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We consider the one-dimensional model of a spin glass with independent Gaussian-distributed
random interactions, that have mean zero and variance 1/|i− j|2σ , between the spins at sites i and
j for all i 6= j. It is known that, for σ > 1, there is no phase transition at any non-zero temperature
in this model. We prove rigorously that, for σ > 3/2, any translation-covariant Newman-Stein
metastate for the ground states (i.e. the frequencies with which distinct ground states are observed
in finite size samples in the limit of infinite size, for given disorder) is trivial and unique. In other
words, for given disorder and asymptotically at large sizes, the same ground state, or its global spin
flip, is obtained (almost) always. The proof consists of two parts: one is a theorem (based on one
by Newman and Stein for short-range two-dimensional models), valid for all σ > 1, that establishes
triviality under a convergence hypothesis on something similar to the energies of domain walls, and
the other (based on older results for the one-dimensional model) establishes that the hypothesis
is true for σ > 3/2. In addition, we derive heuristic scaling arguments and rigorous exponent
inequalities which tend to support the validity of the hypothesis under broader conditions. The
constructions of various metastates are extended to all values σ > 1/2. Triviality of the metastate
in bond-diluted power-law models for σ > 1 is proved directly.

I. INTRODUCTION

The problem of the equilibrium properties of spin
glasses has persisted for more than forty years. While the
basic standard model of a realistic short-range spin glass
remains the Edwards-Anderson (EA) model [1], other
models have also been considered, with the hope that
they turn out to be more tractable. Among these is a
version of the EA model with power-law long-range in-
teractions. In one dimension, the Hamiltonian of this
model has the form

H = −
∑

i,j∈Z:i<j

Jijsisj , (1)

where si are Ising spins, si = ±1, indexed by the set of
integers i ∈ Z, and as in the EA model the bonds Jij =
Jji for pairs (or in a graph-theoretic language, “edges”) i,
j are independent Gaussian random variables with mean
zero while, unlike in the EA model, the variances are

VarJij =

{

|i− j|−2σ (i 6= j),
0 otherwise.

(2)

Here we allowed the summations to be carried out over an
infinite system, though of course some boundary condi-
tions must be used to handle the infinite sum in practice.
A periodic version of H on a system of length L (L > 0
an odd integer) can be constructed as follows. Let i, j be
members of {−(L− 1)/2,−(L− 1)/2+ 1, . . . , (L− 1)/2},
let rij = min(|i − j|, L − |i − j|), and let Jij = Jij have
variance 1/r2σij for |i−j| 6= 0, so for fixed i and j VarJij is
L-independent when L is sufficiently large. In this paper,
the infinite size Hamiltonian (1) is meant unless otherwise
stated. We emphasize the spin-flip symmetry of these
Hamiltonians, that is, each Hamiltonian is unchanged if
si is replaced by −si for all i (i.e. flipping all the spins).

One dimensional models have the advantage that the ge-
ometry, especially of domains, is much simpler than in
higher dimensions, while the power-law form of the vari-
ance of the interactions allows phase transitions to occur
for sufficiently long-range interactions. The power-law
form, at least in higher dimensions, is also of interest
because it can arise in realistic metallic spin glasses.

In the one-dimensional power-law model, it is known
rigorously [2, 3] that, in the parameter region σ > 1/2,
the thermodynamic limit exists for thermodynamic prop-
erties when the temperature T is positive. For σ ≤ 1/2,
a non-trivial thermodynamic limit can be obtained (for
temperature T held fixed in the limit) only if the Hamil-
tonian is first rescaled by an L-dependent factor; we do
not consider those cases in this paper. The absence of a
transition at non-zero temperature (i.e. uniqueness of the
Gibbs state) was proved by Khanin [4] for σ > 3/2. The
classic theoretical study of the one-dimensional model
is by Kotliar, Anderson, and Stein [5], who in particu-
lar suggested that a transition at positive temperature
would occur for 1/2 < σ < 1 and not for σ > 1. This
was followed by a proof of the absence of a transition
at T > 0 for σ > 1 by van Enter and van Hemmen [6].
The last reference was criticized somewhat in Ref. [7], in
which the statement proved is the same but for fixed-spin
boundary conditions only; see also Ref. [8]. Some further
rigorous results were obtained in Refs. [9, 10]. For fur-
ther theoretical arguments from a physical perspective,
see Refs. [11, 12], and for a selection of more recent re-
sults on relevant issues, see Refs. [13–16].

In the 1990s the theory of short-range spin glasses (es-
pecially the EA model) was revolutionized by the work
of Newman and Stein [17], who introduced the concept
of a metastate to handle the possibility of chaotic size
dependence [19]. A metastate is a probability distribu-
tion on Gibbs states of an infinite-size system, derived
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from a limit of finite-size systems. At zero temperature,
a ground-state metastate (a probability distribution on
ground states, of which there can be many when the sys-
tem is strictly infinite) might be trivial (all the weight on
a single ground state, or a single pair if there is spin-
flip symmetry) or non-trivial (the weight is dispersed
over many ground states not related by symmetry). If
replica symmetry breaking [20, 21] occurs at non-zero
temperature, the metastate will be non-trivial [17, 18],
even at zero temperature. In the scaling-droplet the-
ory [11, 22, 23] (the main alternative scenario to replica
symmetry breaking as a description of a low-temperature
spin-glass phase), the underlying assumptions imply that
the metastate is trivial in the low-temperature phase [17].
The nature of the metastate is thus a basic issue for the
understanding of spin glasses. Some recent works have
addressed metastates numerically [24, 25].

There is an (in general, unproved) expectation that
any metastate, including a ground-state metastate, will
be trivial if there is no transition at T > 0. For the
two-dimensional EA model (with only nearest-neighbor
bonds on the square lattice), for which it is widely be-
lieved that no transition occurs at non-zero temperature,
Newman and Stein [26] proved results that go part of the
way towards showing that a translation-covariant zero-
temperature or ground-state metastate is trivial; we re-
fer to this work as NS. The results were extended [27] to
show that such a metastate is indeed trivial in the case of
a half-plane, rather than the full two-dimensional plane.

In the present paper, we take up this topic in the case of
the one-dimensional power-law model. The original goal
of this work, which will not be fully realized, was to prove
that the ground-state metastate is trivial for the model
when σ > 1. (This involves first constructing metastates
for the long-range model.) This does not seem to follow
directly from the uniqueness of the Gibbs state at T > 0
for σ > 1 mentioned above. The references [4, 6–8] are
more concerned with an infinite size limit at fixed T > 0,
and it does not seem possible to draw a conclusion about
a subsequent T → 0 limit. Finding the ground-state
metastate itself seems to require the opposite order of
limits, namely T → 0 in finite size.

In order to prove a rigorous result, we follow NS’s argu-
ment rather closely, and we carry it through to prove triv-
iality of any translation-covariant ground-state metastate
(and uniqueness as well) for σ > 1, but only under a hy-
pothesis that certain energies (which are something like
the energy of a domain wall) converge to finite values.
The hypothesis can be proved when σ > 3/2 using results
of Khanin [4], and combining these results proves that a
ground-state metastate is trivial and unique for σ > 3/2.
This is probably not optimal, and we also discuss scaling
arguments intended to support the hypothesis heuristi-
cally for all σ > 1. The approach definitely will not work
when there is a transition at T > 0 (in which case do-
main wall energies diverge), as is expected when σ < 1,
and the results shed no light on whether replica sym-
metry breaking or a non-trivial metastate occur in the

low-temperature phases in that case.
Some additional side results obtained along the way

are worth highlighting here, as they may be of indepen-
dent interest. One of these is a bound on the exponent,
now usually called θ, of the scaling-droplet theory for the
model [11, 12, 22, 23], which describes the scaling of the
minimum domain wall energy (we define it more precisely
below). We prove that it obeys the inequality

