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In this series of papers we take the perspective of open quantum systems and exam-

ine from their nonequilibrium dynamics the conditions when the physical quantities,

their relations and the laws of thermodynamics become well defined and viable for

quantum many body systems. We first describe how an open system nonequilib-

rium dynamics (ONEq) approach is different from the closed combined system +

environment in a global thermal state (CGTs) setup. Only after the open system

equilibrates will it be amenable to conventional thermodynamics descriptions, thus

quantum thermodynamics (QTD) comes at the end rather than assumed in the be-

ginning. The linkage between the two comes from the reduced density matrix of

ONEq in that stage having the same form as that of the system in the CGTs. We

see the open system approach having the advantage of dealing with nonequilibrium

processes as many experiments in the near future will call for. Because it spells out

the conditions of QTD’s existence it can also aid us in addressing the basic issues in

quantum thermodynamics from first principles in a systematic way. We then study

one broad class of open quantum systems where the full nonequilibrium dynamics

can be solved exactly, that of the quantum Brownian motion of N strongly coupled

harmonic oscillators, interacting strongly with a scalar field environment. In this pa-

per we focus on the internal energy, heat capacity and the Third Law. We show for

this class of physical models, amongst other findings, the extensive property of the
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internal energy, the positivity of the heat capacity and the validity of the Third Law

from the perspective of the behavior of the heat capacity toward zero temperature.

These conclusions obtained from exact solutions and quantitative analysis clearly

disprove claims of negative specific heat in such systems and dispel allegations that

in such systems the validity of the Third Law of thermodynamics relies on quantum

entanglement. They are conceptually and factually unrelated issues. Entropy and

entanglement will be the main theme of our second paper on this subject matter.

PACS numbers: xyz

I. INTRODUCTION

In this series of papers we take the perspective of open quantum systems (OQS) and

examine from their nonequilibrium (NEq) dynamics the conditions when the physical quan-

tities, concepts, constructs and the time-honored laws of thermodynamics (TD) become well

defined and viable for quantum many body systems. We utilize one broad class of models

where the nonequilibrium dynamics can be solved exactly – the Brownian motion of strongly

coupled (SC) harmonic oscillators, interacting strongly with a scalar field environment – to

explore a range of basic issues in quantum thermodynamics (QTD). The exact solutions

possible in these OQSs enable us to examine and define these conditions more precisely in

a quantitative, systematic and transparent way. This approach hopefully compensates for

the rather loose, qualitative and at times contrived way thermodynamic descriptions for

quantum systems are proposed because of the need to adhere to the dictum of classical

thermodynamics, which is valid only under very special conditions.

A clarification in the meaning and contents of quantum thermodynamics (QTD) [1] might

be useful before we proceed: To us, it is the study of the thermodynamic properties of quan-

tum many-body systems (MBS). Quantum now refers not just to the particle spin-statistics

(boson vs fermion) aspects – the rather limited meaning of ‘quantum’ in traditional quan-

tum statistical mechanics (QSM), but also includes in the present era the quantum phase

aspects, such as quantum coherence, quantum correlations and quantum entanglement. This
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is where quantum information has a hand in QTD [2]. The thermodynamics connotation can

be extended to include systems not necessarily in equilibrium at all times, thus encompassing

dissipative and relaxation processes for systems deviating from equilibrium, including linear

or nonlinear response theories applied to quantum MBS 1, familiar in condensed matter or

chemical physics and for classical MBS, topics incorporated in the traditional field of NEq

TD [3]. These considerations can be extended to weakly nonequilibrium conditions but not

for far-from-equilibrium, fully arbitrary time evolutions. That is when an open quantum

system treatment becomes necessary.

The issues addressed in this first paper encompass the nature of internal energy, heat

capacity and the Third Law for a fully nonequilibrium (NEq) system. We demonstrate

what it takes for it to evolve to an equilibrium (Eq) condition, and from that point establish

the connection with traditional TD theory. The conditions for traditional TD theory to be

well-defined and operative for a classical or quantum system are very specific despite its

wide ranging applicability: A system of relatively fewer degrees of freedom in the presence

of a thermal bath of a huge number or infinite degrees of freedom (we shall consider only

heat but no particle transfer here and thus the TD refers only to canonical ensembles), the

coupling between the system and the bath is vanishingly small, and the system is eternally

in a thermal equilibrium state by proxy with the bath which is impervious to any change in

the system 2. Already for classical systems, there is a difference between equilibration and

thermalization. Equilibration refers to the system evolving to a steady state after relaxation.

It is broader than thermalization, which refers to the system approaching a state described

by the Boltzmann distribution. When the system-bath coupling is nonvanishing, such a

difference is clearly discernible. For example, the potential of mean force [4] is introduced

to deal with such a situation. Details can be found in Appendix D.

For quantum systems this difference between equilibration and thermalization certainly

remains, see, e.g., [5]. New challenges at zero or very low temperatures posed by non-

Markovian environments and in the treatment of non-Markovian dynamics can become

prominent. By virtue of its ability to provide a first principles derivation of noise from

quantum fluctuations (e.g., for Gaussian noise via the Feynman-Vernon identity, instead of

1 Linear response theory considers small variations in the system while staying in thermal contact with the

bath. This is the underlying assumption in the use of thermal Green’s functions, which is within the

test-field approximation in quantum field theory terms. In a fully NEq treatment of the open system’s

quantum dynamics, both the system and environment variables are dynamically determined. Thus it can

cope with situations where the quantum system is small and the environment is finite.
2 This means that action of the system on the bath is excluded from TD considerations. In fact in TD

the bath variables are not dynamical variables determined consistently by the interplay between the

system and the bath through their coupled equations of motion, they only provide TD parameters such

as temperature or chemical potential.
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being put in by hand), and linking fluctuations and noise with dissipation and relaxation

by dynamical relations (such as the fluctuation-dissipation relation which can be traced to

the unitarity in the original closed system before one coarse grains the environment to a de-

scription of mean field dynamics and its fluctuations), the open quantum system approach

is also a natural setting for incorporating stochastic thermodynamics [6], which has seen a

wide range of chemical and biological science applications 3.

The set-up: In our opinion, the NEq dynamics of open quantum systems, e.g., in the

tradition of Feynman-Vernon, Caldeira-Leggett et al [7–9] even though requiring more work,

is the preferred setting for addressing new issues in quantum thermodynamics for future

challenges 4. This is in comparison with a popular set-up which has been studied more in

the literature namely, that of a global thermal state (CGTs) assumed for the combined or

closed system (C) = system (S) + bath (B) 5. In the CGTs set-up the initial and final states of

C are the same, namely the combined system remains in a equilibrium global thermal state,

because the dynamics of the combined closed system is unitary. This is visibly closest to

the setting of thermodynamics and thus naturally convenient for exploring small extensions

of thermodynamics. By contrast the open system NEq (ONEq) approach deals with time

evolution of the open system. It requires the specification of the initial conditions and

the derivation of the late time behavior of the open system. For those systems that upon

interaction with a bath equilibrate at late times, one may then connect its behavior with

the descriptions of thermodynamics. For sure this is a many-to-one relation - many different

initial conditions can produce the same final steady/equilibrium state, or that there is no

common final steady/equilibrium state. A lot depends on the structures of the system,

the properties of the bath and the way they interact. All the above mentioned factors

need to be considered for interacting quantum many-body systems before we construct

thermodynamical quantities, address thermodynamical issues and invoke (or hasten to claim

3 Many physical systems show two intermediate stages between quantum and classical, namely, stochastic

and semiclassical. Conventional stochastic thermodynamics starts from classical or macroscopic physics.

Noise is added in phenomenologically for the consideration of fluctuations phenomena under different

circumstances for specific purposes. Being rooted in classical physics conventional stochastic thermody-

namics cannot capture the quantum features so easily. Open quantum systems approach on the other

hand starts from microphysics at the quantum level. One can derive the stochastic equations including

quantum and thermal noises: Langevin, Fokker-Planck or master equations for the description of fluctu-

ations phenomena. Thus in the quantum open system approach the pathway from the quantum regime

to the stochastic regime is well laid out. Taking the distributional average of noise yields the mean field

theories at the semiclassical level. To go from quantum to classical physics one needs to add decoher-

ence considerations, but the pathway is completely accessible. The challenge is, can we come up with an

appropriate quantum microphysics model for the macroscopic phenomena of interest?
4 Similar viewpoint has been expressed by a few others, notably, Kosloff [10]
5 The CGTs set up is used by many authors, notably [5, 11–28].
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success in revoking [29]) the well-established thermodynamical laws. We will elaborate on

their differences in a subsection below.

A. Main Contents

There are three main components in this paper:

1) Set-up and Conditions: The physical differences of the set-ups, comparing our open

system nonequilibrium (ONEq) approach (level 2) with traditional TD (level 0) on the one

hand, and with the global thermal (CGTs) state set-up (level 1) on the other. In TD, as

mentioned above, the system-bath coupling has to be vanishingly small whereas in both

the Level 1 and 2 treatments the system-bath coupling can be strong. We will mention

the CGTs approach as many existing work is based on this setup, but focus more on how

to use an open system approach to define and quantify quantum thermodynamics. In a

companion paper [30] we will attempt to build some bridges between these two approaches,

via generating functional and reduced density matrix formulations. The hope is that from

the open system perspective, one may be able to identify which entities and concepts are

more suitable for treating new problems in QTD and which are residues of the old which

may hinder new developments. Other authors using an open system approach to quantum

thermodynamics include Duarte and Caldeira [31] who treated a coupled-oscillator system

by the influence functional method, Carrega et al. [32] who treated a two level system

via moment-generating functionals, and Esposito et al. [33] using nonequilibrium Green’s

functions.

2) Model with exact solutions: We use a Quantum Brownian Motion (QBM) model of

harmonic oscillators with strong-coupling both within the system (σ) and interacting with

a scalar field bath (γ). The merit of this model which represents a rather broad class of

physical problems is that being a Gaussian system it can yield exact solutions which enable us

to cross-examine the relevant issues leaving little room for speculation. Even when familiar

quantities like energy and entropy can be defined in different ways under different conditions,

since we are treating NEq dynamics, if we make precise specific conditions, these quantities

are defined. There is no worry about ambiguity. The results from this model study are used

for addressing the following issues:

3) Issues and Consequences:

a. Energy extensivity Thermodynamic functions are well defined under the conditions

when thermodynamics theory is viable, namely, that the system is very weakly coupled to

the bath, the bath being a passive source which provides a temperature parameter, not a

dynamical variable which can back-react on the system. It is a meaningful question to ask if

the nice properties we are accustomed to in conventional thermodynamics, e.g., the extensive
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property of internal energy will still hold for strongly interacting quantum systems. In the

model we studied here we answer this question in the affirmative, that the internal energy

remains extensive under strong coupling.

b. Heat Capacity From the internal energy we calculate the heat capacity and examine

its behavior toward T = 0. We find a power law, not an exponential decay. This has

significan implications. This aids us to address a version of the Third Law and to resolve

some puzzles raised in the literature such as the claimed negative specific heat near absolute

zero even in well behaved systems [34].

c. Third Law There are several formulations and statements of the Third Law. We

approach it from the behavior of the heat capacity near absolute zero, which aids us to

resolve some puzzles raised in the literature such as the claimed negative specific heat near

absolute zero even in well behaved systems [34], and address some concerns expressed by

Hanggi, Ingold, Talkner, Weiss et al [17, 18, 35–38].

d. Vedral et al [39, 40] invoked heat capacity as an indicator of entanglement, and

raised the issue of how the entanglement at a system’s ground state bears on the Third Law.

For the (spin) system they studied they made the claim that “the validity of the third law of

thermodynamics relies on quantum entanglement”. Using the behavior of the heat capacity

at T = 0 we derived here, combined with our earlier results on the entanglement between

two coupled oscillators interacting with a zero temperature bath [41], we show that this

is not the case at least for the coupled oscillator system. There is no connection between

entanglement in the system and the Third Law.

e. The ONEq approach we adopt for the dynamics of the system provides means

to calculate entropy production, but not before the meaning and definition of entropy for

interacting quantum systems can be understood and clarified. We say this because even the

most commonly invoked von Neumann entropy has problems if not used and understood

properly. We shall mention this issue at the end of this paper but leave a proper treatment

of heat, entropy, entanglement, and from it the First and Second Law, to the second paper

[42] in this series.

B. Closed-system Global Thermal State versus Open-system Evolved Equilibrium

State

We begin by stating a few basic facts connecting the three levels of treatments: Level

0 thermodynamics (TD), Level 1 Closed system (system and environment combined) in a

global thermal state (CGTs) and Level 2 Open system evolving to an equilibrium state

(ONEq).

1) Traditional statistical mechanics treats many body systems in thermal (canonical dis-
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tribution) and chemical (grand canonical) equilibrium. The starting point of quantum sta-

tistical mechanics (QSM) is probability density, no quantum phase information is invoked.

This is encoded in the two fundamental postulates of quantum statistical mechanics : equal

a priori probability to all accessible states and random phase approximation. Thus from a

quantum information viewpoint, the system of interest to QSM is already fully decohered

in the energy basis and behaves classically in an effective way – what is quantum in QSM

only pertains to quantized energy levels and particle spin-statistics.

2) Partition function is well defined only for systems in thermal equilibrium. It is ill-

defined for systems under nonequilibrium conditions when the notion of temperature is lack-

ing. Pathologies may ensue if it is forced upon even perfectly normal systems (in contradis-

tinction to systems for which the canonical ensemble does not exist and the heat capacity

is negative in the microcanonical ensemble, such as gravitating systems). As noted in [43]

if one proceeds from assuming that the combined system + environment is in a thermal

state the behavior of the heat capacity of the system is different when it is derived from the

energy of the central system at equilibrium or from a partition function approach [17, 35].

By examining the open system nonequilibrium dynamics with no reference to the partition

function one could avoid these pathologies. Likewise, old notions such as the Hamiltonian of

mean force [4] are only meaningful in the conceptual framework of equilibrium systems [14]

as in CGTs.

3) The oft-heard statement, that the generating functional (in quantum field theory) is

equal to the partition function (in equilibrium statistical mechanics) is true only for thermal

fields, i.e., there exists a canonical distribution where a thermal state is well defined for all

times. This statement arises from treating thermal (finite temperature) fields with imaginary

(Matsubara) time quantum field theory. If one uses real time representation to describe the

NEq dynamics of open systems the generating functional remains well defined but it is not

the (canonical) partition function defined in imaginary time.

4) If an open system upon interaction with its environment can equilibrate at late times,

and if it is further thermalized, it enters a thermal state. But this equilibrium state is

different from that of a system in contact with a heat bath which behaves in a totally

passive and non-dynamical way, in particular, with no backaction on the system. The latter

is where a theory of quantum thermodynamics is often constructed, namely, from a simple

extension of conventional classical thermodynamics. The difference lies in the dynamical

correlations between the system and the bath, which conventional thermodynamics ignores

completely by assuming a vanishingly small coupling.

5) There are important differences between the ONEq and the CGTs setups in their

goals, approaches and consequences. There are also key differences between CGTs and ther-

malization in a closed quantum system in the vein of eigenstate thermalization hypothesis.
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Since the latter is an active topic in the last decade with many important contributions,

we can only focus on the differences from the open system approach on the specific issues

of interest to us here and cite some representative references/reviews for interested readers

to appreciate the scope [1, 19–28]. We highlight some key features below. In Appendix

C we will illustrate some aspects of the ONEq and the CGTs setups with a simple model

calculation from the ubiquitous QBM model.

a. Set-up and Goals. In this work we assumed the field to be in a thermal state prior

to its coupling to the system oscillators, which initially can be in an arbitrary state. Thus

the system oscillators and the field are generically out of equilibrium before and after the

interaction is turned on. Our focus is on the subsequent dynamics and relaxation of the

system oscillators, without assuming the coupling to be weak. The ‘pure state quantum

statistical mechanics’ assumes the whole system is in a pure state throughout. The main

goal in [5] is to derive statistical mechanics and thermodynamics from quantum mechanics

without resorting to the notion of ensembles. It aims to show that even pure quantum states

of interacting many-body systems can display relaxation to equilibrium and in special cases

thermalize.

b. The methods developed in the ‘pure state quantum statistical mechanics’ literature

are usually applied to closed systems without an intrinsic system-bath distinction. For

instance, in Cramer et al. [44], a one-dimensional harmonic lattice is shown to locally relax

to Gaussian states for arbitrary choice of subsystem and a wide class of initial states. The

authors note that “Every part of the system forms the environment of the other...”. Here we

are only concerned with the relaxation of the system oscillators and do not require that any

part the environment relaxes (In fact, in Appendix C we show that the bath modes never

reach a steady state).

c. There is an important distinction in the meaning of equilibration. In the pure

state quantum statistical mechanics paradigm equilibration is used more broadly to indicate

relaxation to a steady state. For instance, depending on the context, the relaxation of the

expectation values of certain operators to fixed values or of the reduced density matrix

is considered equilibration. In our open system approach equilibration has a very specific

meaning, see Eq. (C3). In other words, there exists an environment and an interaction

Hamiltonian such that the equilibrium state is obtained by tracing out the environment in

the global thermal state.

d. Integrability. It has been discussed in [5] that integrable quantum models indeed

equilibrate to a suitable generalized Gibbs ensemble. Furthermore [45] examine the behavior

of the one- and two-point correlation functions after a quench in various models, and it is

found that the relaxation dynamics and equilibrium values can be well understood by means

of a generalized Gibbs ensemble.
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C. Key Results

1) Energy extensivity. In conventional thermodynamics, when the intra-system coupling

is negligible, the internal energy is extensive in term of the number of the oscillators, like the

case of the dilute gas. When this coupling is finite, we may instead understand the extensive

property of the internal energy in terms of the normal modes of the coupled oscillators. We

have shown that with this definition of extensivity the internal energy becomes extensive

after the system reaches equilibrium, as implied by (3.8). It is interesting to note that the

degrees of freedom of the oscillators used to describe the extensive property of the internal

energy are neither the original degrees of freedom associated with each oscillator, nor the

modes that decouple their equations of motion. Rather they are the degrees of freedom that

diagonalize the oscillation frequency matrix ΩΩΩ2
p. In this regard, the extensive property of

the internal energy in the final equilibrium state is the same as that of coupled oscillators

in conventional thermodynamics, that is, in the vanishing system-bath coupling limit. This

offers an explicit theoretical justification, from the open-system viewpoint, of conventional

thermodynamics when applied to such a many-body system.

