine the macrosequence dy-
namics up to n.

C. Calculating p, and g, from p;

In the last section, we showed that the macrosequence
transition probabilities at any n can be calculated from
the distributions (p;, pn, 0n). Now we derive a formula
for the CDF's at n in terms of the marginal and CDFs at
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n=1.

Let us start with an important property of p,41. As-
suming p; and p; are known, the CDF at n+1, pn41(y),
is proportional to the number of children lying below the
point y on Cp(f(wy)). Fig. (7) illustrates this idea for a
given y value. The sequences contributing to the CDF
at n + 1 are highlighted in gray. Summing the number
of points with [; < y (black circles) gives the CDF at
n + 1. Each point below y has a corresponding value of
x on the fi(w,) axis, y/p; = . Then, for a given y value,
the CDF p,41(y) is given in terms of the previous CDF
Pn (J?),

puii(y) = ;ip (£). (31)

We note, from the definition of the CDF, Eq. (27),
if y/p; > pj, then p, (y/p;) = 1. Letting y' = y/p;,
pn(y’) can be found the same way using Cp,(f(&n—1))-
Substituting p,_1 into p, gives,

| MM y
n = n_1 | — | . 32
a0 = 32> () @
j=1k=1
Repeating until p; gives
i) = — 3 ;m (y > (33)
n+ M Dky Phss - - > Pk,

k1,k2,....kn

This expression gives the exact value of p,(y) from p;
and p;. To find R(n) and Q(n), the points where [;
maps to the elements of Z are needed. There are at most
2M + 3 points. Unfortunately, this CDF has M™ entries
in the summation for each value of y. So while it is a way
to exactly calculate the values needed for the transition
probabilities, it is not practical when n is large. However,
Eq. (33) shows that C,(fi(&y,)) and p, are a potential way
to describe the macrosequence dynamics for i.i.d. r.v.s
when p; and p; are known.

To transform Eq. (33) into a more tractable form, we
will use the fact that the random variables are i.i.d. This



se0 property means some positions in the sum are repeated,
sso such as, y/pk,Dj, = Y/Dj, Pk,- Counting the number of
ss1 times p; appears, s;, leads to a simplified form of the
552 CDF

(1\/I+n71.71) _l
prn(y) = 1o > plj(v;k). (34)

553 'The sum runs over all multisets, i.e., combinations where
ss¢ order is ignored, of the number of times p; appears in

sss the constraint ) ;s; = n. The denominator 7 shifts

ss6 the position where p; is evaluated, 7, = H;‘il ﬁ;j , and

ss7 N = HJA/i1 s;1. Since the number of multisets for a given
sss M and n grows far slower than M™, Eq. (34) offers sub-
ss0 stantial computational savings over enumerating all pos-
se0 sible sequences.

Now we turn to g,. We find p, in terms of p; with
s2 an argument similar to that for p, and p; above. Only
ses now, the CDF p,,(y/p;) must be multiplied by p,;. Again,
see through Cp,(fi(&r)), on+1(y) can be written in terms of
w5 0a(y/5)):

561

on+1(y) = ijgn <§/> : (35)

pj

10

Writing v’ = y/p; gives,

y/
on+1(y) = ij ZPlan (ﬁl) )
J !
_ Y
= pmiont () |
il

— 36
Dibi ( )

sss Continuing to g1, and again using the fact that the ran-
s7 dom variables are i.i.d., gives

ss Eq. (37) only differs from Eq. (34) in that we need p;
s instead of p; and we have the probability r; = H;Vil pj
s0 associated with each entry of o;.
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