θ ≤ max(1 − σ, 0) (3)

in the one-dimensional power-law model. Within the
scaling-droplet theory, this gives a simple argument that
there can be no transition at T > 0 for σ > 1 (the known
result discussed above).
Another side result is that we ultimately extend the NS

construction of a ground-state metastate for the model
to all values σ > 1/2, rather than σ > 1 with which
we begin, to obtain what we call the “natural” ground-
state metastate, and then extend the construction of an
excitation metastate (used in the proofs), and the proof
of the main Theorem, likewise. These metastates will
be useful when considering other problems for the model
within the metastate framework in the future.
In addition to these results, we also analyze variant

models with diluted bonds, in which the probability that
a bond Jij is non-zero is a power of |i − j|. In these
models, the triviality and uniqueness of the ground-state
metastate can be proved directly for all σ > 1, similarly
to the short-range one-dimensional models.
The plan of the remainder of the paper is as fol-

lows. Section II discusses various preliminary matters:
the almost-sure convergence of a certain sum of random
variables, which physically is the energy change when
a finite set of spins is reversed; the rigorous definitions
of Gibbs states, ground states, and ground-state metas-
tates; the notions of domains, superdomains, and rung
energies, and the issue of convergence of the latter; and
the definitions of an excitation metastate, which extends
the ground-state metastate to include excitations, and of
transition values and flexibilities. Section III states and
proves the main Theorem of this work, the triviality of
the ground-state metastate under the hypothesis of con-
vergence of the rung energies. Section IV first proves that
the hypothesis holds for σ > 3/2, then turns to heuris-
tic scaling arguments which have some bearing on the
convergence question, and then back to rigorous argu-
ments which allow the extension of the definition of the
metastates and of the Theorem to σ > 1/2. Finally, the
bond-diluted models are introduced and analyzed. The
Appendix contains rigorous proofs of bounds on two scal-
ing exponents that were discussed in Section IV.

II. PRELIMINARIES

In this section, various preliminaries to the main The-
orem are discussed: In Sec. II A, we prove a useful ba-
sic lemma; in Sec. II B, we explain Gibbs states, ground
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states, and ground state metastates; in Sec. II C, we
define domain walls, microdomains, superdomains, and
rungs; and in Sec. II D we introduce two technical tools:
excitation metastates and transition values.

A. Basic observations

We let S = (si) stand for the indexed collection (vec-
tor) of the values of all the sis, and J = (Jij) for the
indexed collection (matrix) of all Jijs. We also write
S(A) = (si : i ∈ A) for a subset A ⊆ Z; Ac = Z\A is
the complement of A in Z. Following tradition, subsets
of the one-dimensional lattice Z will also be denoted Λ,
and ΛL = {−(L−1)/2,−(L−1)/2+1, . . . , (L−1)/2} for
odd L > 0 is an interval centered at the origin. We some-
times view the Hamiltonian as a function H = H(S) of
S = (si) for given J . The probability distribution (mea-
sure) on J will be denoted ν(J ) and is the infinite prod-
uct measure of the Gaussians for each Jij . Note that we
sometimes use the physicists’ term “distribution” for the
measure (or “law”) [28, 29] on some space (not always
a space of real variables); often “distribution” will mean
the probability density (not the cumulative probability
on a single real variable), but this should be clear from
the context. For now, we assume a joint distribution νρJ
on the bonds J and spins S, which has marginal distri-
bution ν on bonds J (i.e. when we sum νρJ over all S),
and conditional distribution ρJ on S given J , which of
course can depend on J (later, a metastate will be used
in place of ρJ ). Measure-theoretic terms [28, 29] such as
“with probability one”, or equivalently “for almost all”
or “almost surely”, refer here to the joint measure νρJ
unless otherwise stated. We write P for probability of an
event, and E for expectation (mean) and Var for variance
of a random variable.

We will make frequent use of Kolmogorov’s Three Se-
ries Theorem (Ref. [28], p. 125), which states that if Xn

is a sequence of independent random variables, and we
define Yn = XnΘ(A−|Xn|) (where Θ is the step function
with Θ(0) = 1, and A > 0 is a constant), then

∑∞
n=1 Xn

converges almost surely if and only if all of the follow-
ing three numerical series converge: 1)

∑

n P[|Xn| > A],
2)

∑

n EYn, and 3)
∑

n VarYn. Then we can obtain the
following result. Consider the sum

∑

j

Jijsisj (4)

for i fixed, with J and S drawn from the joint distribu-
tion νρJ . The sum is bounded by

∣

∣

∣

∣

∣

∣

∑

j

Jijsisj

∣

∣

∣

∣

∣

∣

≤
∑

j

|Jij |, (5)

which is independent of the spins, and likewise the dif-

ferences of partial sums obey
∣

∣

∣

∣

∣

∣

N
∑

j=M+1

Jijsisj

∣

∣

∣

∣

∣

∣

≤
N
∑

j=M+1

|Jij |. (6)

Lemma 1: For σ > 1 and with probability one, the right-
hand side of (5) converges and the sum (4) converges
absolutely, as does the sum

∑

i∈A,j∈B Jijsisj where A,

B are subsets of Z, A ∩B = ∅, and at most one of A, B
is infinite.
Proof: This follows from the Three Series Theorem. The
right-hand side of (5) is independent of the spins, so the
problem reduces to one involving only the distribution ν,
to which the Three Series Theorem can be applied with
A → ∞. We note that the series of expectation values
behaves as

N
∑

j=1

1

jσ
∼ N [1−σ]+ , (7)

up to a constant factor, where in writing such series we
show the rate of divergence at the upper limit, using the
notation

[x]+ =

{

x if x ≥ 0,
0 otherwise,

or [x]+ = max(0, x), and omit the constant factor. Like-
wise the series of variances behaves as

N
∑

j=1

1

j2σ
∼ N [1−2σ]+ . (8)

(The convergence of the latter series is also the condition
for the existence of the thermodynamic limit [2, 3, 30],
which thus exists when σ > 1/2.) Hence the right-hand
side of ineq. (5) converges almost surely, which gives the
almost-sure absolute convergence of the sum (4), and its
almost-sure convergence follows from the Cauchy crite-
rion and ineq. (6) in the usual way. The final statement
follows immediately. QED

B. Gibbs states, ground states, and metastates

The results of this paper concern ground states of an
infinite system, and probability distributions on such
ground states, called metastates. Here we collect the
basic statements about ground states and metastates.
We begin, in a little more generality than we need, with
Gibbs (or DLR) states at arbitrary temperature, in a sys-
tem that could be infinite (see e.g. Ref. [31]). A state is
a probability distribution Γ(S) on spin configurations S.
A Gibbs state is defined via its conditional distributions
when conditioned on S outside a finite region Λ: namely
if the conditional probabilities on the set of S(Λ), given
S(Λc), are Γ(S(Λ)|S(Λc)), then their ratios obey

Γ(S(Λ)|S(Λc))/Γ(S′(Λ)|S(Λc)) = exp−β(H(S)−H(S′))
(9)
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where S′ is another configuration, and S′(Λc) = S(Λc),
that is they are the same outside Λ (β = 1/T is inverse
temperature). From this rule the full distribution Γ(S)
is determined by using an increasing sequence of Λ, but
not uniquely; this allows the possibility of many distinct
Gibbs states, which can be thought of as arising from
different choices of a “boundary condition” (in a very
general sense) at infinity. In short-range models, the dif-
ference H(S) −H(S′) under this condition reduces to a
finite sum, but in a long-range model it does not. In
the one-dimensional model (1), by Lemma 1 the infinite
sum converges absolutely almost surely for σ > 1, so in
this case there is no issue with the definition of a Gibbs
state. For σ ≤ 1, a method of regularizing the sum would
have to be specified, and it seems that the existence of
Gibbs states must be considered further in this case. For-
tunately we do not need to deal with this case in this
paper.

The definition of a Gibbs state continues to apply when
T = 0, with (for S 6= S′) the ratio of conditional prob-
abilities being zero or infinity, unless the Hamiltonian
difference is exactly zero, which cannot occur when the
distribution ν is continuous. In particular, for continuous
ν the definition is satisfied in the case of a ground state,
defined as follows: a configuration S is a ground state
if changing S on any finite subset Λ of the spins causes
a non-negative change in energy. Again, with probabil-
ity one there is no difficulty with this criterion in the
one-dimensional model when σ > 1, and we note that
in infinite size there can be many ground states, not all
related to one another by flipping all the spins. We men-
tion that ground states are “pure” Gibbs states, but the
definition of this notion in the general case T ≥ 0 will
not be needed here. Even at T = 0, not all Gibbs states
are pure; a combination of ground states ia also a Gibbs
state. We let α, β, . . . label ground state configurations,
namely S(α), S(β), . . . of the infinite system, and write
α = β if S(α) = S(β).