2) Heat Capacity. When the system of N coupled oscillators in a shared scalar field bath

reaches equilibrium, its heat capacity is shown to be always non-negative for all nonzero

bath temperatures, and it moves towards zero only if the bath temperature approaches

zero. These properties are independent of the spatial arrangement of the oscillators, the

inter-oscillator coupling and the system-bath interaction strength, as long as the collective

non-Markovian motion of the system is stable.

3) The Third Law. Therefore from the viewpoint of behavior of the heat capacity at

T = 0 for this class of systems in an equilibrium state the third law is not violated. In this

connection we also addressed the issue of entanglement and the third law pertaining to heat

capacity. It was stated in [39] that “ One may therefore say that in these systems the validity

of the third law of thermodynamics relies on quantum entanglement ...”. Our view is that

The third law depends on the nondegeneracy of the ground state manifold and has nothing

to do with entanglement directly. Indeed it has been shown [41] in the case of two spatially

separated but coupled oscillators in a zero-temperature shared bath that the equilibrated

state of this two oscillator system is not always entangled. For example, with sufficiently

strong oscillator bath interaction, the reduced state of the two oscillators is separable. (See

Fig. 3 in [41]). Here we have shown that the heat capacity of the coupled harmonic oscillator

system goes to zero independent of the system-bath interaction strength. Thus it offers a

counterexample to the above claim, that the validity of the third law of thermodynamics

relies on quantum entanglement
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II. BROWNIAN MOTION OF SYSTEMS OF OSCILLATORS STRONGLY

COUPLED TO AN ENVIRONMENT

We now begin our detailed model study for considering the viability in the establishment

of a thermodynamics theory of open quantum systems.

Consider a collection of coupled quantum harmonic oscillators in a shared finite-

temperature β−1 bath modeled by a massless scalar field in 1+3 Minkowski spacetime.

The action of such a system is given by

S =

∫
dt
∑
i

[m
2
χ̇2
i (t)−

mω2
b

2
χ2
i (t)
]
−
∫
dt
∑
j>i

mσ χi(t)χj(t) +

∫
d4x j(x)φ(x)

+

∫
d4x

1

2
∂µφ(x)∂µφ(x) , (2.1)

with x = (t,x). Each oscillator is located at a fixed spatial coordinate zi, and has the same

mass m and bare natural frequency ωb. The “current” j(x) in the oscillator-bath interaction

term takes the form j(x) = e
∑
i

χi(t) δ
(3)(x− zi), with e the coupling strength between the

oscillator and the bath. The parameter σ is the strength of direct coupling between two

oscillators and assumed to be positive for concreteness 6.

Here we suppose that the initial state of the combined system is a factorized state, given

by

ρi = ρ
(χ)
i ⊗ ρ

(φ)
β , ρ

(φ)
β = Z−1

φ e−βH
(φ)

, Zφ = Trφ

{
e−βH

(φ)
}
, (2.2)

where H(φ) is the free Hamiltonian of the scalar field. While the field is initially prepared

in a thermal state, the initial state ρ
(χ)
i of the system can be quite arbitrary. Thus in the

beginning the system and the bath are not in equilibrium, nor correlated. We will let them

interact and evolve in time. We will explore and make explicit the conditions when the

system can and will reach equilibration 7. This equilibrium state in general will have no

resemblance to the thermal state of the combined system, nor of the reduced system. Thus

the setup here is in strong contrast to the closed system globally-thermal state (CGTs) often

adopted in the discussions of quantum thermodynamics. There, for the total Hamiltonian

of the combined system H = H(χ) +Hint +H(φ) it is assumed that

ρi = ρβ , ρβ = Z−1 e−βH , Z = Trχ, φ

{
e−βH

}
, (2.3)

6 It can take either sign which only affects the interpretation of the normal modes. In addition, the numerical

values of e and σ are confined to ranges where instability in the dynamics are avoided. We will comment

on this point later.
7 The equilibration issue for classical coupled oscillator systems was studied before by, e.g., Agarwal [46]
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In the global thermal state, the system has already established correlation with the bath, and

the interaction between the system and the bath is such that it maintains this correlation

throughout. Since they are in thermal equilibrium, the combined system will remain in the

global thermal state unless an external disturbance is introduced to bring the system out of

equilibrium.

The evolution of the combined system is governed by the unitary evolution operator U

U(tf , ti) = T exp

[
−i
∫ tf

ti

ds H(s)

]
, (2.4)

where T denotes chronological time-ordering and H is the Hamiltonian operator of the

combined system that corresponds to the action (2.1). Given the initial state (2.2) of the

total system, the density matrix of the reduced system of interest is then given by

ρ(χ)(tf ) = Trφ

{
U(tf , ti) ρ(ti)U

†(tf , ti)
}
, (2.5)

after we trace out the degrees of freedom of the bath. The reduced density matrix of the

system enables us to calculate the quantum expectation values of the operators, say O(χ),

associated with the system by

〈O(χ)〉 = Trχ

{
ρ(χ)(tf )O

(χ)
}
, (2.6)

from which we may construct the quantum thermodynamics of the system in a nonequilib-

rium setting.

When the initial state (2.2) is Gaussian, Eq. (2.5) can be evaluated analytically and

exactly for the combined system described by (2.1). Using a path integral representation of

U and U †, the reduced density matrix elements in (2.5) become

ρ(χ)(χf , χ
′
f , tf ) =

∫ ∞
−∞

dχi dχ
′
i ρ

(χ)(χi, χ
′
i, ti) (2.7)∫ χf

χi

Dχ+

∫ χ′f

χ′i

Dχ− exp
{
i S(χ)[χ+]− i S(χ)[χi]

}
F [χ+, χ−] ,

where S(χ) is the action of the system alone and χ± denotes the system variable in the

respective forward and backward time branches. This is where the ‘closed-time-path’ integral

(CTP) / ‘in-in’ formalism [47] or its close kin, the Feynman-Vernon [7] influence functional

(IF) F [χ+, χ−] becomes particularly useful.

For a Gaussian bath, its influence on the system can be understood as caused by a classical

noise by way of the Feynman-Vernon Gaussian identity: the imaginary part of the IF can be

represented by a stochastic source term which inherits the quantum statistics of the bath.

Using techniques from the CTP formalism, a revised imaginary part combined with the
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original real part of the influence functional, together with the action of the system, form

a new effective action which is real, known as the stochastic effective action. Variation of

this stochastic effective action produces a Langevin equation which describes the evolution

of the reduced system. For details and working examples in this functional approach to

open quantum system dynamics, please refer to Appendix A. In what follows, we will adopt

the Langevin equation approach in the discussion of quantum thermodynamics at strong

coupling.

A. Langevin Equation for the Reduced System

Following this well-established procedure the Langevin equation for the stochastic dy-

namics of the ith oscillator (strongly) interacting with other oscillators and their shared

bath with action (2.1) is given by

mχ̈i(t) +mω2
b χi(t) +

∑
j 6=i

mσ χj(t)− e2

∫ t

0

ds
∑
j

G
(φ)
R (t− s, zi − zj)χj(s) = e ξi(t) . (2.8)

In addition to the drag force and the quantum fluctuations of the bath found in a single

oscillator system a new factor entering in the present coupled-oscillator shared-bath system

is the induced interaction between the oscillators through their respective interaction with

the scalar field bath. The field-environment mediated effect is non-Markovian in nature

(see e.g., [48–50]), often absent 8 in a shared bath modeled by a collections of oscillators 9

(see, e.g., [51, 52]). This feature introduces additional complications and brings forth new

physics in analyzing the stochastic dynamics of the quantum many-body system, as well as

its quantum thermodynamics.

The statistics of the Gaussian noise field ξi(t) = ξ(t, zi) is determined completely by the

first two moments

〈ξi(t)〉 = 0 , 〈ξi(t)ξj(t′)〉 = G
(φ)
H (t− t′, zi − zj) . (2.9)

All the higher even moments can be expressed by the second moment with the Wick ex-

pansion while all the odd moments vanish. The 〈· · · 〉 notation denotes either an ensemble

average or expectation value, depending on whether the variable under consideration is

stochastic or quantum. The two kernel functions G
(φ)
R (x − x′) and G

(φ)
H (x − x′) are most

relevant for our present study: They are the retarded and the Hadamard functions of the

scalar field φ in its thermal state, defined by

G
(φ)
R (x− x′) = i θ(t− t′)

[
φ(x), φ(x′)

]
=

1

4πr
θ(τ)

[
δ(τ − r)− δ(τ + r)

]
, (2.10)

8 Unless the spatial information is retained in the system-bath interaction.
9 The differences between a oscillator bath and a field bath will be discussed in Appendix E.
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G
(φ)
H (x− x′) =

1

2
〈
{
φ(x), φ(x′)

}
〉 = − 1

8πβr

[
coth

π(τ − r)
β

− coth
π(τ + r)

β

]
, (2.11)

with τ = t − t′ and r = |x − x′|. Since they are time-translation invariant, their Fourier

transforms with respect to the τ variable satisfy the well-known relation,

G̃
(φ)
H (ω; r) = coth

βω

2
Im G̃

(φ)
R (ω; r) , (2.12)

where the Fourier transformation of the function f(τ) is defined by

f̃(ω) =

∫ ∞
−∞

dτ e+i ωτ f(τ) , f(τ) =

∫ ∞
−∞

dω

2π
e−i ωτ f̃(ω) . (2.13)

Introducing the matrix representation of the equation of motion (2.8),

ΞΞΞ =


χ1

χ2

...

χn

 , ΩΩΩ2
b =


ω2
b σ · · · σ

σ ω2
b · · · σ

...
...

. . .
...

σ σ · · · ω2
b

 , ξξξ =


ξ1

ξ2

...

ξn

 , (2.14)

where [G(τ)]ij ≡ G(τ, zi − zj), we obtain a matrix equation

Ξ̈ΞΞ(t) + ΩΩΩ2
b ·ΞΞΞ(t)− e2

m

∫ t

0

ds G
(φ)
R (t− s) ·ΞΞΞ(s) =

e

m
ξξξ(t) . (2.15)

The solution generically takes the form

ΞΞΞ(t) = d1(t) ·ΞΞΞ(0) + d2(t) · Ξ̇ΞΞ(0) +
e

m

∫ t

0

ds d2(t− s) · ξξξ(s) , (2.16)

where {ΞΞΞ(0), Ξ̇ΞΞ(0)} are the initial conditions and di(t) are a special set of homogeneous

solutions to (2.15). The actual form of d1 is not important but the Fourier transform of

d2(t) is

d̃2(ω) =
[
ΩΩΩ2
b − ω2I− e2

m
G̃

(φ)
R (ω)

]−1

. (2.17)

Later it will be shown that for certain choices of parameters, the solution to (2.15) can

exhibit instability and grows indefinitely when t approaches infinity. In these case, the

homogeneous solutions di(t) are not integrable,∫ ∞
−∞

dt |di(t)| 6<∞ , (2.18)

so their Fourier transforms do not exist in the usual sense. Thus when results are expressed

in terms of d̃i(ω), it pays to be careful about their interpretations.

Finally we note from (2.16) that the oscillator is driven not only by the local noise at its

very location, but is also affected by the quantum fluctuations of the bath at the locations

of the other oscillators. This novel and intriguing feature is essential in keeping the energy

balance of the reduced system after it equilibrates. This will become clearer when we

calculate the energy balance in Sec. III C.
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B. Covariance Matrix

From (2.16), if there exists an equilibrium state 10 for the reduced system, then the

moment

σσσχχ(t) =
1

2
〈{ΞΞΞ(t),ΞΞΞT (t)}〉 (2.19)

at late time, after the reduced system completely relaxes, is well defined and given by

lim
t→∞

σσσχχ(t) =
e2

m2

∫ ∞
−∞

dω

2π
d̃2(ω) · G̃(φ)

H (ω) · d̃†2(ω) , (2.20)

where the superscripts T and † denote the transposition and Hermitian conjugate of the

matrix, respectively.

Since d2 is a symmetric matrix, we observe that

d̃2(ω)− d̃†2(ω) = 2i Im d̃2(ω) = 2i
e2

m
d̃2(ω) · Im G̃

(φ)
R (ω) · d̃†2(ω) , (2.21)

with the help of the matrix identity

A−1 −B−1 = A−1 ·
(
B−A

)
·B−1 , (2.22)

for two nonsingular matrices A, B. Thus we can write σσσχχ(∞) in (2.20) as

σσσχχ(∞) =
1

m

∫ ∞
−∞

dω

2π
coth

βω

2
Im d̃2(ω) = Im

∫ ∞
−∞

dω

2π
coth

βω

2
G̃

(χ)
R (ω) , (2.23)

where the retarded Green’s function G̃
(χ)
R (ω) of the reduced system is in fact

G̃
(χ)
R (ω) =

1

m
d̃2(ω) . (2.24)

Similarly we introduce

σσσυυ(t) =
1

2
〈{Ξ̇ΞΞ(t), Ξ̇ΞΞ

T
(t)}〉 , (2.25)

and at late times it becomes

σσσυυ(∞) = Im

∫ ∞
−∞

dω

2π
ω2 coth

βω

2
G̃

(χ)
R (ω) . (2.26)

This integral in general is not well-defined due to the presence of ultraviolet (UV) divergence

so regularization is needed.

10 The existence of the equilibrium state is related to the fact that the complex poles of d̃2(ω) lie on the

upper half of the complex ω plane. See Sec. III E. This is also the very basis on which we can discuss

the fluctuation-dissipation relation of the reduced system and the energy balance among the dissipative,

retarded and noise force terms.
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C. Internal Energy

We define the internal energy of the system as its total mechanical energy. The total

mechanical energy E of the coupled oscillators is

E(t) =
∑
i

[m
2
〈χ̇2

i (t)〉+
mω2

p

2
〈χ2

i (t)〉
]

+
∑
j>i

mσ 〈χi(t)χj(t)〉

=
m

2
Tr
{
σσσυυ(t) + ΩΩΩ2

p · σσσχχ(t)
}
. (2.27)

Here Tr is the matrix trace, and the matrix ΩΩΩ2
p is defined in a way similar to ΩΩΩ2

b except that

the elements ω2
b in ΩΩΩ2

b are replaced ω2
p, where ωp is the renormalized or physical frequency,

which will be determined by the system preparation at the experimental energy scale. The

difference between them is not necessarily large and depends on the choice of the cutoff

frequency Λ, such that

ω2
p − ω2

b = −4γΛ

π
, (2.28)

where the damping constant γ is equal to γ = e2/(8πm). In the equilibrium state (note it

is not necessarily the Gibbs state [53]), the total mechanical energy becomes

E(∞) =
m

2
Tr
{
σσσυυ(∞) + ΩΩΩ2

p · σσσχχ(∞)
}

=
1

2
Im

∫ ∞
−∞

dκ

2π
coth

βκ

2
Tr
{[
κ2I + ΩΩΩ2

p

]
· d̃2(κ)

}
.

(2.29)

The heat capacity C is then given by

C =
∂E

∂T
= −β2 ∂E

∂β
. (2.30)

The evaluation of E(∞) can be trickier than expected if regularization is not properly

introduced.

At this point it may be desirable to get some physical feel of the dynamics and thermody-

namics of the system. In Appendix B we treat a simpler system of one and two oscillators so

that we can see the subtleties involved in the non-Markovian dynamics and thermodynamics

of a strongly interacting open quantum system. Otherwise, we may proceed to the formal

development for the N -oscillator system.

III. THERMODYNAMICS OF OPEN QUANTUM SYSTEMS

As mentioned in the beginning, in this paper we use the model of an N coupled-oscillator

system interacting with a scalar field bath to address the energy and heat capacity issues

and discuss the Third Law of thermodynamics.
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Before we launch our studies of the N coupled-oscillator model in full rigor, it would

be useful to gain some feeling of the anticipated physical results for simpler cases. Hence,

we summarize what we have learned from the one and two coupled harmonic oscillators

examples below. Details for these two cases are placed in Appendix B.

For a system containing just one harmonic oscillator coupled to a thermal bath with finite

coupling strength the heat capacity behaves qualitatively different at low temperatures from

traditional thermodynamics, which assumes that the system-bath coupling is vanishingly

small. A new scale associated with the coupling strength γ appears. As shown in (B11), the

heat capacity approaches zero following a power law when the bath temperature is lowered

to zero. In contrast, quantum statistical mechanics calculations assuming vanishing system-

bath coupling predict in (B16) that the heat capacity approaches zero exponentially as the

bath temperature is lowered to zero. This is mostly transparently seen in Fig. 2.