To deal with the possible multiplicity of infinite-size
Gibbs states, and to make contact with finite systems,
we would like to use an infinite-size or “thermodynamic”
limit of a sequence of finite systems, all constructed from
the same sample J . Because of the possible occurrence of
chaotic size dependence [19], this may not be straightfor-
ward. Newman and Stein proposed the use of a construct
they called a metastate [32, 33]. A ground-state metas-
tate is a probability distribution on infinite-size ground
states for the given J . The existence of a metastate can
be shown using empirical averages of finite-size systems:
there exists a sequence of sizes Lk, say, that is not depen-
dent on J , such that the frequency of the number of times
each spin configuration S(ΛW ) (observed in a fixed-size
“window” ΛW ) occurs as part of the ground state in the
sizes L < Lk, with W < L, tends to a limit κJ [S(ΛW )]
(the probability of S(ΛW ) under κJ ) as k → ∞, for ar-
bitrarily large W . Any S that is drawn (sampled) from
the metastate κJ is a ground state: S = S(α) for some
α. (More precisely, in each size L, our Hamiltonian has

a pair of ground states. We write α for the ground state

with all spins reversed, namely S(α) = (−s
(α)
i ) = S(α),

say. When we construct the metastate, there are two
ground states in each size L, and we actually use frequen-
cies for the occurrence of these pairs, but finally give each
of S(α)(ΛW ), S(α)(ΛW ) equal probability in the metas-
tate κJ .) Such a metastate is not known to be unique—
it might depend on the sequence Lk. In addition to this
NS construction of a metastate, there is also the earlier
Aizenman-Wehr (AW) construction [34]. Both have sim-
ilar properties, and can be shown to be equal under some
conditions [32, 33]. The metastates we use below could
be of either type.

We should mention technically that a non-trivial
ground-state metastate might be spread over an uncount-
able number of ground states, all but at most countably
many of which have zero probability individually; in gen-
eral it will be sets of ground states that have non-zero
probability. In particular, for any window of finite size

W , only a finite number ≤ 2W
d

(in space of dimension
d) of ground states can be distinguished in the window.
A ground-state metastate assigns some non-zero proba-
bility to each of these configurations in ΛW . For a larger
window, each of these ground states may resolve into dis-
tinct ones, and share its probability between them. If we
neglect the possible countable set of ground states that
can have non-zero probability individually, the situation
in the uncountable case is similar to that of a continu-
ous distribution on the real numbers x in say 0 ≤ x ≤ 1,
with the probabilities for the restriction to a window cor-
responding to the probabilities for the restriction of the
decimal expansion of x to a finite number of places after
the decimal point. The probability of drawing a given
ground state (or number x) exactly will be zero, but it
is still possible to speak of the probability that a ground
state (or number) drawn has some particular property,
as long as the latter is “measurable”. We will not discuss
measurability questions; see NS [26].

In this paper, not many properties of a ground state
metastate will be required, and the only property used
frequently is translation covariance. We can assume that
the periodic model is used for the finite-size systems, and
then there is translation invariance of the joint distribu-
tion of bonds and ground states in a given finite size,
under translation of both the bonds and the spins. In
the limit defining a metastate, this translation invariance
is inherited by the joint distribution νκJ . The ground-
state metastate κJ is then translation covariant, that is,
it is a distribution on S that depends on the parame-
ters J , and is invariant under a translation of both the
spins si and the bonds Jij . If we take two metastates
κJ , κ′

J for the given J , we can draw two ground states
independently (one from each), using the product distri-
bution κJ κ′

J . The joint distribution νκJ κ′
J on bonds

and pairs of ground states is also translation invariant
if the two metastates κJ , κ′

J are both translation co-
variant. Though translation covariance need not hold in
metastates in general, it is used in the proofs of the main
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results in this paper.
The construction of a ground-state metastate from

finite-size samples still works for all σ > 1/2, in the sense
that one obtains a distribution on spin configurations S.
As the meaning of ground states in infinite size is less
clear for 1/2 < σ < 1, we cannot say at the moment
that these configurations are infinite-size ground states.
What we do know from the NS construction of a metas-
tate is that their restriction to any finite window occurs
with non-zero frequency among finite-size ground states.
When the latter is all that is in use, a ground-state metas-
tate in the present sense should be acceptable. Many ar-
guments still go through under these conditions. In most
of this paper, we will not use this approach, and will use
the above definition where σ > 1; we return to the more
general approach again in Section IVC.

C. Domains and superdomains

From now on, we frequently consider a pair of ground
states, and whenever a probabilistic argument is used, we
suppose that we have two ground-state metastates for the
same disorder J , say κJ , κ′

J (we could take κ′
J = κJ ),

and we draw the two ground states from these, say α from
κJ and β from κ′

J (independently). Measure-theoretic
terms like almost all, almost surely, or with probability
one, now refer to the product of the measures ν, κJ , and
κ′
J with which bonds J and ground states α and β are

drawn, respectively.
By definition, if S is a ground state, and any finite

number (say, those in a finite set Λ) of the spins are
reversed, the energy change

∆E = 2
∑

i∈Λ,j∈Λc

Jijsisj (10)

should be non-negative. By Lemma 1, this sum con-
verges absolutely (with probability one) if σ > 1. We
may sometimes describe this operation as the creation of
the domain Λ, which in this case is finite.
For two ground states α and β, the spins si agree for

some i and not for others. This defines two domains,
which we denote by A (the set of sites where the spins
are the same) and B (the set of sites where the spins are
reversed):

A = {i : s
(α)
i s

(β)
i = +1}, (11)

B = {i : s
(α)
i s

(β)
i = −1} = Ac. (12)

(Here and in some following notation we suppress men-
tion of the evident dependence on the two ground states
α, β, which are typically fixed during the discussion.)
The domains A and B will necessarily both be infinite
unless β = α or α (otherwise there is a contradiction
with the fact that α and β are both ground states), and
the energy difference between α and β will then be a
doubly-infinite sum. If σ < 2, such a sum will usually

not be convergent. In general, set A is not (path-) con-
nected, or contiguous: its sites cannot all be reached from
one another by a sequence of steps—each of length one—
between members of A. We call a domain consisting of
an interval of sites on which the spins are reversed com-
pared with some reference state a “microdomain”. Hence
A (and likewise B = Ac) can be decomposed into a dis-
joint union of microdomains; the intervals making up A
and those of B of course alternate. The “domain wall”W
between sets A and B is the collection of nearest-neighbor
edges with one end in A and one end in B,

W = {(i, i+ 1) : s
(α)
i s

(β)
i s

(α)
i+1s

(β)
i+1 = −1}, (13)

which in general will contain many edges. In the case
when a domain is a microdomain, we call the two edges
that bound it “microwalls”; thus each edge (i, i+1) ∈ W
is a microwall. Precisely stated, W consists of either:
(i) zero (when β = α or α); (ii) a finite odd number

(when s
(α)
i = s

(β)
i for all sufficiently large negative i, but

s
(α)
i = −s

(β)
i for all sufficiently large positive i, or vice

versa); or (iii) an infinite number of microwalls. Case (ii)
and some instances of case (iii) will be eliminated under
some conditions as we go on. Clearly, each microwall
(i, i + 1) ∈ W is of one of two types: we say (i, i + 1) is
of type I if i ∈ A and i + 1 ∈ B, and of type II if i ∈ B
and i+ 1 ∈ A.
The strategy of the following proof (similar to NS [26])

will be to draw two ground states, say (α, β) from a prod-
uct κJ κ′

J of translation-covariant ground-state metas-
tates. We argue that if σ > 1 and one condition is satis-
fied, then this leads to a contradiction unless β = α or α.
The conclusion will then be that the metastates κJ = κ′