With a mere increase of the number of system oscillators from one to two, the physics of

the reduced system becomes more intricate because the two oscillators will have, on top of

their direct coupling, also an indirect coupling mediated by the ambient scalar field bath,

which introduces non-Markovian effects in the reduced system dynamics. As for quantum

entanglement, in addition to the system-bath entanglement in the one-oscillator case, one

needs to consider also entanglement between the constituent oscillators. Noteworthy on this

issue is, as shown in Eq. (B33) and Fig. 3-(c) of Appendix B, the behavior of the heat

capacity for the two-oscillator system near absolute zero temperature does not depend on

the presence or the absence of quantum entanglement between the two system oscillators.

The heat capacity still approaches zero no matter what, and has a qualitatively similar

behavior as the one-system-oscillator case.

A. System of N Coupled Oscillators in a Common Bath

Now we consider a system that contains N coupled harmonic oscillators in a shared

thermal bath. Their spatial locations, specified by zi with i = 1, · · · , N , is arbitrary, and

their initial states can be far from equilibrium. From the previous discussions, we have

learned that their motion is highly non-Markovian and intertwined, so it is not obvious

whether systems that contain a large number of constituents always equilibrate. This would

be the most important issue to address, namely, identify the conditions, or lack thereof, for

an N coupled harmonic oscillators in a shared thermal bath to reach in time an equilibrium

(note different from thermal) state. We will show that indeed it exists. Then in this

equilibrium state, we can discuss for this non-Markovian system the fluctuation-dissipation

relation and the energy balance. We then advance towards the thermodynamics issues,

beginning with a proof of the extensivity of the internal energy, the positivity of the heat
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capacity and finally, the behavior of the heat capacity as the temperature approaches to

zero, pertaining to the issues of the Third Law.

The number N of the system constituents can be arbitrary but cannot be infinite, because

when it is comparable with the number of degrees of freedom of the bath, 1) it may lose the

character of a system in contradistinction to its environment, as the basic definition of open

systems calls for. 2) The system and environment should in this situation be considered

as two equal subsystems interacting with each other which has a very different dynamics

from open systems, e.g., recurrence; More seriously 3) the system may never equilibrate

because any oscillator will be continually perturbed by the non-Markovian influences from

its faraway counterparts all the time. This will make the motion of the system difficult to

settle down.

For a finite N , following our earlier analysis outlined in the two-oscillator case, we note

there are exceptional cases that equilibration may not be always possible. For example,

we exclude those arrangements where some of the oscillators are placed remotely from all

others because such a setup can render the relaxation time unusually long. From these

considerations we assume the number N is much smaller than the number of degree of

freedom of the bath, and that the oscillators are all localized within a finite region. As a

reminder, this still does not exclude the possibility that when the non-Markovian effects are

sufficiently strong, albeit not enough to induce instability, the system might still have an

extraordinarily long relaxation time so as to behave almost like an undamped one.

Since analytical results for the N -oscillator system are unavailable, we will provide a

qualitative but general analysis based on the mathematical properties of positive matrices.

We start with two simpler topics by first examining the fluctuation-dissipation relation of

the reduced system in the final equilibrium state, and then the energy balance between the

reduced system and the bath. They provide the basis for extensivity of internal energy and

positivity of heat capacity. We will save the discussion on the existence of this equilibrium

state for the end.

B. Fluctuation-Dissipation Relation, Stationarity

We direct our attention now to the correlation function of χi(t) and derive the cor-

responding fluctuation-dissipation relation when the reduced system reaches equilibrium.

From (2.16), we find the correlation function, namely, the Hadamard function of ΞΞΞ(t) given

by

G
(χ)
H (t, t′) = d1(t) · dT1 (t′) 〈χ2

i (0)〉+ d2(t) · dT2 (t′) 〈χ̇2
i (0)〉

+ d1(t) · dT2 (t′) 〈χi(0)χ̇i(0)〉+ d2(t) · dT1 (t′) 〈χ̇i(0)χi(0)〉
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+
e2

m2

∫ t

0

ds

∫ t′

0

ds′ d2(t− s) ·G(φ)
H (s− s′) · dT2 (t′ − s′) . (3.1)

Again [G
(φ)
H (s − s′)]ij = G

(φ)
H (s − s′, zi − zj). It is not invariant in time translation so the

intermediate state is not an equilibrium state. If we choose the parameters of the configura-

tion in such a way that no runaway solution is allowed, then di(t) exponentially decays with

time. Thus in (3.1), those terms that are not inside integrals will be exponentially small at

late times. The double integrals in (3.1) can be written as∫ t

0

ds

∫ t′

0

ds′ d2(t− s) ·G(φ)
H (s− s′) · dT2 (t′ − s′) ≈

∫
dκ

2π
d̃∗2(κ) · G̃(φ)

H (κ) · d̃T2 (κ) e−iκ(t−t′) ,

(3.2)

among which we have ignored terms that are exponentially small at late times and have

used the approximation that when t is sufficiently large,∫ t

0

ds d2(t− s) e−i κs = e−i κt d̃∗2(κ) +O(e−αt) , (3.3)

with α being some positive number to describe the generic decaying behavior of d2 with

time. Thus we see the nonstationary components in G
(χ)
H (t, t′) becomes negligibly small as

t, t′ →∞. We can then focus on the stationary component,

lim
t→∞
t′→∞

G
(χ)
H (t, t′) = G

(χ)
H (t− t′) =

∫
dκ

2π
coth

βκ

2
Im
{
G̃

(χ)
R (κ)

}
e−i κ(t−t′) , (3.4)

where we have invoked the fluctuations-dissipation relation of the free (stand-alone) scalar

field

G̃
(φ)
H (κ) = coth

βκ

2
Im G̃

(φ)
R (κ) . (3.5)

In (3.4), we notice that the integrand in fact is G̃
(χ)
H (κ) by the definition of the Fourier

integral, and thus we arrive at

G̃
(χ)
H (κ) = coth

βκ

2
Im G̃

(χ)
R (κ) , (3.6)

when the reduced system reaches equilibrium. Thus, from the derivation we see that the

correlation function of the reduced system is not stationary in time during the nonequilibrium

evolution, but dissipation causes the nonstationary component of the correlation to decay

with time such that when the dynamics of the reduced system is relaxed, the correlation

becomes stationary. This reflects the presence of a final equilibrium state.

Stationarity enables us to express the fluctuation-dissipation relation of the reduced sys-

tem in the frequency domain, similar to that of the bath. However, even though they appear

deceptively similar in structure, they are utterly different in physical contents. Essentially
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(3.5) is based on the initial thermal state of the bath, while (3.6) is established only because

there exists a final equilibrium state, which by no means is necessarily a Gibbs thermal

state; however it still inherits the information of the initial thermal state of the bath. This

is related to the fact the late-time statistics of the reduced system is governed by the bath.

A similar behavior is also observed for the case when a charged oscillator interacts with a

quantized electromagnetic field, initially prepared in a squeezed vacuum [54]. The only dif-

ference is that the proportionality constant in the fluctuation-dissipation relation like (3.6)

takes a different form and depends on the squeeze parameters of the bath’s initial squeezed

vacuum state.

C. Energy Balance in the Equilibrium State

Now we turn to the energy balance of the reduced system described by (2.8) in the

equilibrium state,

mχ̈i(t) +m
(
ΩΩΩ2
b

)
ij
χj(t)− e2

∫ t

0

ds G
(φ)
R (t− s,0)χi(s)

− e2

∫ t

0

ds
∑
j 6=i

G
(φ)
R (t− s, zi − zj)χj(s) = e ξi(t) , (3.7)

where complexity arises from the frequency renormalization and the nonlocal causal influence

among oscillators. In the single oscillator case, when equilibrium is reached, the net energy

flow between the oscillator and the bath stops. The energy flowing in from the noise force of

the bath is counterbalanced by the energy flowing out of the oscillator due to the frictional

force, as captured by the fluctuation-dissipation relation. In the multi-oscillator case, it is

then interesting to ask whether only the same two factors are needed to balance the energy

flow in the course of equilibration, or other mechanisms are also involved? If so, what are

their roles in the fluctuation-dissipation relation?

We will show that

lim
t→∞

∑
i

m

2
〈χ̇2

i (t)〉+
m

2

∑
i,j

(
ΩΩΩ2
p

)
ij
〈χi(t)χj(t)〉 = const. , (3.8)

that is, the energy transfer mediated by the shared bath ceases after the motion of the

reduced system reaches equilibrium.

We first rewrite the third term in (3.7) as,

−e2

∫ t

0

ds G
(φ)
R (t− s,0)χi(s) = −e2Γ(φ)(0)χi(t) + e2

∫ t

0

ds Γ(φ)(t− s) χ̇i(s) , (3.9)
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where Γ(φ)(t) vanishes for a scalar-field bath at late times, and we have introduced a new

kernel function Γ(φ)(τ),

G
(φ)
R (τ,0) =

[
G

(φ)
R (τ)

]
ii

= − d

dτ
Γ(φ)(τ) , ⇔ G̃

(φ)
R (ω,0) = i ω Γ̃(φ)(ω) . (3.10)

In what follows we will calculate the power delivered to the ith oscillator in the equilibrium

state.

Each of the terms in (3.9) gives a contribution with a distinct physical interpretation.

The first term on the righthand side of (3.9) will be absorbed into the bare frequency ωb to

form the physical frequency ωp

ω2
p = ω2

b −
e2

m
Γ(φ)(0) . (3.11)

The third term on the righthand side of (3.9) thus represents the dissipative force whose

mean power delivered to the ith oscillator is

P (i)
γ (t) = −e2

∫ t

0

ds Γ(φ)(t− s) 〈χ̇i(s)χ̇i(t)〉 . (3.12)

The mean power exerted by the noise force on the ith oscillator is

P
(i)
ξ (t) = e 〈ξi(t)χ̇i(t)〉 . (3.13)

Finally the net power delivered by the other oscillators to the ith oscillator via the nonlocal

causal influence transmitted by the field is given by

P (i)
c (t) = e2

∫ t

0

ds
∑
j 6=i

G
(φ)
R (t− s, zi − zj) 〈χj(s)χ̇i(t)〉 . (3.14)

These three contributions look very distinct in nature, but we will show that at late times

after the system of oscillators relaxes, their sum vanishes. Let us rewrite (3.12)–(3.14) in

the limit t→∞,

• P (i)
γ (∞) : It is given by

P (i)
γ (∞) = i e2

∫ ∞
−∞

dκ

2π
κ Im

[
G̃

(φ)
R (κ)

]
ii

[
G̃

(χ)
H (κ)

]
ii
, (3.15)

where we have used several facts

(a) In general G
(χ)
H (t, s) = 〈{χi(t), χi(s)}〉/2 is not invariant with time translation

unless t, s are sufficiently large. That is, the non-stationary components will

decay with time, so when t, s→∞, we can write G
(χ)
H (t, s) into G

(χ)
H (t− s).
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(b) The real part of the Fourier transform of a retarded Green’s function G̃
(φ)
R (κ) is

an even function in κ ∈ R , but the imaginary part is an odd function.

(c) Im
[
G̃

(φ)∗
R (κ,0)

]
ii

= − Im
[
G̃

(φ)
R (κ,0)

]
ii
.

• P (i)
ξ (∞) : It is given by

P
(i)
ξ (∞) = −i e2

∑
j

∫ ∞
−∞

dκ

2π
κ Im

[
G̃

(χ)
R (κ)

]
ij

[
G̃

(φ)
H (κ)

]
ij
, (3.16)

where we have made use of the fluctuation-dissipation relation (3.6) for the reduced

system.

• P (i)
c (∞) : It is given by

P (i)
c (∞) = i e2

∑
j 6=i

∫ ∞
−∞

dκ

2π
κ Im

[
G̃

(φ)
R (κ)

]
ij

[
G̃

(χ)
H (κ)

]
ij
. (3.17)

We observe that unlike the one-oscillator case,

P (i)
γ (∞) + P

(i)
ξ (∞) 6= 0 , (3.18)

so in the multi-oscillator case, the energy balance is more delicate. On the other hand, the

contribution P
(i)
γ (∞) can be combined with P

(i)
c (∞) to form

P (i)
γ (∞) + P (i)

c (∞) = i e2
∑
j

∫ ∞
−∞

dκ

2π
κ Im

[
G̃

(φ)
R (κ)

]
ij

[
G̃

(χ)
H (κ)

]
ij
, (3.19)

which turns out to be the negative of P
(i)
ξ (∞). We thus see in fact we should have

P (i)
γ (∞) + P (i)

c (∞) + P
(i)
ξ (∞) = 0 , (3.20)

if both of the fluctuation-dissipation relations

G̃
(φ)
R (κ) = coth

βκ

2
Im G̃

(φ)
R (κ) , G̃

(χ)
R (κ) = coth

βκ

2
Im G̃

(χ)
R (κ) , (3.21)

hold.

Eq. (3.20) immediately implies (3.8). Here we see additional mechanisms are at play in

the energy transfer between coupled oscillators. The motion of any oscillator is, apart from

direct coupling, causally affected by all the other oscillators via the shared bath. These co-

herent and correlated contributions from the other oscillators, depending on their individual

evolution history, do not necessarily induce a drag nor a push force on that very oscillator.

The net effects of the retarded influence are thus highly complicated, hinging on the distance
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between any two oscillators and their states of motion. It is not obvious how they partic-

ipate in balancing the energy flow between each system oscillator and the bath. However,

we have mentioned earlier that each oscillator, in addition to experiencing the disturbance

from the noise of the bath locally, is also affected by the bath fluctuations at the locations

of the other oscillators. We can see that the correlations of the bath fluctuations will be

passed on to the oscillators such that their motions are also correlated. These correlated

noises can be the counterparts of the causal influences, both of which are the off-diagonal

elements in the fluctuation-dissipation relation of the bath (3.21), in the roles of either the

fluctuation-dissipation relation or the energy balance of the system. Moreover once we ob-

serve that the retarded influence is in fact related to the Liénard-Wiechert-type radiation

of the scalar field as a consequence of the oscillators’ motion, it is clear that the damping

force is of the same physical origin as the non-Markovian causal influences. Thus grouping

P
(i)
γ (∞) and P

(i)
c (∞) together in (3.19) becomes natural, and from that (3.20) follows.

Eq. (3.8) says that even with the presence of non-Markovian influences in the motion of

the reduced system, the interaction of the system with the bath is such that when the system

settles down in its equilibrium state, its total mechanical energy becomes constant in time.

Hereafter the reduced system acts as a collection of coupled undamped oscillators, oscillating

at the physical frequency ωp, and can be completely described by the final equilibrium

density matrix. That is, the reduced system becomes self-contained and free from any

further intervention from the bath. This motivates us to assign the total mechanical energy

as the internal energy of the system.

Next we will discuss the extensive property of the internal energy of a system of N coupled

oscillators in a shared bath.

D. Extensivity of Internal Energy

Before proceeding to the coupled system in a nonequilibrium configuration, we first de-

lineate the extensivity of the internal energy in the simpler equilibrium case.

Formally, equilibrium thermodynamics is realized in the limit γ → 0, whereby the matrix

G̃
(χ)
R (ω) reduces to

lim
γ→0

G̃
(χ)
R (ω) =

1

m

[
ΩΩΩ2
p − ω2 I

]−1

→ 1

m

[
ΩΩΩ2
p −

(
ω + i ε

)2
I
]−1

, (3.22)

where in order to preserve the retarded property of G
(χ)
R (τ), we have let ω → ω + i ε with

ε > 0. Since the matrix ΩΩΩ2
p is real and symmetrical, we may find a real orthogonal constant

matrix U, independent of ωp and σ, to diagonalize it, that is,

ΩΩΩ2
p = U ·W2

p ·UT , U ·UT = I . (3.23)



23

The matrix Wp is real and diagonal and we have assumed that its diagonal elements remain

positive definite, with the appropriate choice of ωp and σ to avoid instability in motion.

Thus we write (3.22) as

lim
γ→0

G̃
(χ)
R (ω) =

1

m
U ·

[
W2

p −
(
ω + i ε

)2
I
]−1

·UT = U · G̃GG
(χ)

R, 0(ω) ·UT , (3.24)

with the diagonalized GGG
(χ)
R, 0(ω) matrix given by

G̃GG
(χ)

R, 0(ω) =
1

m

[
W2

p −
(
ω + i ε

)2
I
]−1

. (3.25)

Now since the symmetric matrices σσσχχ(∞) and σσσυυ(∞) are related to G̃
(χ)
R (ω), according to

(2.23) and (2.26), we can write them into the diagonal forms as well with the help of U,

σσσχχ(∞) = U · n(∞) ·UT , and σσσυυ(∞) = U ·m(∞) ·UT , (3.26)

in which the diagonal matrices n, m are

n(∞) = Im

∫ ∞
−∞

dω

2π
coth

βω

2
G̃GG

(χ)

R, 0(ω) , (3.27)

m(∞) = Im

∫ ∞
−∞

dω

2π
ω2 coth

βω

2
G̃GG

(χ)

R, 0(ω) . (3.28)

So far what we have done is equivalent to expressing the results in terms of the normal

modes of the coupled oscillators when their interaction with the shared bath is almost

nonexistent. The matrices n, m are nothing but the position and velocity uncertainties of

the normal-mode coordinates. This decomposition implies that the mean mechanical energy

in the equilibrium thermal state, due to the presence of the trace, is invariant under the

orthogonal transformation acted by U,

E(∞) =
m

2
Tr
{
σσσυυ(∞) + ΩΩΩ2

p · σσσχχ(∞)
}

=
m

2
Tr
{
m(∞) + W2

p · n(∞)
}
. (3.29)

The advantage of the form (3.29) is that since every matrix in it is diagonal, (3.29) can be

literally and formally written as

E(∞) =
∑
i

Ei(∞) , (3.30)

where

Ei(∞) =
m

2

{
mii(∞) +

(
W2

p

)
ii nii(∞)

}
(3.31)

is essentially the mechanical energy associated with each normal mode. That is, the total

mechanical energy is the sum of the mechanical energy of each normal mode. Thus when



24

the interaction between the coupled oscillators and the shared bath is negligible, the me-

chanical/internal energy is extensive, at least with respect to the normal modes. This is the

limiting condition underlying conventional thermodynamics.