J

are each supported on a unique ground state pair (α, α),
or else (α, β) do not satisfy the condition. The argument
involves a “superdomain” of β in α, which we now de-
fine: A superdomain of β in α is a configuration S that
is identical to S(α) for i outside a finite interval such as
[i0, i1] = {i0, i0 + 1, . . . , i1} for i0 < i1, but identical to
S(β) for i in [i0, i1].
We now begin to formulate the definitions that appear

in the main arguments, and state the condition used; they
involve the change in energy when a superdomain from
β is inserted in α. If we write A(i0, i1) = A ∩ [i0, i1] and
similarly B(i0, i1), then this change in energy is (recall
that for σ > 1, all these sums are finite with probability
one, as a consequence of Lemma 1)

∆Eβ(i0,i1),α = 2
∑

i∈B(i0,i1),
j∈B(i0,i1)c

Jijs
(α)
i s

(α)
j (14)

= 2
∑

i∈B(i0,i1),
j∈A

Jijs
(α)
i s

(α)
j

+ 2
∑

i∈B(i0,i1),
j∈B\B(i0,i1)

Jijs
(α)
i s

(α)
j . (15)

The corresponding change in energy for the superdomain
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of α inserted into β in the same interval is obtained by
interchanging α and β everywhere, and so is

∆Eα(i0,i1),β = 2
∑

i∈B(i0,i1),
j∈A

Jijs
(β)
i s

(β)
j

+ 2
∑

i∈B(i0,i1),
j∈B\B(i0,i1)

Jijs
(β)
i s

(β)
j (16)

= − 2
∑

i∈B(i0,i1),
j∈A

Jijs
(α)
i s

(α)
j

+ 2
∑

i∈B(i0,i1),
j∈B\B(i0,i1)

Jijs
(α)
i s

(α)
j . (17)

Comparing these two energy changes, we see that the
second sum on the right-hand side, the BB terms, is the
same, but the first sum (the AB terms) has reversed sign.
Because only a finite set of spins changed in both cases,
both energy changes ∆Eβ(i0,i1),α, ∆Eα(i0,i1),β must be
non-negative. Consequently, the BB sum on the right
hand side of each expression must be non-negative, and
the other sum, which has opposite sign in the two cases,
must in magnitude be less than or equal to the BB sum.
We can also construct superdomains by using α or β in

place of either α or β. A superdomain of α in α is a single
microdomain, with energy ∆Eα(i0,i1),α as above (in this
case, A is empty and B = Z). Using the corresponding
expressions, we obtain the identity (which will not be
used in the paper)

∆Eβ(i0,i1),α +∆Eα(i0,i1),β +∆Eβ(i0,i1),α +∆Eα(i0,i1),β

= ∆Eα(i0,i1),α +∆Eβ(i0,i1),β
. (18)

Some terminology for these combinations of energy
differences will be useful. The BB part of the sum
for ∆Eβ(i0,i1),α in eq. (15) (which is the same as in
∆Eα(i0,i1),β) corresponds to the interaction across the
two “rungs” that form part of a superdomain wall in the
two-dimensional short-range case studied by NS. We may
analogously call the two edges (i0− 1, i0) and (i1, i1+1),
that bound the superdomain, rungs, even though the geo-
metric picture that applied in the two-dimensional short-
range case does not apply here. A generic rung is denoted
by R. The BB sum itself we call the “total rung energy”
(that is, for both rungs together) of the superdomain.
While the total rung energy is finite (for σ > 1), noth-
ing prevents it from increasing as the length of the su-
perdomain increases. It will be crucial to assume as a
hypothesis that the total rung energies (for different su-
perdomains constructed from the same two ground states
α, β) in some sense approach the sum of two finite en-
ergies, one for each rung, as the separation of the rungs
goes to infinity. Because these energies are random, this
must be defined carefully.
For simplicity, from here until Section IVC we will

usually consider only rungs that are members of the do-
main wall W , and further, for a superdomain of β in α

or vice versa, we require i0, i1 ∈ B. Then the rungs of
our superdomain are R0 of type I at the left, and R1 of
type II at the right.
To define the energy of a single rungR0 = (i0−1, i0) of

type I, an obvious approach would be to consider a semi-
infinite analog of a superdomain of β in α, with ground
state α for the spins to the left of i0, and β for i0 and
spins to its right. The rung energy for this single rung is

2
∑

i<i0,i∈B,
j≥i0,j∈B

Jijs
(α)
i s

(α)
j . (19)

The next question is whether this sum converges to a
finite value. Using the “only if” part of the Three Series
Theorem, one finds that the sum cannot be absolutely
convergent for σ < 2 unless B is very sparse, which we
will see does not occur. Therefore we should regularize
the sum with a cut-off R and then we ask whether these
partial sums tend to a (finite) limit as R → ∞. One
“symmetric” way to regularize would be to restrict i and
j to ΛR + i0, an interval of length R centered at i0. But,
instead of this, it will be useful to consider an asymmetric
regularization, as follows. For the type I rung, we use the
limit of

ER0,R = 2
∑

i<i0,i∈B,
j≥i0,j∈B,j≤i0+R

Jijs
(α)
i s

(α)
j (20)

as the regulating parameter R → ∞, and similarly for
the type II rung at (i1, i1 + 1) we use the limit of

ER1,R = 2
∑

i≤i1,i∈B,i≥i1−R
j>i1,j∈B

Jijs
(α)
i s

(α)
j (21)

as R → ∞. For finite R and σ > 1, these expressions con-
verge absolutely almost surely by Lemma 1. Moreover,
when R = i1 − i0, ER0,R + ER1,R is exactly the total
rung energy for the superdomain on the interval [i0, i1].
If a rung energy ER,R (of either of the forms ER0,R

and ER1,R) converges almost surely to a limit (denoted
ER0 and ER1), then we say simply that the rung energy
ER converges. We now point out that the difference of
the rung energies for any two rungs (for given J , α, and
β) of the same type, when regularized with both Rs tend-
ing to infinity together (for example, with the Rs equal)
consists of two singly-infinite sums like those discussed in
Lemma 1, and for σ > 1 one of these is absolutely con-
vergent, while the other tends to zero as R → ∞, both
with probability one. Hence for σ > 1 and for each type
of rung, with probability one, either all rung energies are
convergent, or all are non-convergent. (This remains true
if we consider rungs at arbitrary positions, and not only
members of W , with now two ways of regulating their
energy instead of two types of rung. This is the reason
that considering only rungs in W will be sufficient when
σ > 1.) This is still for given α and β; it is possible that
for given J , rung energies of either type converge for
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some pairs α, β and diverge for others. Finally, it will be
convenient to use the convention that the case in which
W is empty, so the total rung energy is vacuous (because
there are no microwalls in W to choose as rungs), falls
into the class of non-convergence.

Similar issues arise for microwalls, which correspond
to the case B = Z: the energy change of a microdomain
is finite, but the sum defining the energy change of ei-
ther of its two microwalls may not converge. Because of
the identity (18), the scaling of the energy change of a
domain of α in α with its length will be similar to that
of the total rung energy of a superdomain of the same
size. Likewise, an identity similar to eq. (18) can be eas-
ily obtained for semi-infinite superdomains, and gives a
relation between the (formal) sums defining the energy
changes of a single rung and a single domain wall, and so
the scaling of the regulated versions will also be similar.
These relations might be useful in further study of, for
example, the expectation values of these energy changes,
to which we return in Sec. IVB.

D. Excitation metastate and transition values

The proof of the main Theorem involves the use of
an excitation metastate. Analogously to a ground state
metastate, an excitation metastate [26] is a probability
measure on infinite-size excited states and their excita-
tion energies, where excited states are produced by con-
straining the values S(Λ) of the spins in finite sets Λ,
in all possible ways and for all finite Λ, and the en-
ergy of the constrained state is a minimum (for Λ = ∅,
the excited state becomes the ground state). It is pro-
duced from the limit of the finite-size version, like the
ground state metastate. In each finite size L one can
obtain such excited states by constraining the values of
the spins in Λ (which must fit inside the finite size), find-
ing the lowest energy spin configuration subject to that
constraint, and comparing its energy with the ground
state energy to obtain the energy change ∆EΛ,S(Λ),L.
Note that ∆EΛ,S(Λ),L does not depend on which of
the two flip-related unconstrained ground states is cho-
sen, and if Λ is empty there are two (ground) states
with ∆EΛ,S(Λ),L = 0. The frequencies of these sets of

states and energies (α
Λ,S(Λ),L
J ,∆E

Λ,S(Λ),L
J ) for all choices

(Λ, S(Λ)) (denoted ♯) for given J have a limit along a J -
independent subsequence Lk; this limit is an excitation

metastate κ♯
J , a probability distribution on (α♯,∆E♯)

(for all ♯ at once) for given J . (For the excitation en-
ergies, frequencies can be obtained by a standard proce-
dure such as binning the energy changes and using the
frequencies for the bins, then finally refining the size of
the bins to obtain the distribution.) We also claim that
for any ground state metastate κJ , we can extend it to

an excitation metastate κ♯
J , such that the marginal dis-

tribution of κ♯
J on ground states is κJ . For this, we

simply require that the sequence of sizes Lk used to ob-

tain κ♯
J be a subsequence of that used to obtain κJ . In

addition to this construction of a NS excitation metas-
tate, there is an analogous construction for an AW exci-
tation metastate. Translation-covariant such metastates
(obtained from the periodic model) will be used in the
proofs of the main results.
Notice that in the limit, the number of spins that flip

when going from the ground state α to an excited state
α♯ is not necessarily finite (indeed it cannot be finite for
both ground states α and α), but that nonetheless the
excitation energy ∆E♯ will not diverge, because in any fi-

nite size it is bounded by the sum 2
∑

i∈Λ,j∈Λc Jijs
(α)
i s

(α)
j

which in the limit (conditioned on α) converges abso-
lutely with probability one for σ > 1, by Lemma 1.
(We remark that NS [26] mention the technical point
of establishing “tightness” (see Ref. [28], p. 94) for the
family of finite-size distributions of ∆E♯, which follows
from the bound on the excitation energy just mentioned.
We comment further on this and show that the restric-
tion to σ > 1 is not needed at the end of this section
and in Appendix A.) We emphasize that there is a dis-
tinction between the excitations (so-named following NS
[26]) considered here, which involve minimizing the en-
ergy change subject to a constraint on some spins, and
the energy change for reversing some spins in a ground
state, leaving all others fixed, with no minimization, as
discussed in the previous Section. To avoid confusion, we
will not refer to the latter as excitations.
From an excitation metastate, one can obtain informa-

tion about how a ground state changes as a finite number
of the bonds J are changed [26]. Suppose that D is a
finite set of edges (i, j) = (j, i) (i 6= j) and that JD is
a set of values for bonds on D (in other words, a func-
tion D → R). Let Λ be the set of sites i that are the
endpoints of edges in D. Define

HJD (S(Λ)) = −
∑

(i,j)∈D

JD
ij sisj, (22)

HJ (S(Λ)) = −
∑

(i,j)∈D

Jijsisj , (23)

which involve only spins at sites in Λ. Then in finite size
we consider the functions

h
(L)
S(Λ)(J

D) = ∆E
Λ,S(Λ),L
J +HJD(S(Λ))−HJ (S(Λ)).

(24)

Define S
∗,(L)

J ,JD (Λ) to be one of the two S(Λ) that min-

imizes h
(L)
S(Λ)(J

D). Then the ground state for bonds

J [JD], that is J with bonds for edges in D replaced
by JD, in size L is

α
(L)

J [JD ]
= α

Λ,S
∗,(L)

J ,JD
(Λ),L

J (25)

and its spin flip. Similarly, in the limit of infinite size,
when the bonds in a finite set D are changed, the ground
state αJ changes to αJ [JD] or its spin flip, where now

hS(Λ)(J
D) = ∆E

Λ,S(Λ)
J +HJD (S(Λ))−HJ (S(Λ)) (26)
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[HJD (S(Λ)) and HJ (S(Λ)) are unchanged], and

αJ [JD] = α
Λ,S∗

J ,JD (Λ)

J , (27)

where S∗
J ,JD (Λ) is one of the two S(Λ) that minimizes

hS(Λ)(J
D).

The simplest case of a change in the bonds is when
D is a single edge (i, j), so Λ = {i, j} contains only two
sites. In this case we are considering the change of Jij
to K ′ with all other J fixed. As K ′ varies in R, the
ground state changes just once, from α when K ′ = Jij
to a state α{i,j},S({i,j}), where S({i, j}) is one of the two
spin configurations on {i, j} for which sisj is minus its
value in α. The value of K ′ at which this change takes
place is called the transition value [26], denoted Kij . Kij

depends on α and on J \JD. However, Kij and the

unordered pair α, α{i,j},S({i,j}) do not depend on the
value of Jij when the other couplings are fixed. This
implies that Jij and Kij are independent with respect to

the measure νκ♯
J . Finally, we define the “flexibility” of

the edge (i, j) by [26]

Fij
def
= 2|Jij −Kij | (28)

= ∆E
{i,j},S({i,j})
J (29)

[using the same S({i, j})], which is thus the minimum
energy needed to change sisj from its value in the ground

state α when the collection of (α♯,∆E♯
J ) for all ♯ [in

particular, for Λ = ∅ and (Λ, S(Λ)) = ({i, j}, S({i, j}))]

has been drawn from νκ♯
J ; this change in state can be

accomplished by changing Jij by at least Fij/2, with the
appropriate sign. We remark again that the flexibility Fij

is bounded above by the energy change for reversing any
finite domain in ground state α such that sisj changes,
and that for σ > 1 such energies converge (by Lemma
1). Thus such upper bounds on Fij can be obtained
from α alone, which can be drawn from the ground state
metastate κJ , the marginal of the excitation metastate

κ♯
J . This point will be useful in the next section.
We want to point out here that the technical restriction

to σ > 1 is not in fact necessary for the construction of
an excitation metastate in this model. In Appendix A we
show that for σ > 1/2, the finite-size excitation energies
∆E♯,L are of order one with probability one, uniformly in
L, and while not necessarily convergent as L → ∞, the
family of distributions of these energies is tight. Then
the use of subsequence limits allows us to obtain, in the

same way as before, an excitation metastate κ♯
J for σ >

1/2, and this can extend the version of the ground state
metastate for σ > 1/2 already mentioned. We will not
return to this until Section IVC, and in the meantime
continue to use the construction above for σ > 1.

III. THEOREM

Now we can state the main Theorem of the paper,
the proof of which occupies the remainder of this Sec-

tion. The overall set-up and the terms used were al-
ready defined in the previous section. Measure-theoretic
statements like almost all, almost surely, or with prob-
ability one again refer throughout to the product of the
translation-covariant measures ν, κJ , and κ′

J with which
bonds J and ground states α and β (respectively) are
chosen, unless otherwise specified.
Theorem: Suppose σ > 1. Then, for ground states (α, β)
drawn from the translation-invariant product νκJ κ′

J ,
convergent rung energies for rungs R ∈ W of both types
almost surely do not occur; that is, either any translation-
covariant ground-state metastate κJ is supported on the
same ground state pair α, α (that is, the metastate is
trivial and unique, κJ = κ′

J ), or if ground states (α, β)
(with β 6= α or α) occur, then the rung energies of at
least one type are non-convergent.
The proof parallels that of the result in NS [26], and

will follow from Propositions 2 and 3 below. To aid the
reader, the Propositions in this Section are numbered so
that they correspond to the analogous Propositions in
NS [26].
We begin with basic facts, following NS.