When the oscillator-bath interaction is not negligible, the Green’s function matrix G̃
(χ)
R (ω)

of the oscillators contains the contribution from the retarded Green’s function matrix G̃
(φ)
R (ω)

of the free scalar field,

G̃
(χ)
R (ω) =

1

m

[
ΩΩΩ2
b − ω2I− e2

m
G̃

(φ)
R (ω)

]−1

. (3.32)

Since the values of the elements of the matrix G̃
(φ)
R (ω) depend on the locations of the coupled

oscillators, [
G̃

(φ)
R

]
ij

(ω) = G̃
(φ)
R (ω, zi − zj) , (3.33)

the orthogonal matrix U that can diagonalize ΩΩΩ2
b in general cannot diagonalize G̃

(φ)
R (ω),

because the latter two matrices do not commute in general unless the locations of the

oscillators are especially arranged. That is, in general the matrices

G̃GG
(φ)

R (ω) = UT · G̃(φ)
R (ω) ·U , ⇒ G̃GG

(χ)

R (ω) = UT · G̃(χ)
R (ω) ·U (3.34)

are not diagonal, neither are n and m in this case. Even though (3.29) always holds, and

it will give an impression that the total mechanical energy can still be expressed as a sum

like (3.30), here Ei does not enjoy the special significance of the mechanical energy of each

normal mode for the full equation of motion (2.15)

Ξ̈ΞΞ(t) + ΩΩΩ2
b ·ΞΞΞ(t)− e2

m

∫ t

0

ds G
(φ)
R (t− s) ·ΞΞΞ(s) =

e

m
ξξξ(t) . (3.35)

This may be most easily understood if we apply the transformation U to the coupled equa-

tions of motion (3.35), and it becomes

Ẍ(t) + W2
b ·X(t)− e2

m

∫ t

0

dsGGG
(φ)
R (t− s) ·X(s) =

e

m
UT · ξξξ(t) . (3.36)

where X = UT ·ΞΞΞ represents the coordinates of the normal modes of the coupled oscillators

in the absence of the bath as is discussed earlier, but is not the normal modes of the coupled

oscillators in the presence of the shared bath. The off-diagonal elements GGG
(φ)
R (t− s) will link

up any given element in X with all other elements.

Therefore, from (3.8) we arrive at some interesting conclusions. When the coupled oscil-

lators interact with a shared bath, after the coupled system reaches equilibrium, the internal

energy of the system oscillators becomes extensive; however this extensivity is expressed by

neither its original degrees of freedom nor the decoupled degrees of freedom. Instead, the

extensive property of the system’s internal energy is only manifested by a specified set of
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modes obtained from the orthogonal transformation that diagonalizes ΩΩΩ2
p, as can be seen

from Eq. (3.8). Moreover, before the motion of the reduced system equilibrates, this special

extensiveness property does not hold, as is implied by (3.8). Thus we are not able to discuss

the extensive property of the system’s internal energy during the nonequilibrium evolution

of the reduced system, until the final equilibrium state of the reduced system is attained.

In particular, this seemlingly mundane conclusion, together with (3.8), justifies or explic-

itly demonstrates, in the weak oscillator-bath coupling, why conventional thermodynamics

(at least for the system that constitutes coupled oscillators) works, why we need only the

density matrix of the system to describe the behaviors of the system, and why we need not

be concerned with renormalization, relaxation, damping, bath noise.

E. Positivity of Heat Capacity and Existence of the Equilibrium State

Now we would like to discuss the positivity of the heat capacity for a system of N coupled

oscillators in a shared bath in the context of nonequilibrium thermodynamics. The positivity

of heat capacity, the decaying behavior and the retarded nature of d2(t) all hinge on the

existence of the equilibrium state. Thus in this section, we will also address the conditions

that a nonequilibrium system settles into an equilibrium state at late times.

Given the internal energy (2.29) when the system reaches equilibrium, we proceed to

examine the positivity property of the heat capacity C(∞), given by

C(∞) =
1

2
Im

∫ ∞
−∞

dκ

2π

( βκ
2

sinh βκ
2

)2
1

κ
Tr
{[
κ2I + ΩΩΩ2

p

]
· d̃2(κ)

}
e−
|κ|
Λ , (3.37)

from (2.29) and (2.30). The damping factor e−
|κ|
Λ , with Λ→ +∞, is necessary to regularize

the integral.

If we consider only the case that there is no runaway solution in the motion of the system,

such as with the inverted oscillator, then this requires that the matrix ΩΩΩ2
p should be at least

positive definite 11. This allows us later to define a matrix that would be the square root of

κ2I + ΩΩΩ2
p. The imaginary part of d̃2(κ) can be written as

Im d̃2(κ) = d̃2(κ) ·
[
2γκ I +

e2

m
Im /̃G

(φ)

R (κ)
]
· d̃†2(κ) . (3.38)

Using (2.17) we know that d̃2(κ) takes the form

d̃2(κ) =
[
ΩΩΩ2
b − κ2I− e2

m
G̃

(φ)
R (κ)

]−1

=
[
ΩΩΩ2
p − κ2I− i 2γκ I− e2

m
/̃G

(φ)

R (κ)
]−1

,

11 Positive semi-definiteness can be too weak because the non-Markovian contributions can easily induce

instability in the strong system-bath coupling regime or in the limit of extremely short separations among

the oscillators.
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with the help of (2.22). The matrix /̃G
(φ)

R (κ) is G̃
(φ)
R (κ) with its diagonal elements removed,

[
/̃G

(φ)

R (κ)
]
ij

=


0 , i = j ,[
G̃

(φ)
R (κ)

]
ij
, i 6= j .

(3.39)

The diagonal elements of G̃
(φ)
R (κ) account for the usual damping term and the frequency

renormalization. Now we introduce the matrix D̃2(κ) by[
κ2I + ΩΩΩ2

p

] 1
2 · d̃2(κ) ≡ D̃2(κ) , (3.40)

such that

Im Tr
{[
κ2I + ΩΩΩ2

p

]
· d̃2(κ)

}
= Tr

{[
2γκ I +

e2

m
Im /̃G

(φ)

R (κ)
]
· D̃†2(κ) · D̃2(κ)

}
, (3.41)

where we have used the cyclic property of the matrix trace. The product of the last pair of

matrices is positive, so we would like to examine whether the matrix sandwiched by d̃2(κ)

and d̃†2(κ) in (3.38) is positive as well. In general, it takes the form

2κΓΓΓ = 2γκ I +
e2

m
Im /̃G

(φ)

R (κ)

=



2γκ
2γ

`12

sinκ`12
2γ

`13

sinκ`13 · · ·
2γ

`12

sinκ`1N

2γ

`21

sinκ`21 2γκ
2γ

`23

sinκ`23 · · ·
2γ

`2N

sinκ`2N

2γ

`31

sinκ`31
2γ

`32

sinκ`32
. . .

...

...
...

. . .
...

2γ

`N1

sinκ`N1
2γ

`N2

sinκ`N2 · · · · · · 2γκ


(3.42)

where `ij = `ji = |zi − zj|. Here we assume that the choices of the parameters ωp, σ and `ij

is such that the matrix ΓΓΓ is strictly diagonally dominant, that is, its elements satisfying

|Γii| >
∑
j 6=i

|Γij| . (3.43)

At the first sight, this assumption looks pretentious; however we observe that the strictly

diagonally dominant matrix has a nice property of being positive definite [55]. That is, its

eigenvalues are all positive. Thus this assumption, together with positive definiteness of ΩΩΩ2
p,

implies that the integrand in (3.37) is always positive. Since the integral is well defined,
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we conclude the value of the heat capacity C(∞) remains positive for all temperatures β−1

with one exception that β →∞. In that limit the factor(
βκ
2

sinh βκ
2

)2

goes to zero 12, so it indicates that the heat capacity for the system of coupled oscillators

will be zero at zero temperature; otherwise it is always positive.

Physically the assumption (3.43) amounts to the existence of the effective damping con-

stants for all modes of motion, and thus the motion of the system, described by d̃2 reduces

to that of a collection of coupled damped oscillators. This can be read off from the denom-

inator of d̃2(κ). Suppose the real matrix ΓΓΓ can be diagonalized by the orthogonal matrix

V

V ·ΓΓΓ ·VT = ΓΓΓ′ = diag(γ1, γ2, . . . , γN) . (3.44)

The matrix V in general cannot diagonalize ΩΩΩ2
p unless ΩΩΩ2

p commutes with ΓΓΓ, but it will

transform ΩΩΩ2
p to another symmetric, positive matrix, which we denote byWWW2

p. The diagonal

elements of WWW2
p describe the same physical frequencies ωp of the transformed modes and

the off-diagonal ones account for the coupling among them. The mode-mode couplings are

usually different among pairs of modes. Explicitly the denominator of d̃2(κ) is transformed

to

κ2I + i 2κΓΓΓ′ −WWW2
p

=


κ2 0 · · · 0

0 κ2 ...
...

. . . 0

0 · · · 0 κ2

+ i 2κ


γ1 0 · · · 0

0 γ2
...

...
. . . 0

0 · · · 0 γN

−

ω2
p σ12 · · · σ1N

σ21 ω2
p

...
...

. . . σN−1,N

σN1 · · · σN,N−1 ω2
p

 , (3.45)

and the zeros of its determinant

det
(
κ2I + i 2κΓΓΓ′ −WWW2

p

)
= 0 (3.46)

identify the eigen-modes of the motion of the system. The signs of the imaginary part of

the solutions to (3.46) provide information about the stability of the motion. If there exists

a solution whose imaginary part is positive, then instability of the collective motion 13 will

12 We can generalize the more sophisticated arguments in the context of the two-oscillator system to the

current case.
13 Unless the unstable mode is not excited, and that is highly unlikely for a generic initial state.
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occur. Eq. (3.45) in fact corresponds to a simultaneous set of equations of motion that

describes a system of coupled damped oscillators,

Ξ̈ΞΞ(t) + 2ΓΓΓ′ · Ξ̇ΞΞ(t) +WWW2
p ·ΞΞΞ(t) = 0 . (3.47)

Thus the stability condition associated with (3.47) is equivalent to whether the characteristic

polynomial (3.46), when κ = −i s, is a (strict) Hurwitz polynomial [56], whose zeros are all

located on the left half of the complex s plane. In other words, the motion described by

(3.47) is stable if the characteristic polynomial associated with the Laplace transformation

of the lefthand side of (3.47)

p(s) = det
(
s2I + 2sΓΓΓ′ +WWW2

p

)
(3.48)

is Hurwitz. In general, a sufficient and necessary condition is provided by the Routh-Hurwitz

stability criterion [57], which states that all principal minors of the Hurwitz matrix associated

with p(s) are positive.

This criterion becomes computationally cumbersome as n grows, and it is very hard to

establish an apparent connection between this criterion and the physically meaningful matri-

ces ΓΓΓ′ andWWW2
p. For this reason we turn to finding arguments to directly relate the properties

of the matrices ΓΓΓ′ andWWW2
p with the stability condition of motion described by (3.47). These

arguments, although mathematically less rigorous, are physically more transparent. The

idea is that solving the polynomial p(s) = 0 is equivalent to finding the eigenvalue s of the

system [58] (
s2I + 2sΓΓΓ′ +WWW2

)
· x = 0 , (3.49)

with the normalized column eigenvector x, with xT ·x = 1. We multiply (3.49) from the left

with xT , transforming the matrix expression (3.49) to an ordinary quadratic equation of s,

s2 + 2bs+ c = 0 , b = xT ·ΓΓΓ′ · x , c = xT ·WWW2
p · x . (3.50)

so that

s = −b± i
√
c− b2 . (3.51)

Since we have required that ΓΓΓ′ andWWW2
p are (strictly) positive definite, the variables b and c

are also positive by construction. This implies that

b2 − c < b2 , ⇒ Re s < 0 . (3.52)

Thus the positive definiteness of ΓΓΓ′ andWWW2
p is sufficient to ensure the stability of the motion

(3.47) which in turn signals the existence of an equilibrium state. In addition, the expressions
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in (3.50) resemble those we have seen for the case of one oscillator interacting with a bath,

where
√
c− b2 ∝

√
ω2
p − γ2 is related to the resonance frequency.

In summary, the requirement that ΓΓΓ′ andWWW2
p are positive matrices implies that d2(τ) is

indeed a retarded Green’s function and d̃2(κ) does not have any pole along the real axis of κ

and on the upper half of the complex κ plane. Therefore the integrand in (3.37) is positive

and bounded, so the heat capacity (3.37) is positive and approaches zero as β → ∞. In

addition it ensures the existence of the equilibrium state, which is needed a) for the reduced

system to have a meaningful fluctuation-dissipation relation, b) to show the energy balance

between the system and the bath, c) to ensure the extensive nature of the internal energy

of the system and finally d) for the associated heat capacity to be positive definite in our

framework of open system nonequilibrium dynamics approach to quantum thermodynamics.

IV. SUMMARY AND DISCUSSIONS

A. Summary of major results

As a preamble we bring up the rather special conditions whereupon the foundation of

thermodynamics is laid, from an open system perspective: A small open system interacting

with a vast environment (whose thermal properties can be captured by a few physical param-

eters, its temperature, chemical potential), it is in the limit of vanishing coupling between

them, only when the system can equilibrate and thermalize at late times, that thermody-

namics makes sense. These considerations can be extended to nonequilibrium conditions but

not for far from equilibrium, fully arbitrary time evolutions. We mentioned the important

differences in the setups for treating quantum thermodynamics (QTD), namely, between

Level 1 Assuming the closed system (comprising the system and its environment) remains

in a global thermal state (which we call CGTs) and Level 2 an open system approaching

equilibrium at late times (we call it ONEq), which is the preferred approach we adopt for

the discussion of Level 0. The centroid of this paper is a detailed model study, that of a

system of N coupled, spatially separated quantum oscillators interacting with a common

scalar quantum field bath at finite temperature, where the existence of exact solutions can

provide unambiguous quantification of physical variables, thermodynamic relations and help

to clarify many basic issues in QTD. The set of issues we addressed include:

1. Gateway to thermodynamics: the existence of an equilibrium state

1) Equilibrium state at late times: Let the system initially be prepared in a state that

is not in thermal equilibrium with the shared bath, it has been known that if the coupling
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between the system and the bath is vanishingly weak, the reduced system will equilibrate

at late times. This is the pre-condition for talking about its thermodynamic behavior. The

new challenge is whether the system will equilibrate for strong coupling. This point has been

emphasized in e.g. [53] who used the quantum Brownian motion model where the system

consists of N quantum harmonic oscillators and the environment is an infinite-oscillator

bath.

2) Equilibration, not thermalization: The strong coupling regime poses new challenges:

Allowing the coupling between the system oscillators and the interaction between the system

and the bath to be strong, and assuming that the dynamics of the system remains stable,

the first and foremost statement is that due to non-weak system-bath interaction, this final

state (of the system) is not described by a density matrix of the Gibbs form with respect to

the system Hamiltonian. Therefore one should refrain from using the word thermalization

to describe the end result, and note that conventional thermodynamics need not apply. The

tough question is, when will TD remain a viable theory for this equilibrated strongly coupled

system.

3) Environment-induced non-Markovian inter-oscillator interaction: The newer challenge

which we need to take on here is to show equilibration for a system of strongly coupled N

quantum oscillators at finite spatial separation and strongly interacting with an environment

composed of a quantum scalar field. The case of N oscillators in the same spatial location is

easier to prove because one needs not worry about the field-induced non-Markovian effects.

However, beware of the pathology of even two oscillators stacked up at the same spatial

location, as described in Sec. E. The added complication is due to the non-Markovian nature

of the induced interaction discovered in [41, 49, 50] amongst the system oscillators (or qubits)

mediated by the field environment. This issue has not been dealt with in this context before,

as far as we know.

4) The existence of an equilibrated state for the case of two coupled oscillators has been

demonstrated. The conditions for N oscillators are discussed in Sec. III E. We argue that

certain positive-definiteness requirements must be satisfied to the effect that the effective

damping constants of the oscillators stay positive and the effective oscillator frequencies

remain real.

5) With the assurance of an equilibrated state, many nice properties follow. Specifically,

the extensivity of the internal energy and the positivity of the heat capacity. The absence

of such a state for open quantum systems severs the linkage to thermodynamics. QTD in

the form described here does not exist for these systems.
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2. Internal Energy, Heat Capacity and the Third Law

1) The internal energy for certain strongly bounded systems may not be straighforwards

to define (e.g., the presence of self energy as when gravity is involved) but fortunately not so

in the model we studied: it is the sum of the kinetic energy of each oscillator, the harmonic

potential energy, and their coupling energy. Heat capacity is the derivative of the internal

energy with respect to the bath temperature.

2) We examine the Third Law from the behavior of the heat capacity at low and zero

temperatures. We are concerned with a) low temperature behavior, b) the positivity and c)

the extensivity of heat capacity.

3) The internal energy and the heat capacity for a system consisting of only one harmonic

oscillator have been derived before in the CGTs setup [35]. They are derived here in an open

quantum system ONEq setup, which in the epoch after equilibration, can be compared,

in the weak osc-bath coupling limit, with the quantities derived in the CGTs and in the

conventional thermodynamics. They all agree with each other.

4) Complexity arises when the system has more than one constituent. The bath-induced

non-Markovian effects cannot be properly described in conventional thermodynamics. This

also brings in question the validity of energy extensivity because the system constituents

are not only directly coupled (which is easy to deal with by normal mode separation) but

are indirectly coupled or intertwined in a non-Markovian way by the induced interaction

through their common environment.

5) With the proven existence of an equilibrated state for N spatially separated but mutu-

ally coupled system oscillators we have shown that even a strongly coupled system can still

have asymptotic extensivity of the internal energy, and the heat capacity remains positive

as long as the motion is stable.

6) To compare results calculated in the three different levels, CGTs, ONEq and conven-

tional thermodynamics, we need to beware of their respective regimes of validity and identify

their common denominators, e.g., the common physical quantities and the states they are

in. We work here with an open system ONEq set up, namely, we allow the system to evolve

from a nonequilibrium initial state to a final equilibrium state. If the system thermalizes

then the results obtained in the ONEq setup can be compared to results in conventional

thermodynamics, as we did. Since the reduced density matrix of the ONEq after equilibra-

tion and that of the system in the CGTs setups are the same [53], the results from these

two setups can be compared using this quantity.
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B. Heat Capacity and Third Law

For the same system we have studied here there are claims of negative heat capacity

in variance to our findings. E.g., the author of [34] working with a global thermal state

CGTs setup claims that the heat capacity of the system of multiple quantum harmonic

oscillators can be negative at low temperatures for 1) stronger system-bath interaction, or

2) smaller number of system constituents. However, we have demonstrated under rather

general conditions that after the system reaches equilibration, the heat capacity of the

system is always positive and approaches zero, for the full range of system-bath interaction

strength. Thus the third law, from the aspect of low-temperature behavior of the heat

capacity of the system, is not violated. Our findings of the extensivity of the energy and the

positivity of heat capacity for N coupled oscillator system should hold in all three levels of

inquiry.

C. On Entanglement Witnesses and Heat Capacity

In Ref. [39] Wieśniak et al have “shown that the low-temperature behavior of the specific

heat can reveal the presence of entanglement in bulk bodies in the thermodynamical equi-

librium”. They drew this conclusion by showing that the heat capacity is an entanglement

witness for some spin models. This involves finding a lower bound on heat capacity that

can be achieved by separable states of the system. The third law requires the heat capacity

to approach zero asymptotically with the temperature. This means that at low enough

temperatures the behavior of heat capacity is not compatible with separable states, and is

thus an indicator of entanglement.

Here we find that specific heat is not a reliable indicator of entanglement for our model.14

We see no requirement [41] that the zero temperature state is always entangled. For example,

when the coupling between the constituents in the system is sufficiently strong, the system

tends to relax to an entangled state at zero temperature. However, for sufficiently strong

system-bath coupling, the system can relax to a separable state even at zero temperature.

In this equilibrium state, the system oscillators are disentangled among themselves, but can

get entangled with the bath oscillators. This can be understood as a consequence of the

monogamy of entanglement.

14 It is worth mentioning that the models studied in Ref. [39] differ from the ones studied in this paper in two

important aspects. First, we are studying harmonic oscillators with infinite dimensional Hilbert spaces as

opposed to the finite dimensional spin systems. Second, we are taking an open system approach, allowing

the system-bath coupling to be finite, and we are dealing with equilibrium states as opposed to thermal

states.
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At the same time, we have shown that the third law is valid for our model in all parameter

regimes. There is no connection between the third law and entanglement. Moreover, even

in the models/parameter regimes in which this connection exist, we do not interpret this

observation as the third law relying on quantum entanglement. The Third Law stands. The

claim that the third law implies the existence of entanglement could well be affected by the

use of entanglement witness as a criterion.

D. Relation with Global Thermal State formulation, Sequel on heat, energy and

entropy

1. Relation to Global Thermal State formulation: Seifert’s systematics of energy heat and

entropy for quantum systems

Much work on QTD has been done under the closed system in a global thermal state

(CGTs) set up. It would be useful to find a link between it and our open system nonequilib-

rium (ONEq) approach. We have carried out a first step towards this goal. We focused on

Seifert’s rendition of energy and entropy for classical thermodynamics [15] in a closed sys-

tem global thermal state (CGTs) set up. In a companion paper [30] we have generalized his

results for the thermodynamics of classical systems to quantum systems. This may enable

us to use his systematics for discussing the First and Second Laws for quantum systems.

The diversity of how thermodynamic functions are defined is both a resource of adaptivity

and at times a source of confusion. To show how the thermodynamic functions are used

and how they enter into the TD relations, in this same companion paper we studied the

approach of Gelin and Thoss [12] who also work in the CGTs setup but adopt a different set of

thermodynamics functions from Seifert’s. Consulting Seifert’s systematics and allowing for

varying thermodynamic functions we hope to construct more links between our open systems

ONEq formulation and the prevailing CGTs formulations of quantum thermodynamics.

2. Sequel: On Heat, Entropy, Entanglement and the Second Law

The issues of heat, entropy and entanglement in strongly coupled open quantum systems

will be the center of attention in our second paper. Notice the subtle yet important differ-

ence between energy and heat. In this paper we have focused on the internal energy and

heat capacity of the system, but not heat, which is the energy transfer between the system

and the environment. This is because heat transfer as energy change contains ambiguities in

an open system context. For example Esposito et al [68] found that any heat definition ex-
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pressed as an energy change in the reservoir energy plus any fraction of the system-reservoir

interaction is not an exact differential when evaluated along reversible isothermal transfor-

mations, except when that fraction is zero. Even in that latter case the reversible heat

divided by temperature, namely entropy, does not satisfy the third law of thermodynamics

and diverges in the low temperature limit.

We also have reservations in some claims of violation of the Second Law for quantum

systems [29]. For example if one uses the Clausius inequality representation for the Second

Law, we know it is only valid for classical systems at high temperatures. One needs to scru-

tinize the different definitions of entropy for strongly coupled quantum systems to make sure

they are physically sound in the quantum regimes (such as at low temperatures), including

possible non-Markovian behaviors, before adopting them to address foundational issues.

The relevant issues ranging from quantum correlations, entanglement, information to

entropy production and heat can be sampled in these references of the last 15 years [43, 59–

69], which span the scope of our sequel studies using the paradigm established in this paper.
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Appendix A: Influence Functional Formalism for Quantum Thermodynamics

For the study of the thermodynamical properties of a system one mainly focuses on the

dynamics and thermal properties of the system under the influence of a thermal bath it

interacts with, not particularly about the bath itself. This is the arena where the open

system conceptual framework is most suited. When the system of interest interacts with

the bath strongly, one needs to take into account not only the influence of the bath on

the system but also the backreaction of the system on the bath. The influence functional

formalism is particularly adept for this description because it respects the self-consistency

of the system-bath evolutionary dynamics (an example being the fluctuation-dissipation
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relation) which has increased significance for treating systems with non-vanishing coupling

with its environment.

In this appendix we give a self-contained description of the influence functional formalism

used in this series of papers for obtaining the thermodynamic properties of physical quantities

of a system interacting strongly with a thermal bath. Over and beyond the standard classic

sources of Feynman-Vernon [7] and Caldeira-Leggett [8], we also provide additional materials

in the use of the coarse-grained effective action [70] and stochastic effective action [71]

developed in the 90’s and 00’s. And, from the stochastic effective action, as a further

development, we follow a recent work [48] to expound the different advantages of using the

Langevin equation route which is more intuitive versus the more formal route via the reduced

density operator, which can account for the full quantum dynamics of the reduced system and

enforce the operator ordering. This system of tools was used to describe the thermodynamics

of quantum many-body systems in a nonequilibrium steady state. The reader can find more

details of this formalism and examine its application to a more complex problem in [48].

In this paper we shall use it for the development of quantum thermodynamics at strong

coupling, starting with the Third Law.

1. Influence Functional for Open Quantum Systems

Consider for our system a quantum harmonic oscillator (called an Unruh-DeWitt detector

in relativistic quantum information) moving along a prescribed spatial trajectory z in 3 + 1

Minkowski spacetime. We can call z its external degree of freedom, while its internal degree

of freedom is the oscillator’s displacement χ. The bath is represented by a massless scalar

field φ. The action of the combined system is

S[χ, φ] = Sχ[χ] + SI [χ, φ] + Sφ[φ] , (A1)

where Sχ, Sφ, SI are the actions which describe the free quantum oscillators, the bath field

and their interaction, given respectively by

Sχ[χ] =

∫ t

0

ds
m

2

[
χ̇2(s)− ω2

bχ
2(s)

]
, Sφ[φ] =

∫ t

0

d4x
1

2
∂µφ(x) ∂µφ(x) ,

SI [χ, φ] =

∫ t

0

d4x eχ(s) δ3[x− z(s)]φ(x) ,

where x = (t,x), ωb is the bare natural frequency of the oscillator, and an overdot denotes

taking the time derivative of a variable. The internal degree of freedom of the quantum

oscillator is assumed to be linearly coupled to its bath with coupling strength e, which can

take on a finite (non-vanishing) value.
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Assume that the combined system at time t = 0 is in a product state 15.

ρ(0) = ρ(χ) ⊗ ρ(φ)
β , (A2)

where ρ(χ) is the initial density operator for the internal degree of freedom, and has a

Gaussian form

ρ(χ)(χi, χ
′
i; 0) =

(
1

πς2

)1/2

exp

[
− 1

2ς2

(
χ2
i + χ′2i

)]
. (A3)

The parameter ς is the width of the wavepacket, and χi, χf are shorthands for χ at the

initial time t = 0 and the final time t respectively, that is, χi = χ(0) and χf = χ(t). This

subscript convention will be adopted for the other variables. The bath is initially in its own

thermal state at temperature β−1, with the density matrix

ρ
(φ)
β (0) =

e−βH
(φ)

Zφ
, Zφ = Trφ e

−βH(φ)

(A4)

Here Hφ[φ] is the free scalar field Hamiltonian associated with the action Sφ[φ].

The time evolution of the density matrix operator of the combined system is then de-

scribed by the unitary evolution operator U(t, 0) associated with the action (A1),

ρ(t) =
{
U(t, 0) ρ(0)U−1(t, 0)

}
. (A5)

In the path-integral representation the total density matrix at time t is related to its values

at an earlier moment t = 0 by

ρ(χf , χ
′
f ;φf , φ

′
f ; t) =

∫ ∞
−∞

dχidχ
′
i

∫ ∞
−∞

dφidφ
′
i

∫ χf

χi

Dχ+

∫ χ′f

χ′i

Dχ−
∫ φf

φi

Dφ+

∫ φ′f

φ′i

Dφ−

exp
{
i S[χ+, φ+]− i S[χ−, φ−]

}
ρ(χ)(χi, χ

′
i; 0)ρ

(φ)
β (φi, φ

′
i; 0) . (A6)

The variables evaluated along the forward and backward time paths, respectively corre-

sponding to U and U−1 in (A5), will be distinguished by the subscripts +, −.

2. Reduced Density Operator and Coarse-Grained Effective Action

When we are interested only in the dynamics of the system as influenced by the bath,

we can work with the reduced density matrix of the system, obtained by tracing out the

microscopic degrees of freedom of the bath in the total density matrix, namely,

ρ(χ)(χf , χ
′
f ; t) = Trφ ρ(χf , χ

′
f ;φf , φ

′
f ; t)

15 For a discussion of the physical consequences of factorizable initial conditions and generalizations, see e.g.,

[71–74].
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=

∫ ∞
−∞

dχidχ
′
i ρ

(χ)(χi, χ
′
i, 0)

∫ χf

χi

Dχ+

∫ χ′f

χ′i

Dχ− exp
{
i Sχ[χ+]− i Sχ[χ−]

}
× exp

{
i

2
e2

∫ t

0

ds ds′
([
χ+(s)− χ−(s)

]
G

(φ)
R (s, s′)

[
χ+(s′) + χ−(s′)

]
+ i
[
χ+(s)− χ−(s)

]
G

(φ)
H (s, s′)

[
χ+(s′)− χ−(s′)

])}
, (A7)

where the retarded Green’s function G
(φ)
R of the scalar field φ is defined by

G
(φ)
R (s, s′) = i θ(s− s′) Tr

(
ρβ

[
φ(z(s), s), φ(z(s′), s′)

])
, (A8)

and the Hadamard function G
(φ)
H by

G
(φ)
H (s, s′) =

1

2
Tr
(
ρβ

{
φ(z(s), s), φ(z(s′), s′)

})
. (A9)

The Hadamard function is the expectation value of the anti-commutator of the quantum

field φ, and is hence temperature dependent. The retarded Green’s function, on the other

hand, does not have any temperature dependence. The exponential containing G
(φ)
R and

G
(φ)
H in (A7) is called the Feynman-Vernon influence functional F , and we may write it as

F [χ+, χ−] = ei SIF [χ+,χ−] , (A10)

where SIF is called the influence action. It consistently incorporates all the influences of the

bath on the system of our interest.

From (A7), we may view the time evolution of the reduced density matrix as a map from

its initial value ρχ(0) to its final value ρχ(t) by a superoperator J ,

ρ(χ)(χf , χ
′
f ; t) =

∫ ∞
−∞

dqidri J(qf , rf , t; qi, ri, 0) ρ(χ)(qi, ri; 0) . (A11)

The matrix elements of the superoperator J are expressed by

J(qf , rf , t; qi, ri, 0) =

∫ qf

qi

Dq
∫ rf

ri

Dr exp
{
i SCG[q, r]

}
, (A12)

where q, r are respectively the relative coordinate and the center-of-mass coordinate,

q = χ+ − χ− , r =
1

2

(
χ+ + χ−

)
. (A13)

Here, SCG, called the ‘coarse-grained’ effective action, governs the dynamics of the reduced

system under the influence of the bath. It contains the actions of the system plus the

influence of the bath on the system described by the influence action SIF ,

SCG[q, r] = Sχ[χ+]− Sχ[χ−] + SIF [χ+, χ−] (A14)
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=

∫ t

0

ds

{
mq̇(s)ṙ(s)−mω2q(s)r(s)

]}
+ e2

∫ t

0

ds ds′
[
q(s)G

(φ)
R (s, s′)r(s′) +

i

2
q(s)G

(φ)
H (s, s′)q(s′)

]
,

The path integral in the evolutionary operator J can be evaluated exactly because the

coarse-grained effective action (A14) is quadratic in q and r.

3. Stochastic Effective Action and Langevin Equations

With the help of the Feynman-Vernon identity, we can express the imaginary part of the

coarse-grained effective action SCG in (A14) in terms of a Gaussian noise ξ,

exp

[
−e

2

2

∫ t

0

ds

∫ t

0

ds′ q(s)G
(φ)
H (s, s′)q(s′)

]
=

∫
Dξ P [ξ] exp

[
i e

∫ t

0

ds q(s)ξ(s)

]
, (A15)

with

〈ξ(s)〉 = 0 , 〈ξ(s)ξ(s′)〉 = G
(φ)
H (s, s′) . (A16)

Here the angular brackets represent the ensemble average over the probability distribution

functional P [ξ]. Thus the exponential of the coarse-grained effective action SCG can be

expressed as a distributional integral

ei SCG[q,r] =

∫
Dξ P [ξ] ei SSE [q,r;ξ] , (A17)

where SSE is the stochastic effective action

SSE[q, r; ξ] =

∫ t

0

ds

{
m q̇(s)ṙ(s)−mω2

b q(s)r(s) + q(s)ξ(s) + e2

∫ s

0

ds′ q(s)G
(φ)
R (s, s′)r(s′)

}
.

(A18)

At this point, we may use the stochastic effective action to either derive the Langevin

equation, or to construct the stochastic reduced density matrix. We first take the former

route.

a. Langevin Equations

Taking the variation of SSE with respect to q and then letting q = 0, we arrive at the

Langevin equation,

mχ̈(s) +mω2
b χ(s)− e2

∫ s

0

ds′ G
(φ)
R (s, s′)χ(s′) = e ξ(s) . (A19)
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It describes the time evolution of the reduced system under the non-Markovian influence of

the bath. In this case, the influence is manifested in the form of the local stochastic driving

noise ξ and the nonlocal dissipative force,

e2

∫ s

0

ds′ G
(φ)
R (s, s′)χ(s′) .

In general, this nonlocal expression implies the evolution of the reduced system is history-

dependent. However, in this one-oscillator example, the retarded Green’s functions matrix

has a simple form

G
(φ)
R (s, s′) = − 1

2π
θ(s− s′) δ′(s− s′) , (A20)

so the Langevin equation reduces to a purely local expression

mχ̈(s) + 2mγ χ̇(s) +mω2 χ(s) = e ξ(s) , (A21)

where the renormalized frequency ω is obtained by lumping the divergence term of G
(φ)
R (s, s′)

with the original bare frequency ωb, and γ = e2/8πm > 0 is the damping constant, which

serves as a convenient measure for the system-bath coupling strength. Eq. (A21) is seen to

be the Langevin equation for a driven, damped oscillator, as anticipated.