Proposition 1: With probability one, the domain wall W
defined by the ground states α and β as in the Theorem
has well-defined non-negative density; if the density is
zero, W is empty.
Proof: By construction, the measure νκJ κ′

J is transla-
tion invariant, and so is the resulting measure on bonds
J and sets W . The bonds J can be integrated over, pro-
ducing the marginal distribution for the wall W , which
is again translation invariant. The empirical density of
the wall in an interval of length L can be defined as the
fraction of nearest-neighbor edges in the interval that are
in W (or as a sum of indicator functions for such edges,
normalized by the length L). By the ergodic theorem for
the translation group Z [29], the empirical density has a
well-defined translation-invariant limit as L → ∞, which
we may call the density (it can depend on J , α, β). If the
density is zero, with probability one microwalls are not
seen at all in any finite subregion of the infinite system.
QED.
Proposition 1 justifies (for translation-invariant mea-

sures νκJ κ′
J ) two claims made earlier: that case (ii) in

the description of W does not occur, and that the subset
B cannot be sparse, unless it is empty. Indeed the argu-
ment in the proof of Proposition 1 can also be applied to
the subset B, showing that it has non-zero density if it
is non-empty.
Now we turn to rungs and their energies, as defined in

Sec. II. We make the standing assumption that σ > 1
for the remainder of this Section. We already saw that
the total rung energy of a superdomain must be non-
negative. We now suppose that, for each type, (all) the
rung energies ER converge, and consider the infimum of
the rung energies of type I,

infI ER
def
= inf

R∈W,
R∈I

ER (30)
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(where I stands for the edges in W of type I) and sim-
ilarly infII ER for type II. Then, by a similar argument
involving the ergodic theorem as in the proof of Proposi-
tion 1, for any ε > 0 and for each type of rung there must
be a non-zero density of them with rung energy within
ε of the infimum for that type. For well-separated rungs
(one of each type, with type I at the left), by conver-
gence the sum of rung energies approximates the total
rung energy—see Section II (and see the proof of Propo-
sition 2 below for a similar argument in greater detail).
As the latter is non-negative and ε > 0 was arbitrary, it
follows that

infI ER + infII ER ≥ 0. (31)

Then there are only two possibilities for the rung ener-
gies when both types converge: either the infimum for
either type is zero, or the infimum for at least one type is
positive. Propositions 2 and 3 deal with each possibility:
Proposition 2: For ground states α, β as in the Theorem,
there is zero probability that the rung energies converge
and infI ER = infIIER = 0.
Proposition 3: For ground states α, β as in the Theorem,
for each type of rung, there is zero probability that the
rung energies converge and the infimum of rung energies
of that type is positive.
The Theorem follows immediately from these two Propo-
sitions.
Proof of Proposition 2: Suppose that there is non-zero

probability that the rung energies of α and β converge
and that infI ER and infII ER are zero. Then for any
ε > 0 and for each type of rung there exist rungs with
rung energy less than ε, and these have a non-zero density
by the ergodic theorem (see the proof of Proposition 1).
Hence for a microwall (i, i + 1) ∈ W , we can find such
a rung of type I, closest and to the left of (i, i + 1), and
another of type II, closest and to the right of it; at most
one of these can be (i, i+ 1) itself. The sum of the rung
energies of these is at most 2ε, but the total rung energy
of the corresponding superdomain with these rungs may
be larger than that. However, the hypothesis that all
rung energies converge (for this α and β) implies that
for any rung R (of either type) and ε > 0, there is an
R0(ε,R) such that |ER,R−ER| < ε for all R > R0(ε,R).
If for given ε we choose R0(ε) such that there are rungs
R of both types with ER < ε and R0(ε,R) < R0(ε), then
another application of the ergodic theorem implies that
there is a non-zero density of such rungs (of each type).
Then we can replace each of the two rungs chosen before
with one of the latter rungs of the same type, distant by
more than R0(ε) from (i, i+1) [they still enclose (i, i+1)],
and then the total rung energy is < 4ε. [More generally,
rungs can be found so that the total rung energy is <
infI ER + infIIER + 4ε.] Then the energy change for
the superdomain in either α or β is < 8ε. Hence, as ε
was arbitrary, the energy change required to reverse the
sign of sisi+1 is arbitrarily small (and this is true for any
microwall in W). By the remark after eq. (29) in Sec.
II D, this contradicts Proposition 4 below, proving the

Proposition.
Proposition 4 states the intuitively obvious fact that,

when the distribution of bonds is continuous as it is here,
there is zero probability that the minimum energy re-
quired to reverse sisj is exactly zero. The formal state-
ment involves the notion of transition value that was in-
troduced in the context of the excitation metastate in
Section IID; the remaining statements and proofs in
this Section use the extension of the two ground state

metastates κJ , κ′
J to excitation metastates κ♯

J , κ′ ♯
J , and

measure-theoretic statements are now usually with re-

spect to the measure νκ♯
J κ′ ♯

J . This makes no difference
to the statements of the results in Propositions 2 and 3.
Proposition 4: There is zero probability that, for J and

a collection of (α♯,∆E♯
J ) for all ♯ sampled from νκ♯

J , any
given coupling Jij is exactly at its transition value, that
is, that the flexibility Fij of (i, j) is zero.
Proof: The proof follows exactly as in NS from the in-
dependence of Jij and the transition value Kij (see Sec.
II D), together with the fact that ν(J ) is continuous.
QED.
Note that the proof of Proposition 2 implies that, un-

der the hypotheses, the flexibility Fi,i+1 of (i, i + 1) in

either α or β is zero, even though Fij = ∆E
{i,j},S({i,j})
J

generally has to be sampled from κ♯
J , and so Fij cannot

usually be obtained from α (sampled from κJ ) alone.
Proof of Proposition 3: Again following NS, we use the

notion of a “super-satisfied” bond Jij . First, a bond Jij

is called “satisfied” in ground state α if Jijs
(α)
i s

(α)
j > 0

for S(α). For given J , Jij will be satisfied in every ground
state if

|Jij | > min(
∑

k:k 6=i,j

|Jik|,
∑

k:k 6=i,j

|Jjk|); (32)

such a bond is called super-satisfied. By Lemma 1, the
sums on the right-hand side converge for σ > 1.
Suppose that, with non-zero probability, rung energies

of type I for α and β converge, and E′ = infI ER > 0.
Then by Proposition 4 and the ergodic theorem, we can
find a rung R = (i0− 1, i0) in W of type I and two edges
R1 = (i, i+ 1) and R2 = (j − 1, j) in W (where the first
is type II and the second type I) where δ = ER − E′ is
strictly smaller than the flexibilities of both edgesR1 and
R2 in both α and β, and whereR lies strictly between R1

and R2, that is i+ 1 < i0 − 1 < j − 2. Then the interval
[i+1, j−1] contains both A and B sites. We now suppose
that the bond Ji+1,j−1 is super-satisfied. This means
that no matter what other bonds with endpoints different
from both i + 1, j − 1 are changed, the spin product
si+1sj−1 cannot change sign. If not already true, this
can be accomplished by changing Ji+1,j−1 from its initial
value, to increase Ji+1,j−1si+1sj−1 without changing S
and move away from the transition value Ki+1,j−1 (for
both α and β); this does not change the ground states α
and β because it does not change si+1sj−1. The change
also does not change the rung energy of R because i+1,
j−1 are both in A, and can only increase the flexibilities
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of R1 and R2 in either α or β, because it only reduces
the set of possible excitations.
Now we change Jij so as to reduce 2Jijsisj , that is

we move 2Jij towards its transition value 2Kij by an
amount ε (to be specified in a moment) slightly greater
than δ. Usually, reducing 2Jijsisj might cause either of
the ground states α, β to change, due to the appearance
of an odd number of microwalls inside the interval [i, j].
Here, however, such a change cannot produce an odd
number of microwalls inside [i+1, j−1] because Ji+1,j−1

is super-satisfied. Provided we choose ε larger than δ but
smaller than the flexibilities of the edges R1 and R2 in
both α and β, it also cannot create a microwall at R1 or
R2 in either α or β. Thus reducing 2Jijsisj by ε does
not change α or β, but it does reduce the rung energy
ER to below E′, while leaving the energy of rungs R′

not contained in [i, j] unchanged, so ER′ ≥ E′. Because
the support of the distribution ν is unbounded as well
as continuous (it is a product of Gaussians), this gives a
set of events with non-zero total probability that violate
the ergodic theorem, as discussed before Proposition 2.
QED.

IV. CONVERGENCE OF RUNG ENERGIES

AND EXTENSIONS OF RESULTS

In this section, we first present arguments for the
almost-sure convergence of the rung energies under re-
strictions on σ. We begin with rigorous results, and then
turn to heuristic ones. Then we describe the rigorous ex-
tension of the main Theorem (but not the convergence
of rung energies) to all σ > 1/2, and finally the analysis
of models with diluted bonds.