The reduced system is superficially non-conservative with the presence of friction and

noise forces, which originate from the interaction between the system and its environment.

These two processes are, however, connected by the fluctuation-dissipation relation. This

relation plays a fundamental role in the energy flow balance between the system and the

bath: fluctuations in the bath show up as noise and its backaction on the system gives rise

to dissipative dynamics.

The general solution to (A19) or (A21)

χ(s) = d1(s)χ(0) + d2(s)χ̇(0) +
e

m

∫ s

0

ds′ d2(s− s′)ξ(s′) (A22)

are expanded in terms of fundamental solution matrices d1 and d2. They are simply the

homogeneous solutions of the corresponding equation of motion but satisfy a particular set

of initial conditions,

d1(0) = 1 , ḋ1(0) = 0 , (A23)

d2(0) = 0 , ḋ2(0) = 1 . (A24)

This can be the starting point for computing the physical observables of the reduced system.

For example, the power delivered by the noise ξ at any given time t > 0 is given by

Pξ(t) = e 〈ξ(t)χ̇(t)〉 =
e2

m

∫ t

0

ds ḋ2(t− s) 〈ξ(t)ξ(s)〉 (A25)
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=
e2

m

∫ t

0

ds′ ḋ2(t− s′)G(φ)
H (t− s′) , (A26)

since initially the oscillator’s displacement χ is not correlated with the noise force ξ. Likewise

the power output at time t due to the dissipative self-force is given by

Pγ(t) = −2mγ 〈χ̇2(t)〉 , (A27)

where the velocity uncertainty 〈χ̇2(t)〉 takes the form

〈χ̇2(t)〉 = ḋ2
1(t) 〈χ2(0)〉+ ḋ2

2(t) 〈χ̇2(0)〉

+
e2

m2

∫ t

0

ds

∫ t

0

ds′ ḋ2(t− s)ḋ2(t− s′) 〈ξ(s)ξ(s′)〉 , (A28)

if initially χ(0) and χ̇(0) are not correlated. The first two terms in (A28) exponentially

decay with time, so at late times the third term dominates. This reflects the fact that at

late times the dynamics of the reduced system is governed by the bath.

b. Stochastic Reduced Density Matrix

The Langevin equation approach illustrated above to obtain the desired physical quanti-

ties associated with the dynamics of the reduced system is less formal, but more flexible and

physically intuitive. It is particularly convenient if the quantities at hand involve noise ei-

ther from the bath or externally introduced. Alternatively, a more systematic and complete

approach is by means of the reduced density operator, which accounts for the full quan-

tum dynamics of the reduced system and enforces the operator ordering. The drawback is

that since the influence functional does not have explicit dependence on the noise, it is not

straightforward to implement it for the cases that explicitly depend on the bath noise. An

example is the average power input by the noise shown in (A26). Only after invoking the

Feynman-Vernon identity could the bath noise be made explicit. Next we will show a way to

combine the advantages of these two approaches, by incorporating the noise from the bath

in the reduced density matrix.

Let us rewrite the reduced density matrix (A11) in terms of the stochastic effective action

SSE in (A18),

ρ(χ)(qf , rf ; t) =

∫ ∞
−∞

dqidri ρ
(χ)(qi, ri; 0)

∫ qf

qi

Dq
∫ rf

ri

Dr exp
{
i SCG[q, r]

}
=

∫
Dξ P [ξ] ρ(χ)(qf , rf , t; ξ] , (A29)
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The ρ(χ)(qf , rf , t; ξ] is called the stochastic reduced density matrix, which has explicit de-

pendence on the noise ξ of the bath

ρ(χ)
χ (qf , rf , t; ξ] =

∫ ∞
−∞

dqidri ρ
(χ)(qi, ri; 0)

∫ qf

qi

Dq
∫ rf

ri

Dr ei SSE [q,r,ξ] , (A30)

with the stochastic effective action given by (A18). In this representation, we see that the

reduced system, now driven by a classical stochastic force of the bath, is described by the

stochastic density matrix. For each realization of the bath noise, the reduced system evolves

to a state described by the density matrix (A30). Different realizations make the system

end up at different final states with probability given by P [ξ].

To compute the quantum and stochastic average of a dynamical variable, say, f(χ; ξ] at

time t, which depends on both the stochastic variable ξ and the quantum operator χ of the

reduced system, we simply evaluate the trace associated with the system variables and the

ensemble average associated with the bath noise,

〈f(χ; ξ]〉 =

∫
Dξ P [ξ] Trχ

{
ρ(χ)(t; ξ] f(χ; ξ]

}
. (A31)

The procedure in (A31) is understood as follows: for each specific realization of the stochastic

noise ξ, we first calculate the expectation value of the quantum operator f(χ; ξ] for the state

described by the reduced density operator ρ(χ)(t; ξ]. The obtained result, still dependent on

the stochastic variable, will then be averaged over according to the probability distribution

P [ξ] of the noise.

As an example, we will compute the same average power Pξ delivered by the stochastic

force ξ from bath as in (A26). Once we note that p = mχ̇, the power Pξ is then give by

Pξ(t) =
e

m
〈 ξ(t) p(t) 〉

= −i e
m

∫
Dξ P [ξ]

∫ ∞
−∞

dqfdrf δ(qf ) ξ
∂

∂χf
ρ(χ)(qf , rf , t; ξ) , (A32)

where the momentum p canonical to the coordinate χ is given by

p = −i ∂
∂χ

, (A33)

and the trace over the dynamical variables of the reduced system is defined as

Trχ =

∫ ∞
−∞

dqfdrf δ(qf ) . (A34)

Since the initial state of the reduced system is a Gaussian state and the stochastic effective

action is quadratic in the system’s variables, the final state will remain Gaussian and the
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corresponding reduced density operator thus can be evaluated exactly. To derive the explicit

form of the reduced density matrix, we first evaluate the path integrals in (A30),∫ qf

qi

Dq
∫ rf

ri

Dr exp

{
i

∫ t

0

ds

[
m q̇(s)ṙ(s)−mω2

b (s) q(s)r(s) + q(s)ξ(s)

+ e2

∫ s

0

ds′ q(s)G
(φ)
R (s, s′)r(s′)

]}
= N exp

[
im qf ṙf − im qiṙi

]
, (A35)

where N is the normalization constant, and can be determined by the unitarity requirement.

It is given by

N =
(m

2π

)2

det µ̇(0) . (A36)

Note that the mean trajectories q, r are solutions to the Langevin equation (A21) with the

boundary conditions q(t) = qi, q(0) = qi and r(t) = rb, r(0) = ri. Thus they and their time

derivatives are functionals of the stochastic noise ξ. Explicitly, in terms of the boundary

values, we can write r(s) as

r(s) = ν(s) ri + µ(s) rf + Jr(s) , (A37)

for 0 ≤ s ≤ t. The functions µ(s), ν(s) are

µ(s) =
d2(s)

d2(t)
, ν(s) = d1(s)− d2(s)

d1(t)

d2(t)
, (A38)

and the current Jr(s) is given by

Jr(s) =
e

m

∫ s

0

ds′ d2(s− s′)ξ(s′)− e

m

∫ t

0

ds′
d2(s)

d2(t)
d2(t− s′) ξ(s′) . (A39)

Moreover, we can write the partial derivative ∂/∂χ as

∂

∂χ
=

∂

∂q
+

1

2

∂

∂r
. (A40)

Now we are ready to evaluate the power delivered by the stochastic force ξ, Eq. (A32)

becomes

Pξ(t) =
N

det µ̇(0)

(
2π

m

)2 ∫
Dξ P [ξ] ξ

[
J̇r(t)−

µ̇(t)

µ̇(0)
J̇r(0)

]
. (A41)

The expressions in the square brackets can be reduced to

J̇r(t)−
µ̇(t)

µ̇(0)
J̇r(0) =

e

m

∫ t

0

ds′ ḋ2(t− s′) ξ(s′) . (A42)

Thus the power delivered to the system from the bath is equal to

Pξ(t) =
e2

m

∫
Dξ P [ξ] ξ(t)

∫ t

0

ds′ ḋ2(t− s′) ξ(s′) =
e2

m

∫ t

0

ds′ ḋ2(t− s′)G(φ)
H (t− s′) . (A43)

This is exactly the same as (A26).
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Appendix B: Thermodynamics of simple systems in a common bath

1. System of One Harmonic Oscillator

We first examine the one-oscillator system. The absence of mutual interaction between

the constituents of the system renders it exactly and fully solvable without approximation.

It can readily be compared with the corresponding case in conventional thermodynamics,

where the system is extremely weakly coupled to and assumed to be always in thermal

equilibrium with a heat bath, whose dynamics is of no concern to the system beyond its

being in a thermal state with a temperature parameter. In this case the mechanical energy

is given by

E(∞) =
1

2
Im

∫ ∞
−∞

dκ

2π
coth

βκ

2

(
κ2 + ω2

p

)
d̃2(κ) , (B1)

where d̃2(κ) is given by

d̃2(κ) =
1

ω2
b − κ2 − e2

m
G

(φ)
R (κ)

=
1

ω2
p − κ2 − i 2γκ

. (B2)

The integral in (B1) is logarithmically divergent, so we will introduce a regularization scheme

in due course. In addition since it is much more difficult to evaluate the integral of the

hyper-trigonometric function, we write the factor coth
βκ

2
as the summation of the algebraic

function of the Matsubara frequency νn,

coth
βκ

2
=

2

β

∞∑
n=−∞

κ

κ2 + ν2
n

, νn =
2nπ

β
. (B3)

in hope that the resulting integral contains only the algebraic function.

On account of regularization, we may assume it valid to exchange the order of integration

and summation, so that (B1) becomes

E(∞) = Im
2

β

∞∑
n=−∞

∫ ∞
−∞

dκ

2π

κ

κ2 + ν2
n

i γκ− ω2
p

κ2 − ω2
p + i 2γκ

. (B4)

The evaluation of the integral in (B4) is straightforward except for the contribution of the

zero mode n = 0, which needs a separate treatment from the n 6= 0 case. The contribution

from the (n = 0) zero mode has an infrared (IR) divergence. We introduce an IR cutoff δ

and obtain∫ ∞
−∞

dκ

2π

1

κ

i γκ− ω2
p

κ2 − ω2
p + i 2γκ

= lim
δ→0+

∫ ∞
−∞

dκ

2π

κ

κ2 + δ2

i γκ− ω2
p

κ2 − ω2
p + i 2γκ

=
i

2
. (B5)
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For n 6= 0, the integral in the summation is well defined and it gives∫ ∞
−∞

dκ

2π

κ

κ2 + ν2
n

i γκ− ω2
p

κ2 − ω2
p + i 2γκ

=
i

2

(
γνn + ω2

p

ω2
p + 2γνn + ν2

n

)
. (B6)

Now Eq. (B4) becomes

E(∞) =
1

β

∞∑
n=−∞

γ|νn|+ ω2
p

ω2
p + 2γ|νn|+ ν2

n

. (B7)

The summation including infinitely high Matsubara frequencies will give an inevitable UV

logarithmic divergence, as expected from (B1). We insert a damping factor e−νn/Λ, with

Λ > 0, to regularize the summation and arrive at

2

β

∞∑
n=1

γνn + ω2
p

ω2
p + 2γνn + ν2

n

e−νn/Λ

= 2e−
2π
βΛ Im

{
w+

1− i βw+
2F1(1, 1− i βw+, 2− i βw+; e−

2π
βΛ )

}
, (B8)

where w± = (W ± i γ)/2π and W is the resonance frequency, given by W =
√
ω2
p − γ2. The

hypergeometric function 2F1(a, b, c; z) is defined by

2F1(a, b, c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (a)k =

k−1∏
n=0

(a+ n) =
(a+ k − 1)!

(a− 1)!
, (B9)

and has a branch-cut on the complex z plane along the real axis from 1 to ∞.

In the limit Λ→ +∞, the mechanical energy of the oscillator becomes

E(∞) =
1

β
− γ

π
ln

2π

βΛ
− 2 Im

{
w+ H(−i βw+)

}
, (B10)

where H(n) is the nth harmonic number. The cutoff parameter Λ defines the highest energy

scale in the problem, Its presence can be understood as the consequence that the oscil-

lator couples with a bath that contains a huge number of degrees of freedom. It results

from the bath contribution on very short length scales. Since ln Λ is accompanied by the

damping constant γ, the cutoff-dependent term in (B10) is negligible for weak oscillator-

bath interaction while it can have a significant contribution in the strong interaction limit.

Thus the internal energy E(∞) in principle can depend on the cutoff scale. Note that since

the cutoff-dependent term does not depend on temperature, it will not appear in the heat

capacity.

This yields for the heat capacity

C = 1− γβ

π
− 2 Re

{
β2w2

+ ψ(1)(1− i βw+)

}
=


1− γβ

π
+O(β2) , βω � 1 ,

2πγ

3βω2
p

+O(β−2) , βγ � 1 ,
(B11)
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FIG. 1: We compare the difference in predictions from the equilibrium and nonequilibrium ap-

proaches. The blue (solid) curve describes the temperature dependence of the mechanical energy

of the oscillator in the equilibrium thermal state. The other two curves give the temperature vari-

ations of the mechanical energy of the oscillator which interacts with a bath that is initially in the

thermal state. As an illustration of the nontrivial effect in the choice of the cutoff scale, these two

curves have different cutoff scales.

when γ < ωp. We thus see the heat capacity grows algebraically from zero at low temperature

and then saturates to unity at high temperature. The function ψ(n)(z) is the nth derivative

of the digamma function.

Next we examine the weak oscillator-bath coupling limit γ → 0. In this limit the mean

mechanical energy (B10) becomes

lim
γ→0

E(∞) =
ωp
2

coth
βωp

2
− γ

π
ln

2π

βΛ
+O(γ) , (B12)

where O(γ) contains the finite 16 we can compare results for different values of the system-

bath interaction strength γ.

16 It also contains the cutoff-dependent contributions but they are of the order Λ−1 and higher. contribution

of the order γ. In principle as γ → 0, the physical frequency ωp will approach to the bare value ωb. This

seems innocuous at first sight for the weak oscillator-bath interaction regime, but their values can be

drastically different in the strong interaction and the large cutoff scale limit. In particular since ωp and

ωb are related by (2.28), the choice of γ and Λ must be restricted so that ω2
p remains positive definite to

prevent unstable dynamics. In fact the physical frequency ωp is determined by experimental preparation;

thus from the operational viewpoint we can let the physical frequency be fixed at the energy scale of

measurement. Alternatively, in the action (2.1), we can assume the system parameters take the physical

values, and we introduce counter terms to cancel contributions due to interactions with the bath [75].

Both approaches eventually produce equivalent results.
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Following this protocol, the corresponding heat capacity is then given by

lim
γ→0

C =

(
βωp

2

)2

sinh2 βωp
2

+O(γ) . (B13)

It is divergence-free due to the fact that the logarithmic divergence does not depend on

temperature.

Let us now compare this expression with the corresponding heat capacity in conventional

thermodynamics. Consider a harmonic oscillator in its thermal state

ρ
(χ)
β = Z−1

χ e−βH
(χ)

, with H(χ) =
m

2
χ̇2 +

mω2
p

2
χ2 . (B14)

Its mean mechanical energy is given by

E = Tr
{
ρ

(χ)
β H(χ)

}
=
ωp
2

coth
βωp

2
. (B15)

It does not depend on the coupling between the oscillator and the bath (because of this, one

may not realize that conventional thermodynamics is an open-system theory) and in fact

this expression is the same as the dominant term of (B12) in the weak coupling limit. For

this system the heat capacity in conventional thermodynamics is exactly given by

C = −β2 ∂E

∂β
=

(
βωp

2

)2

sinh2 βωp
2

=


1−

β2ω2
p

12
+ · · · , βωp � 1 ,

β2ω2
p e
−βωp + · · · , βωp � 1 ,

(B16)

and is equal to the leading term of (B13) in the weak coupling limit. Note that it has a

different low temperature asymptote from that in (B11). This is central to the consideration

of the Third Law. Similar results have been obtained for the same configuration, which is

nonetheless initially prepared in the equilibrium global thermal state [35], but the physical

contents are different. The similarity in outcomes based on the nonequilibrium initial state

and equilibrium global thermal state is not a coincidence, as has been discussed in [53].

Essentially it is the consequence of the damped, stable motion of the reduced system due to

the interaction with the bath.

For nonvanishing oscillator-bath coupling, there is a stark difference between the conven-

tional thermodynamical equilibrium and our open-system nonequilibrium approaches. In

general, the results in the open-system framework may have cutoff-dependent contributions,

as a result of the huge number of degrees of freedom in the bath. Since this cutoff-dependent

term is proportional to the oscillator-bath interaction strength, it tends to be ignored in the

weak coupling approximation. The second distinction is related to the observation that
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FIG. 2: We show the difference of the heat capacity of the single oscillator obtained from equilibrium

Ceq and nonequilibrium approaches Cneq. The difference is more significant for stronger coupling

between the oscillator and the bath. At low temperature, Ceq approaches zero exponentially, while

Cneq has an algebraic fall-off.

there is one more scale γ in the open-systems nonequilibrium framework, in addition to ω

and β−1 already existent in the conventional equilibrium thermodynamics framework. This

introduces an additional subtlety in defining the low temperature limit βω � 1. In the

open-systems nonequilibrium framework, there may be a more stringent criterion such as

βγ � 1 when γ/ω < 1, or βf(γ, β) � 1, where f(γ, β) is a dimensional function of γ, ω

and [f ] = L−1, that is, inversely proportional to the length scale L. The presence of this

additional scale contributes to different predictions of the heat capacity between the two

frameworks in the low temperature regime, as can be seen from (B11) and (B16).

The low-temperature behavior of the heat capacity in (B11) has been argued [76], for the

global thermal state case, to be related to the density of the state of the harmonic oscillator

in the thermal bath. There it has been shown that if the combined system is initially in the

equilibrium global thermal state, then the original discrete energy spectrum of the undamped

oscillator will become a continuous one with a unique ground level. That is, the oscillator-

bath interaction renders the oscillator a gapless system. This interesting observation has

not been proven for a nonequilibrium initial state. It may still apply because the spectrum

depends on the effective Hamiltonian (Lagrangian) instead of the prepared initial state.
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2. System of Two Coupled Oscillators in a Common Bath

When the system has two or more oscillators, the dynamics of the reduced system be-

comes much more intricate. Other than their direct coupling, the oscillators also interact

with each other indirectly through their shared bath. This indirect influence by one os-

cillator will propagate in the form of the bath/field disturbance exerted onto all the other

oscillators. In turn, more and more subsequent repercussions will be proliferated among the

perturbed oscillators. Thus the total effect on the system as a whole depends on the history

of each oscillator, leading to very complex evolution. Addition to this further complication

in the interpretation of the results arises from the reduced (environment-influenced) system’s

parameter space containing regions where its motion is unstable. We need to identify and

exclude this case, then expound the results of the reduced system in an equilibrium state

after its motion is fully relaxed.

a. Dynamics

From (2.8), the equations of motion for two coupled oscillators are

χ̈1(t) + ω2
p χ1(t) + σ χ2(t) + 2γ χ̇1(t)− 2γ

`
θ(t− `)χ2(t− `) =

1

m
ξ1(t) , (B17)

χ̈2(t) + ω2
p χ2(t) + σ χ1(t) + 2γ χ̇2(t)− 2γ

`
θ(t− `)χ1(t− `) =

1

m
ξ2(t) , (B18)

where the oscillators 1, 2 are respectively located at z1, z2 so that ` = |z1 − z2|. It is

convenient to reorganize the coupled motion of these two oscillators to an uncoupled motion

of a fast mode Σ = (χ1 + χ2)/2 and a slow mode ∆ = χ1 − χ2,

Σ̈(t) + ω2
+ Σ(t) + 2γ Σ̇(t)− 2γ

`
θ(t− `) Σ(t− `) =

1

2m

[
ξ1(t) + ξ2(t)

]
, (B19)

∆̈(t) + ω2
−∆(t) + 2γ ∆̇(t) +

2γ

`
θ(t− `) ∆(t− `) =

1

m

[
ξ1(t)− ξ2(t)

]
, (B20)

with ω2
± = ω2

p±σ. Although in appearance the variables Σ and ∆ satisfy separate equations

(B19) and (B20), it does not mean that their motions are decoupled. This is because the

righthand sides of (B19) and (B20) indicate that the noises from two locations get mingled

together. This clearly shows that the two oscillators are correlated due to arbitration of the

ambient quantum field bath.

Their solutions are most easily found if we perform the Laplace transformation over this

set of equations of motion and turn them into a simultaneous set of algebraic equations[
z2 + 2γ z + ω2

+ −
2γ

`
e−z`

]
Σ̃(z) =

(
z + 2γ

)
Σ(0) + Σ̇(0) +

1

m
ξ̃+(z) , (B21)
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[
z2 + 2γ z + ω2

− +
2γ

`
e−z`

]
∆̃(z) =

(
z + 2γ

)
∆(0) + ∆̇(0) +

1

m
ξ̃−(z) , (B22)

where ξ+ = (ξ1 + ξ2)/2 and ξ− = ξ1 − ξ2. Unstable motion occurs when the solutions to

z2 + 2γ z + ω2
± ∓

2γ

`
e−z` = 0 , (B23)

have the positive real parts. The solution that corresponds to unstable (runnaway) motion

can be shown to be always located on the positive real axis of the complex z plane. Since

(B23) is not a simple algebraic equation, it will have an infinite number of solutions, sym-

metrically distributed on both sides of the real axis, except for the previously mentioned

runaway solution. It reflects the mutual undulant disturbance mediated by the field from

each oscillator. Thus we expect the spatial non-Markovianity renders the motion of two

oscillators much more intricate than that of one oscillator. Finding the solutions to (B23)

is then nontrivial but since the details about locating the perturbative or the asymptotic

solutions have been discussed in [41, 50, 77, 78], they will not be repeated here.

However, a word of caution about the choice of `: When ` is extremely small such that

2γ/` � 1 the contribution from the retardation term is comparable with the frequency

renormalization due to the interaction of the oscillator with the bath. Therefore the ex-

pression for the equation of motion like (B23) becomes dubious in the sense that 1) a point

particle model is not always feasible in the context of the self-force, as was long pointed

out by Rohrlich and others [79], 2) the equation of motion has a different damping term,

proportional to the third-order time derivative, instead of the first-order one [41]. Thus the

effect of finite size of the oscillator must be taken into consideration.

In summary, instability of motion occurs when the formal effective oscillating frequencies

of at least one of the two modes

ω
(±)
eff = ω2 ± σ ∓ 2γ

`
cos z` , (B24)

become negative. It is likely to happen when 1) the oscillating frequencies of the normal mode

ω± become imaginary, and/or 2) the non-Markovian field-induced effect becomes too ex-

treme. Finally we remark that the ratio ς = σ`/(2γ) measuring the relative strength between

the direct inter-oscillator coupling and the indirect environment-induced non-Markovian ef-

fect is a useful quantity for this consideration, as was introduced in [41] for expounding

the competing physical mechanisms determining the quantum entanglement between two

coupled oscillators in a shared bath.
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b. Internal energy, Heat capacity

In the matrix notations (2.15) for this two-oscillator system, we have

ΩΩΩ2
b =

ω2
b σ

σ ω2
b

 , G
(φ)
R (κ) =

δ(0)

2π
+ i

κ

4π

ei κ`

4π`
ei κ`

4π`

δ(0)

2π
+ i

κ

4π

 , (B25)

where ` = |z1 − z2|, and from (2.10), we can find G̃
(φ)
R (ω; r) given by

G̃
(φ)
R (κ; r) =

∫ ∞
−∞

dτ G
(φ)
R (τ, r) ei κτ =


ei κr

4πr
, r 6= 0 ,

δ(0)

2π
+ i

κ

4π
, r = 0 .

(B26)

In the diagonal elements of
e2

m
G

(φ)
R (κ), the divergent or cutoff-dependent term will be ab-

sorbed with the diagonal elements ω2
b in ΩΩΩ2

b to form the physical frequency ω2
p. The remaining

term in the diagonal elements of
e2

m
G

(φ)
R (κ) will then give i 2γκ. Thus d̃2(κ) in (2.17) be-

comes

d̃2(κ) =

ω2
p − κ2 − i 2γκ σ − 2γ

`
ei κ`

σ − 2γ

`
ei κ` ω2

p − κ2 − i 2γκ


−1

. (B27)

This is essentially what we need to compute the total mechanical energy (2.29) of two

oscillators when their motion reaches equilibrium after relaxation.

We have assumed somewhat artificially that σ is a constant independent of the separation

between the two oscillators. We may relax this restriction to allow it to be a function of

`ij = |zi − zj|, namely,

σ = f(`ij) . (B28)

Here f(z) is a monotonically decreasing function of z, except for the case z = 0, where we

require f(0) = 0, i.e, no self-interaction.

The total mechanical energy for the two coupled oscillator system is then given by

E(∞) =
1

2
Im

∫ ∞
−∞

dκ

2π
coth

βκ

2

{
ω2

+ + κ2

ω2
+ − κ2 − i 2γκ− 2γ

`
ei κ`

+
ω2
− + κ2

ω2
− − κ2 − i 2γκ+

2γ

`
ei κ`

}
e−
|κ|
Λ ,

and the corresponding heat capacity is

C(∞) = Im

∫ ∞
−∞

dκ

2π

 βκ

2

sinh
βκ

2


2
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FIG. 3: The case of two coupled quantum oscillators in a common thermal bath. (a) The general

behaviors of the motions of the fast mode Σ(t) and the slow mode ∆(t). (b) The behaviors of

|d̃(Σ)
2 (z)| and |d̃(∆)

2 (z)|: the divergence signifies the presence of the pole, and the positive pole implies

instability in motion. (c) The temperature dependence of the heat capacity in the equilibrium

vs nonequilibrium approaches. The parameters are chosen such that the resonance frequency

ωr =
√
ω2
p − γ2 = 1, γ = 0.2, σ = 0.5, ` = 1, and the cutoff scale Λ−1 = 0.01.

× 1

κ

{
ω2

+ + κ2

ω2
+ − κ2 − i 2γκ− 2γ

`
ei κ`

+
ω2
− + κ2

ω2
− − κ2 − i 2γκ+

2γ

`
ei κ`

}
e−
|κ|
Λ , (B29)

Let us examine the sign of the generic expression

1

κ
Im

1

ω2 − κ2 − i 2γκ± 2γ

`
ei κ`

, (B30)

for all κ because it will determine the sign of the heat capacity. Explicitly it takes the form

2γ`2
[
1∓ sinκ`

κ`

]
[
(κ2 − ω2)`∓ 2γ cosκ`

]2

+ 4γ2
[
κ`∓ sinκ`

]2 , (B31)

which is obviously positive for all κ. Note that the integrand in (B29) is nowhere negative

and the integral is well defined. Thus the heat capacity C(∞) in (B29) is always positive

for all nonzero temperatures even with the presence of bath-induced non-Markovian effects

between the oscillators. We observe that in the low temperature limit β →∞, the factor βκ

2

sinh
βκ

2


2

(B32)

goes to zero. Thus it implies that the heat capacity must vanish at zero temperature since

the integral in (B29) is regular. This argument may be too simplistic. In fact, when β →∞,
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the major contributions to the integral in (B29) comes from the interval |κ| < O(β−1), within

which the rest of the integrand is slowly varying. Thus we may pull the slowly changing

component out of the integral and write (B29) as

lim
β→∞

C(∞) '
4γω2

+

(ω2
+ −

2γ

`
)2

∫ β−1

−β−1

dκ

2π

 βκ

2

sinh
βκ

2


2

= K β−1 , (B33)

where K is a finite positive constant independent of β. Thus indeed the heat capacity

vanishes algebraically fast as the temperature approaches zero. Most important of all, the

heat capacity vanishes for all permissible choices of oscillator separation, inter-oscillator

coupling, and oscillator-bath interaction strength.

The analytical expression of the heat capacity for the two-oscillator system cannot be

given without resort to approximation due to the retarded non-Markovian effect. However

its low-temperature behavior is expected to be more complicated than its one oscillator

counterpart because of additional scale ` dependence. A numerical example is given in

Fig. 3. In particular in Fig. 3-(c), we compare the temperature dependence of heat capacity

of this system between the conventional thermodynamics and the present nonequilibrium

approaches.

An interesting feature appears when the interaction strength between the oscillators and

the bath is sufficiently strong. The heat capacity in the two-oscillator system does not

increase monotonically as a function of γ as is the case in the one-oscillator system. In

fact, as shown in Fig. 4, when the damping constant is greater than a critical value γc, the

heat capacity will increase monotonically afterwards with increasing γ. This non-monotonic

behavior is most easily seen at high temperatures. In this limit the critical value of γc is

approximately given by σ`/4 but slightly falls off with lower temperature. This explains

why the non-monotonic behavior of the heat capacity is not seen at low temperatures.

The non-monotonicity in the heat capacity results from the presence of the term 2γ
`
ei κ`

in (B29), which in turn corresponds to the retarded terms in the equations of motion (B17)

and (B18). That is, the non-monotonicity in the heat capacity is due to the strong nonlocal

effects mediated by the bath. The critical value γc = σ`/4 = γς/2 has a special physical

significance, namely, it indicates the relative significance between the direct coupling and

the indirect bath-induced causal influence among the oscillators.

When γ > γc, i.e., ς < O(1), the bath-induced effect dominates, whereas when γ < γc,

i.e., ς > O(1), the direct inter-oscillator coupling wins over. This can be further seen from

Fig. 5. In Fig. 5–(a) the curves of heat capacity at high temperature β → 0 are plotted for

different choices of damping constants γ with respect to the oscillator separation `, while

in (b) they are drawn for various selections of direct coupling strengths σ. They all show
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FIG. 4: Non-Markovian effect of heat capacity of system at short inter-oscillator separations.

The non-monotonic behavior of the heat capacity with respect to the damping constant is most

pronounced in the high temperature limit β → 0. The plots are drawn with the choices of ωp = 5,

σ = 10, ` = 0.08 and Λ−1 = 0.01. Note that the heat capacity in the right plot may take values

greater than 2. This is related to strong fluctuations of the bath at short distance and will be

discussed later.

a monotonic behavior once ` is smaller than the critical separation `c = 4γ/σ. Similar

behaviors also appear in thermal entanglement [80].

Mathematically it is not difficult to understand why this non-monotonicity in heat ca-

pacity is readily seen at high temperatures. From (B29), we immediately see that

lim
β→0

 βκ

2

sinh
βκ

2


2

= 1 , (B34)

and since the remaining terms in the integrand does not depend on temperature β−1, it

implies that the temperature will not have any effect on the contributions from the causal

influence 2γ
`
ei κ`. Physically the rise of heat capacity with increaing γ at short inter-oscillator

separation can be understood as a consequence of increasing thermal fluctuations of the

scalar-field bath, since heat capacity is a measure of the variance of internal energy at least

in conventional equilibrium thermodynamics 17

After the system equilibrates its dynamics is governed by the noise force, thus large quan-

tum/thermal fluctuations from the bath can in principle induce large fluctuations in the

energy of the system, which shows up as large heat capacity. To be specific, the Hadamard

17 In fact it is used as a criterion for the validity of canonical ensemble and the thermodynamic stability of

the system.
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FIG. 5: Here we show that at high temperature T → ∞, how the heat capacity at the final

equilibrium state C(∞) varies with the oscillator separation `. In (a) we fix the inter-oscillator

coupling σ and in (b) the oscillator-bath interaction strength γ is fixed. Generically we see the

heat capacity is not monotonically decreasing when we shorten the separation. It is related to the

large bath fluctuations at short distance.

function of the scalar field (2.11) depicts the correlation of the noise forces in (B17) and

(B18), and Fig. 6 shows the corresponding power spectrum, which is the temporal Fourier

transform of the Hadamard function. In general the spectrum of the scalar-field bath shows

larger values for shorter inter-oscillator separation ` and higher bath temperature β−1. They

reflect the mere facts that when we probe into a smaller spatial region, we see larger quan-

tum field fluctuations (simply seen on account of the uncertainty principle), and at higher

temperatures thermal fluctuations become more pronounced. These large fluctuations will

then produce large variances in the variables of the system via, for example, (2.20).

This non-monotonic behavior of heat capacity at short distance may not be easy to

observe because the transition occurs on a scale smaller than `c at moderate temperatures.

This scale may be shorter than the minimal separation at which the motion of the system

remains stable or fall below the physical size of realistic systems modeled by oscillators.

Appendix C: Difference between ONEq and the CGTs Setups

Here we use a simple calculation based on the ubiquitous quantum Brownian motion to

illustrate the difference between ONEq and the CGTs setups.

Consider a system of an harmonic oscillator bilinearly coupled to an environment con-

sisting of harmonic oscillators, also referred to as the quantum Brownian motion (QBM)
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(a) (b)

FIG. 6: To illustrate the effects of the large bath fluctuations, we draw the power spectrum of the

scalar field bath with respect to oscillator separation ` in (a) and temperature T in (b). Following

the gridlines, we observe the intensity of the power spectrum is greater for shorter separation and

hotter temperature.

model. The Hamiltonian of the combined system is:

HC = HS +HE +HI

=

(
P 2

2M0

+
1

2
M0Ω2Q2

)
+

(∑
n

p2
n

2mn

+
1

2
mnω

2
nq

2
n

)
+
∑
n

gnqnQ , (C1)

where the variables in capital are associated with the system, and M0, Ω are the mass

and the oscillating frequency of the system oscillator. The parameter gn is the coupling

strength between each bath mode qn and the system oscillator Q, while pn and P are their

respective conjugate momenta. Such a combined system is sufficiently simple to serve our

current purpose. At some initial time ti the system and environment are assumed to be

uncorrelated. Moreover, the environment is in the thermal state with respect to its isolated

Hamiltonian HE:

ρ(ti) = ρS(ti)⊗
e−βHE

ZE
. (C2)

In the above equation ZE = TrE
{
e−βHE

}
. If the environment is very large and the system-

environment coupling is such that the system relaxes to a unique steady (or equilibrium)

state irrespective of the initial state, we call the environment a thermal reservoir or a heat

bath. Under these assumptions of equilibration it has been shown that [53] the unique

steady (or equilibrium) state ρeqS has the form:

ρeqS ≡ lim
t→∞

ρS(t) = TrE

[
e−β(HS+HE+HI)

ZC

]
, (C3)
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where ZC is defined analogous to ZE above, and ρS(t) is the reduced state of the system,

evolved out of the initially uncorrelated global state (C2). This state is referred to as the

equilibrium state to distinguish it from the thermal state given by the Boltzmann-Gibbs

distribution with respect to the system Hamiltonian alone.