A. Rigorous convergence results

The first result is simple to prove: if σ > 2, then the
rung energy (19), or the energy of a single microwall (the
same sum with B = Z), converges absolutely almost
surely. This result follows from the Three Series The-
orem, similarly to that in Lemma 1, because the series
of means and of variances of |Jij | diverge as L[2−σ]+ and

L[2−2σ]+ , respectively. It follows from the main Theo-
rem that for σ > 2, the ground state metastate is trivial
and unique: there are unique ground states α, α that
carry the full probability in any metastate. The Theorem
and this result also apply to any model that has short-
range, but not necessarily nearest-neighbor, interactions.
In these cases, the best one can do by more elementary
arguments is show that the number of ground states is
bounded by a (calculable) constant of order one, because
for any finite region the spins outside impose at most a
finite number of distinct boundary conditions on it.
A stronger result can be obtained from work by Khanin

[4]. Probabilities are now evaluated using ν on the space
of J . The statement is:

Proposition 5: For σ > 3/2, the rung energies of either
type for any two ground states α, β converge (in the
manner defined in Section II) almost surely.
Proof: We do not give all details, because almost all
the work was done by Khanin for the same model [4].
The difficulty of evaluating the rung energy (19) (say for
type I) for ground state spin configurations is avoided by
proving statements about all configurations, at the cost
of the restriction σ > 3/2. His Lemma 3 states, for the
case B = Z (i.e. for a single microwall—we return to
the general case afterwards) and with R fixed, that for
sufficiently large R the probability that, for some R′ > R
and some spin configuration S, the difference |ER,R −
ER,R′ | is larger than a constant times R−t/2 is less than

exp[−R(1+δ/2)/2], where t = σ − 3/2− δ > 0 and δ > 0.
Then the probability that supS |ER,R − ER,R′ | > ε > 0
for some R and R′, where R′ > R > k for any given
k > 0 (the supremum is over all S), is bounded by the
sum over R > k of the preceding probabilities. The sum
converges (because the integral

∫∞

0 e−xp

dx = p−1Γ(1/p)
for p > 0 does), and so goes to zero as k → ∞. That is,
for any ε > 0,

lim
k→∞

P[for some R′ > R > k, sup
S

|ER,R−ER,R′ | > ε] = 0

(33)
It follows (as in Ref. [28], p. 70) that the microwall energy
almost surely converges in the sup norm supS | · · · |, or in
other words for any S.
This leaves only a couple of points to settle in order

to complete the proof. First, in the text Khanin proves
his result for bounded random variables Jij , but at the
end of his paper indicates that it also holds for Gaussian.
The key lemma used is his Lemma 2, and we state the
result for Gaussian randomness in order to show how
the restriction σ > 3/2 first enters. First, for any fixed
configuration S, the probability that the magnitude of a
sum

∑

i∈F,j∈G

Jijsisj (34)

where F and G are intervals of length a, and separated by

a, is larger than a constant ℓ > 0 is less than e−ℓ2a2σ−2/2.
(This holds because the sum is a Gaussian random vari-
able with variance smaller than a2−2σ, using the Chernoff
bound; see Ref. [35], p. 22.) Then the probability that it

exceeds ℓ for some S is bounded by 22ae−ℓ2a2σ−2/2, which
goes to zero as a → ∞ if ℓ > 2a3/2−σ, and this is essen-
tially Khanin’s Lemma 2. Khanin’s Lemma 3 is proved
using multiple applications of his Lemma 2, and σ > 3/2
is needed so that the bounds ℓ being used can be small.
It also uses a bound on an infinite sum (similar to that
in Lemma 1 above), which for Gaussian disorder can be
replaced by another similar bound on the probability of
exceeding the former bound.
Finally, our rung energy is a similar sum but only spins

in the subset B ⊂ Z enter the sums. This can be incor-
porated by summing as before but viewing si as taking
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the value 0 if i 6∈ B. Then we have a model similar to
the Ising case, but involving spins that take three values,
si = ±1 or 0. One can check that this makes no dif-
ference to Khanin’s estimates (the 22a in the preceding
paragraph must be replaced by 32a). Then the result is
that convergence holds in the sup norm over all configu-
rations of Ising spins S and choices of subsets B, which
proves our Proposition 5. QED.
Together, Proposition 5 and the Theorem imply that

a translation-covariant ground-state metastate of the
power-law one-dimensional model is trivial and unique
for σ > 3/2.

B. Scaling arguments

We expect that the restriction to σ > 3/2 in the state-
ment of Proposition 5 is not optimal, and that the almost-
sure convergence of the rung energies of either type, and
hence the triviality and uniqueness of the ground-state
metastate, hold for all σ > 1, provided that one consid-
ers only ground states α, β rather than all spin configura-
tions as in Khanin’s results (his results are not expected
to hold for σ < 3/2). We do not have a rigorous ar-
gument for this, but we will discuss here some heuristic
scaling considerations, which include a small digression
into more general questions, before addressing again the
convergence of the rung energies.
First we address a question that has probably occurred

to readers: it is known that there is no transition at non-
zero temperature for σ > 1; why does that not imply
at least that domain wall energies are finite? The intu-
ition behind the question is that in one dimension, when
reversing a domain of spins of arbitrarily large length
cost only a uniformly-bounded (and finite) energy, then
at any positive temperature domain walls will prolifer-
ate and destroy the order that was present in the ground
state (the rigorous proof for the case of a ferromagnet
without disorder is in Ref. [36]). The question is whether
the converse to this statement holds.
There are two points to make in answering this. First,

in the spin glass case, order would be destroyed at pos-
itive temperature if there is a finite density of domain
walls that are available for excitation and have finite en-
ergy cost; it does not have to be the case that all domain
wall (or microwall or rung) energies must be finite—the
energy of a microwall or rung energy at a given position
could grow more rapidly than that of the minimum en-
ergy ones. But in fact, we saw in Section II that, if σ > 1,
the energies of microwalls, like the energies of rungs, of
either type either all converge or all fail to converge, so
then this question becomes moot.
Second (and extending the first point), order will not

be destroyed when the temperature is sufficiently low if
the energy cost for creating a domain grows with dis-
tance, so that at sufficiently low temperature the two
domain walls are bound together. Thus positive temper-
ature destroys the order if (at least some of the) domain

walls are unbound (or “deconfined”) at arbitrarily low
non-zero temperature. If the energy of a domain scales
as En for a domain of length n, then schematically the
probability for the domain to have length n at tempera-
ture T is e−βEn/Zn, where (in this paragraph) β = 1/T
and the partition function is

Zn =
∑

n≥1

e−βEn . (35)

(This is schematic because we ignore other walls, and
assume we can treat the domain with one end fixed, as
if there were translation invariance.) Then (similarly to
bound states in quantum mechanics, for which Zn cor-
responds to the norm-square of the wavefunction), if Zn

is finite then the walls are bound, and if it is infinite
then they are unbound. This partition function (like all
partition functions) is a generalized Dirichlet series, of
the general form

∑∞
n=1 ane

−sλn , where s is a parameter
(s = β here) and λn are strictly increasing real numbers
that tend → ∞. In our case an = 1, so the series diverges
when β = 0, and in this case with λn = En the series
converges for Re β larger than

lim sup
n→∞

lnn

En
(36)