It is important to note that although the system relaxes to the equilibrium state, the

global state of the system+environment is not in equilibrium. In particular,

lim
t→∞

ρC(t) 6= e−β(HS+HE+HI)

ZC
. (C4)

The density matrix ρC here is the state of the combined system and environment, evolved

from the initial state (C2); thus ρS(t) = TrE ρC(t). Eq. (C4) is true because the thermal

state of the combined system+environment is a stationary state of the full Hamiltonian and

thus cannot be reached from a nonstationary state under Hamiltonian dynamics. What

(C3) says is that the reduced system state is consistent with a global thermal state and that

no further information about the nonequilibrium state of the combined system+bath can

be obtained if one has access to the system only. In other words the information on the

non-equilibrium state of the combined system+environment is not stored in the system but

rather in the environment and in the correlations between the system and the environment.

To demonstrate this point, we focus our attention to a single bath mode. The solutions

to the equation of motion are:

qk(t) = qk(ti) cos[ωk(t− ti)] +
pk(ti)

mkωk
sin[ωk(t− ti)] +

∫ t

ti

ds
sin[ωk(t− s)]

mkωk
gkQ(s) , (C5)

Q(t) = Q(ti)M0Ġ(t− ti) + P (ti)G(t− ti) +

∫ t

ti

ds G(t− s) ξ(s) , (C6)

ξ(s) =
∑
n

gn

{
qn(ti) cos[ωn(t− ti)] + pn(ti)

sin[ωn(t− ti)]
mnωn

}
. (C7)

Here G(t) is the Green’s function of the system oscillator, the exact form of which is not

important for this discussion (see Ref. [53] for details). Under the assumptions of equilibra-

tion G(t)→ 0 as t→∞. This is the reason why the system cannot keep any of the memory

of its initial state. However, since the closed system dynamics is unitary, that information is

not lost. Rather, it is distributed over the bath modes. The first two terms in the expression

for qk(t) do keep the memory of the initial thermal state of the bath. The last term is the

only place where the memory of the initial state of the system survives in the bath.∫ t

ti

ds
sin(ωk(t− s))

mkωk
gk

[
Q(ti)M0Ġ(s− ti) + P (ti)G(s− ti)

]
(C8)

∝M0Q(ti)

∫ t

ti

ds sin[ωk(t− s)]Ġ(s− ti) + P (ti)

∫ t

ti

ds sin[ωk(t− s)]G(s− ti) .
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The important observation is that although G(t) and Ġ(t) are decaying functions, the above

integrals are oscillatory. (This can be seen explicitly by choosing G(t) ∝ e−γt (ohmic case)

and doing the integrals explicitly.) As a result, the information on the initial state of the

system survives forever in the bath degrees of freedom. Similarly, information on initial

state also survives in the correlations between the system and bath modes as can be seen by

studying the late-time limit of 〈Q(t)qk(t)〉. However, the coupling to each mode is extremely

small under the assumption of equilibration, and this makes it practically impossible to

extrat this information in reality.

Under the assumption of equilibration, the reduced system relaxes to the equilibrium state

at late times, irrespective of the initial state of the system. As a result any thermodynamic

formulation that only relies on the reduced state of the system for its definitions, will be

independent of the initial state of the system. Moreover, all the information about the

reduced state of the system can be obtained by assuming a global thermal state without

introducing any errors.

In the weak coupling limit, |HI | → 0, the equilibrium state approaches the thermal

state. But in general, the equilibrium state differs from the thermal state. It is common

to define the so called “Hamiltonian of mean force” to quantify this difference. In essence,

Hamiltonian of mean force is the operator with respect to which the equilibrium state has

the Boltzmann-Gibbs form, where the temperature is that of the bath.

In conclusion, a) For strong coupling between the system and bath, if the system can

approach the equilibrium state, then the reduced density matrix of the open systems is the

same as the reduced density matrix in the CGTs framework upon integrating out the bath.

b) However, the final global states are different, despite the fact in both cases the dynamics

is generated by the same Hamiltonian (HC = HS + HI + HB). This is because two global

systems start out with different initial states, and the unitary evolution does not change the

distinguishability between the states. c) Note that in the CGTs set up, even though the

closed system is assumed to be in a global thermal state, the system is not necessarily in

a thermal state. One needs extra assumptions, such as the system is very weakly coupled

to the bath. It is under the same condition that the open system can reach thermalization.

One should be mindful of these presumptions when comparing the thermal states in both

setups. We mention these facts as a cautionary note to remind ourselves and for those who

want to compare quantities calculated in these three different setups.
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Appendix D: Difference between Equilibrium States and Thermal States in Classical

Thermodynamics

To help understand the important differences between equilibrium states and thermal

states, we give a short yet general derivation below where one can see how their differences

can be quantified.

Consider a classical system (S) described with position and momentum variables x =

(r, p) in the phase space. The system might consist of many particles in arbitrarily many

dimensions. In that case x, r, p are vectors. The thermal state of this system is described

by the following probability distribution on the phase space

pthS (x) =
e−βHS(x)

ZS
. (D1)

where HS(x) is the system Hamiltonian. Now assume the system is coupled to an envi-

ronment whose position and momenta we denote by y = (r′, p′). The Hamiltonian of the

environment is HE(y) and the interaction Hamiltonian is HI(x, y). Consider the thermal

state of the combined system plus environment. The probability distribution on the com-

bined phase space is given by:

pthS+E(x, y) =
e−β[HS(x)+HI(x,y)+HE(y)]

ZS+E

. (D2)

If we are only interested in the state of the system (S), we integrate this distribution over

the environment variables y. The result is the equilibrium distribution for the system alone:

peqS (x) = e−βHS(x)

∫
dy e−β(HI(x,y)+HE(y))

ZS+E

. (D3)

It is conventional to lump the second term on the righthand side into the exponent by

defining the potential of mean force as

H∗(x) = HS(x)− β−1 ln

∫
dy exp

{
−β
[
HI(x, y) +HE(y)

]}
∫
dy exp

{
−βHE(y)

} . (D4)

where upon the probability density of the system becomes

peqS (x) =
e−βH

∗(x)

Z∗
, Z∗ =

∫
dx e−βH

∗(x) .

It is clear that H(x) 6= H∗(x) in general. As a result, the thermal state differs from the

equilibrium state classically as well as quantum mechanically.



59

A more rigorous way to quantify the difference between equilibrium and thermal distri-

butions for classical systems is to use the Kullback–Leibler divergence which is a measure of

distinguishability for probability distributions. Its quantum analog is the quantum relative

entropy.

Appendix E: Causality Issues with the M-oscillator Bath

Here we add some cautionary comments on the differences between an oscillator bath

which has been used extensively in Brownian motion studies, e.g., [7–9, 11] and the scalar-

field bath, which also has been used by many, e.g, [41, 50, 81, 82]. We show, with the

assumption of two or more system oscillators placed in the same spatial location, e.g., in

[51, 52] which is often assumed in the M -oscillator bath situation, there is a causality issue.

No such issues exist with system oscillators in spatially separate locations in a scalar-field

bath.

Recall how one proceeds from a harmonic oscillator representation to field theory [83].

Consider the plane-wave expansion of a massless scalar quantum field

φ(x) =
1√
V

∑
k

1√
2ω

[
ak(t) eik·x + h.c.

]
. (E1)

the creation and annihilation operators a†k(t), ak(t) satisfy an equation of motion similar to

that of the ladder operators for the quantum harmonic oscillators

äk(t) + ω2ak(t) = 0 , (E2)

with ω = |k|. In particular when x = 0, Eq. (E1) and (E2) together represent a collection of

quantum harmonic oscillators. The Hamiltonian of the massless scalar field in the plane-wave

expansion (E1)

H =

∫
d3x

{
1

2

(
∂tφ
)2

+
1

2

(
∇∇∇φ
)2
}

=
∑
k

[
a†kak +

1

2

]
ω , (E3)

is to be compared to the Hamiltonian of a collection of quantum harmonic oscillators,

Hho =
M∑
i=1

m

2
χ̇2
i +

mωi
2

χ2
i =

∑
i

[
a†iai +

1

2

]
ωi , (E4)

where m is the mass and χi is the displacement of ith oscillator, whose natural frequency

is given by ωi = i∆. The parameter ∆ is some fundamental mode frequency. The ladder

operators ai, a
†
i in the latter case are defined by

ai =

√
mωi

2

(
χi +

1

mωi
pi

)
, (E5)
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where pi is the canonical momentum conjugate to χi. For this and other reasons most people

would not make a distinction between two bath models. E.g., this is so if one does not ask

where each of the system oscillators is located. If they are stacked up at one particular

spatial location or when the dipole approximation eik·x ' 1 is applicable, then there is no

difference whether the bath is described by a bunch of oscillators or a massless quantum

scalar field, since one can arbitrarily shift the location of the system such that x = zi = 0.

However, there are still fundamental differences between these two models.

In quantum field theory, the creation and annihilation operators ak, a†k depend on the

mode functions we use to expand the quantum field. In the plane wave expansion case, the

mode function takes a simple form eik·x so the vacuum annihilated by the corresponding ak
and the associated number states have a definite three-momentum k. Thus, even merely

using the uncertainty principle argument, one can see that these quanta are highly nonlocal-

ized, distributed over the whole configuration space. By contrast for harmonic oscillators,

the ground state and the excited states of each bath oscillator are essentially confined by

the corresponding harmonic potential mωiχ2
i /2. Thus the higher the value of the natural

frequency ωi is, the more localized the corresponding mode.

The difference between a field and a collection of harmonic oscillators shows up, for

example, when there is a spatial boundary present. The boundary will modify the mode

functions of the field and alter the two-point functions of the bath to recognize the effects

of the boundary. It is not obvious how this boundary-induced spatial dependence can be

naturally implemented in the bath-oscillator model.

Additional complexity emerges when the system contains more than one oscillator which

are spatially separated from one another, since the M -oscillator bath model does not have

the dynamical degrees of freedom to register the locations of the spatially-separated con-

stituent oscillators in the system unless extra input of the spatial information of the system

constituents and how it enters in their interaction with the bath is provided. More often

than not, one simply ignore the spatial distances between the system constituents by as-

suming that this separation is so small that we can essentially view them as being situated

at the same spatial location or by taking the dipole approximation. This creates a causality

problem. For relativistic quantum fields, the influence of an object at one spacetime point

on another object at another spacetime point is effected by the former’s imprint on the field,

which propagates causally to the latter when it begins to exert its influence. The dynamics of

the latter will in turn trigger a new disturbance, on top of the previous one it received, in the

field, which propagates at finite time and exerts its influence on the motion of all the other

components. This field-induced interaction among the spatially separated components of the

system depends on the history of its constituents and is thus fundamentally non-Markovian

in nature (see, the plots in e.g., [50]). Notably this causal propagation feature is mostly
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lacking in the oscillator-bath mode if the spatial information of the system constituents is

not properly accounted for 18. The field-bath model being relativistic naturally incorporates

the spatial correlation and respects the causality.
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[61] C. Hörhammer and H. Büttner, “Information and entropy in quantum brownian motion -

thermodynamic entropy versus von Neumann entropy”, J. Stat. Phys. 133, 1161 (2008).

[62] S. Hilt and E. Lutz, “System-bath entanglement in quantum thermodynamics”, Phys. Rev. A

79, 010101 (R) (2009).

[63] M. Esposito, K. Lindenberg and C. Van den Broeck, “Entropy production as correlation

between system and reservoir”, New J. Phys. 12, 013013 (2010).

[64] S. Deffner and E. Lutz, “Nonequilibrium entropy production for open quantum systems”,

Phys. Rev. Lett. 107, 140404 (2011).

[65] I. Kim, “Non-equilibrium dynamics in the quantum Brownian oscillator and the second law

of thermodynamics”, J. Stat. Phys. 146, 217 (2012).

[66] E. Aurell and R. Eichhorn, “On the von Neumann entropy of a bath linearly coupled to a



66

driven quantum system”, New J. Phys. 17 065007 (2015).

[67] J. Ankerhold and J. P. Pekola, “Heat due to system-reservoir correlations in thermal equilib-

rium”, Phys. Rev. B 90 075421 (2014).

[68] M. Esposito, M. A. Ochoa and M. Galperin, “Nature of heat in strongly coupled open quantum

systems”, Phys. Rev. B 92 235440 (2015)

[69] M. Carrega, P. Solinas, M. Sassetti and U. Weiss, “Energy exchange in driven open quantum

systems at strong coupling”, Phys. Rev. Lett. 116, 240403 (2016).

[70] B. L. Hu, Lectures at the Seventh International Latin-American Symposium on General Rela-

tivity (SILARG VII). Proceeding appeared as Relativity and Gravitation: Classical and Quan-

tum, edited by J. D’Olivio et al (World Scientific, Singapore, 1991); Yuhong Zhang, Ph.D thesis

(University of Maryland, 1990); E. Calzetta, B. L. Hu, and F. D. Mazzitelli, “Coarse-grained

effective action and renormalization group theory in semiclassical gravity and cosmology”,

Phys. Rep. 352, 459 (2001).

[71] P. R. Johnson and B. L. Hu, “Stochastic theory of relativistic particles moving in a quan-

tum field: scalar Abraham-Lorentz-Dirac-Langevin equation, radiation reaction, and vacuum

fluctuations”, Phys. Rev. D 65, 065015 (2002).

[72] B. L. Hu, J. P. Paz and Y. Zhang, “Quantum Brownian motion in a general environment:

exact master equation with nonlocal dissipation and colored noise”, Phys. Rev. D 45, 2843

(1992).

[73] L. D. Romero and J. P. Paz, “Decoherence and initial correlations in quantum Brownian

motion”, Phys. Rev. A, 55, 4070 (1997).

[74] C. H. Fleming, A. Roura and B. L. Hu, “Initial state preparation with dynamically generated

system-environment correlations”, Phys. Rev. E 84, 021106 (2011).

[75] O. S. Duarte and A. O. Caldeira, “Effective coupling between two Brownian particles”, Phys.

Rev. Lett. 97, 250601 (2006).

[76] A. Hanke and W. Zwerger, “Density of states of a damped quantum harmonic oscillator”,

Phys. Rev. E 52, 6875 (1995).

[77] J.-T. Hsiang, T.-H. Wu, and D.-S. Lee, “Stochastic Lorentz forces on a point charge moving

near the conducting plate”, Phy. Rev. D 77, 105021 (2008).

[78] R. Bellman and K. L. Cooks, “Differential-Difference Equations” (Academic, New York, 1963).

[79] F. Rohrlich, “Classical Charged Particles” (Addison-Wesley, Reading, Mass., 1965); A. D.



67

Yaghjian, “Relativistic Dynamics of a Charged Sphere - Updating the Lorentz-Abraham

Model”, Lecture Notes in Physics, Vol. 686, (Springer-Verlag, New York, 2006).

[80] J.-T. Hsiang and B. L. Hu, “‘Hot entanglement’? - A nonequilibrium quantum field theory

scrutiny”, Phy. Lett. B 750, 396 (2015).

[81] H. Spohn, J. L. Lebowitz, “Stationary non-equilibrium states of infinite harmonic systems”,

Comm. Math. Phys. 54, 97 (1977).

[82] W. G. Unruh and W. H. Zurek, “Reduction of a wave packet in quantum Brownian motion”,

Phys. Rev. D 40, 1071 (1989).

[83] B. L. Hu and A. Matacz, “Quantum Brownian motion in a bath of parametric oscillators: a

model for system-field interactions”, Phys. Rev. D 49, 6612 (1994).


	Introduction
	Main Contents
	Closed-system Global Thermal State versus Open-system Evolved Equilibrium State
	Key Results

	Brownian motion of systems of oscillators strongly coupled to an environment 
	Langevin Equation for the Reduced System
	Covariance Matrix
	Internal Energy

	Thermodynamics of Open Quantum Systems
	System of N Coupled Oscillators in a Common Bath
	Fluctuation-Dissipation Relation, Stationarity
	Energy Balance in the Equilibrium State
	Extensivity of Internal Energy
	Positivity of Heat Capacity and Existence of the Equilibrium State

	Summary and Discussions
	Summary of major results
	Gateway to thermodynamics: the existence of an equilibrium state
	Internal Energy, Heat Capacity and the Third Law

	Heat Capacity and Third Law
	On Entanglement Witnesses and Heat Capacity
	Relation with Global Thermal State formulation, Sequel on heat, energy and entropy
	Relation to Global Thermal State formulation: Seifert's systematics of energy heat and entropy for quantum systems
	Sequel: On Heat, Entropy, Entanglement and the Second Law


	Acknowledgement
	Influence Functional Formalism for Quantum Thermodynamics
	Influence Functional for Open Quantum Systems
	Reduced Density Operator and Coarse-Grained Effective Action
	Stochastic Effective Action and Langevin Equations
	Langevin Equations
	Stochastic Reduced Density Matrix


	Thermodynamics of simple systems in a common bath
	System of One Harmonic Oscillator
	System of Two Coupled Oscillators in a Common Bath
	Dynamics
	Internal energy, Heat capacity


	Difference between ONEq and the CGTs Setups
	Difference between Equilibrium States and Thermal States in Classical Thermodynamics
	Causality Issues with the M-oscillator Bath
	References