(Ref. [37], p. 8), and note that this allows for the En

to be random variables that do not tend to any limit.
Hence if lim inf En/ lnn = 0, domain walls are unbound
at any T > 0. Note that this statement includes the
preceding point that only the lowest energy domains are
important asymptotically, as well as well-known behavior
of non-random models. Thus the absence of a transition
at positive temperature does not rigorously imply even
that the smallest of the domain energies is always finite,
but only that they diverge at most sub-logarithmically, if
they diverge at all. Nonetheless, it does provide heuristic
motivation for our conjecture.
For the energy change of a single microwall at a fixed

position, for example

∑

i<0,j≥0

Jijsisj , (37)

where S is a ground state α, and a fortiori for the rung
energy (19), the difficulty in estimating it is that the
spins si depend on the bonds Jij . However, while the
spins certainly depend on the full set of Jij , they may
not depend strongly on all the bonds in the smaller subset
that occur in these sums. In particular, convergence of
the sums is determined by the tail at large |i − j|, and
the corresponding bonds are weak, so the spins may not
depend on them strongly. If the spins are independent
of the Jijs, at least in the tail, then applying the Three
Series Theorem, the series of variances again diverges as
L[2−2σ]+ , while the expectation values are zero, and so
the energy of a single microwall would converge almost
surely if and only if σ > 1. We expect that it may well be
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the case that the spins are approximately independent of
the bonds in the sum with |i− j| large, even for σ < 1.
We now employ some scaling arguments (mostly ob-

tained in finite size) to support this conjecture, but focus
only on the expected value of the microwall energy. This
involves the sum of terms E[Jijsisj ] in a ground state,
that is (because E[Jij ] = E[sisj ] = 0) the correlation or
covariance Cij of the bond Jij with the corresponding
spin product sisj . The obvious bound, from either the
Cauchy-Schwartz or the Jensen inequality, is

Cij = E[Jijsisj] ≤
(

E[J2
ij ]
)1/2

=
1

|i− j|σ
. (38)

If sisj were independent of Jij , the correlation would
of course be zero, and if they were approximately inde-
pendent we would expect a small value for large |i − j|,
probably smaller than the preceding bound (i.e., a more
negative power of |i − j|).
As discussed in Section II, if Jij is changed, there will

be a change to another ground state when Jij passesKij ,
the transition value for the ground state α (this is also
the transition value as Jij approaches it from the other
side, in the other ground state). For use in the following,
we will make the scaling assumption that the transition
values Kij (which are random variables that depend on
the two ground states involved, and hence on the other
bonds) have a distribution of width |i−j|θ

′

, for a “transi-
tion value exponent” θ′ that presumably will not depend
on α. The use of the symbol θ′ is intended to suggest
an analogy with the stiffness exponent θ which has been
defined for spin glasses, as we discuss in a moment. We
can rigorously bound θ′ using a finite size system; see
Appendix A. The result is

θ′ ≤ 0 (39)

for all σ > 1/2.
There is a simple argument that shows that

E[Jijsisj ] ≥ 0 in a (finite-size) ground state [30] (in-
troduce a parameter λ by Jij → λJij with remaining J
unchanged, and use the positivity of the second deriva-
tive of the expected value of minus the free energy at
non-zero temperature with respect to λ, then integrate
with respect to λ from 0 to 1 to obtain the desired re-
sult, and finally take T → 0). Clearly when |Jij | is large,
Jijsisj will be positive, and the sign of sisj changes at
Jij = Kij ; thus sisj equals the sign of Jij −Kij :

sisj = sgn (Jij −Kij). (40)

This shows that while (as we argued in Sec. II D) Kij

and the unordered pair of two ground states involved are
independent of Jij when the other bonds are fixed, at
the same time the value of Jij selects one of the two
ground states, and so is correlated with sisj such that
E[Jijsisj ] ≥ 0. If the transition value were zero almost
surely, or had a very narrow distribution (θ′ < −σ), then
Cij would be of order |i− j|−σ. In the converse case θ′ >
−σ (which is the one we expect to occur) in which the

transition value is typically relatively large, most of the
weight in the Gaussian distribution of Jij falls on one side
of the transition value, giving only a small correlation. If
the distribution ofKij has non-zero density nearKij = 0,
then the probability that Kij falls in an interval of order

|i − j|−σ centered at 0 will be of order |i − j|−σ−θ′

. In
this case the correlation will be of order

Cij ∼ |i− j|−2σ−θ′

. (41)

We can write both cases using the notation introduced
in Sec. II, as

Cij ∼ |i− j|−σ−[σ+θ′]+ . (42)

This can also be obtained from an easy calculation using
eq. (40) (as a check on the result, the bound above from
Cauchy-Schwartz is obeyed).
Next we would like to estimate or further bound the

exponent θ′. In fact it is easier to consider the scaling of
the flexibility Fij defined in eq. (28), which was identified
in eq. (29) as the minimum energy that must be added to
change the spin product sisj from its value in the ground
state α, for the original value of Jij . From eq. (28), we
see that the “flexibility exponent” θ′′ for the scaling of
the width of the distribution of Fij with |i − j| is equal
to the larger of −σ and θ′, that is

θ′′ = max(θ′,−σ), (43)

and so θ′′ ≤ 0. Hence it is equal to θ′′ = [σ + θ′]+ − σ,
and so for the correlation

Cij ∼ |i− j|−2σ−θ′′

. (44)

The appearance of θ′′ in both places reflects the fact that
both involve the scaling of Jij−Kij , given by θ′′ as above.
The scaling of the minimum energy change for an ex-

citation that reverses the sign of sisj compared with a
ground state α (thus introducing an odd number of mi-
crowalls between i and j) is a question very similar to
ones raised in the scaling-droplet theory of spin glasses.
There the lowest energy of a single domain wall (but not
necessarily a single microwall, in our language) that can
be made in a region of size L is supposed to scale as Lθ

[11, 22, 23]. In the scaling-droplet theory, the sign of θ
governs whether there is a transition at T > 0, by argu-
ments similar to the domain-wall binding discussed just
above, but neglecting the borderline cases we discussed
there; thus θ > 0 means a transition at some T > 0, while
θ < 0 means there is none. The definition of θ can be
made precise by defining θ as the scaling of the standard
deviation for the change (which could be of either sign)
in the ground state energy when the periodic boundary
condition is changed to antiperiodic in a system of size
L; such a change necessarily produces a single domain
wall. In the power-law one-dimensional model discussed
here, this exponent obeys the bound

θ ≤ max(0, 1− σ) = [1− σ]+, (45)
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as we prove in Appendix A. If one ignores the possibility
of logarithmic dependence for θ = 0, this implies that
there can be no transition at T > 0 for σ > 1.
We believe it is highly plausible that, when θ ≤ 0, our

exponent θ′′ = θ. The reason behind the fact θ′′ ≤ 0
is that we require an excitation with an odd number of
microwalls between i and j, which could be a single do-
main wall between them, but we do not specify whether
there is one outside this interval. We also recall that θ is
defined as the scaling of the cheapest energy for a single
domain wall. If θ is negative, a second wall outside the
interval could move off to infinity and disappear, as this
would lower the energy. But, if θ is positive, a flexibility
of order one could be obtained by placing domain walls
just on either side of, say i (or j); the energy would be of
order one because the domain size is order one (for σ > 1
this is Lemma 1, but for σ < 1 it requires an argument
given in Sec. IVC below, or we can appeal to the bound
θ′ ≤ 0 mentioned above). Hence we expect that in fact

θ′′ = min(0, θ) = −[−θ]+. (46)

(This itself implies θ′ ≤ 0, because σ > 0). It will be
simplest to express scaling relations in terms of θ′′.
If we now use the correlation Cij to calculate the ex-

pectation of the energy of a single microwall at a given
position, we find that it diverges as L[2−2σ−θ′′]+ . Because
the width of the distribution of the minimum of a set of
random variables must grow more slowly than the expec-
tation of each (even when they are not independent), and
θ was defined as the scaling exponent for the energy of
the cheapest single domain wall in a region of length L,
it must satisfy

θ ≤ [2− 2σ − θ′′]+. (47)

We can now consider cases. In general, θ′′ ≤ 0. If θ′′ < 0,
then θ = θ′′ < 0. If instead θ′′ = 0, then from the last
displayed inequality θ ≤ 0 if σ > 1, which is a contradic-
tion unless θ = θ′′ = 0. Hence in either case,

θ = θ′′ ≤ 0 for σ > 1, (48)

which also follows from earlier inequalities.
The expected ground state energy per site is minus the

sum of correlations
∑

j:j 6=i E[Jijsisj ], and should con-

verge for σ > 1/2. (For σ < 1 this statement requires
the further justification that we give in Sec. IVC below.)

By scaling, we find that the sum diverges as L[1−2σ−θ′′]+ .
Then the exponent must be zero, giving

θ′′ ≥ 1− 2σ. (49)

Altogether we then have

0 ≥ θ′′ ≥ max(−σ, 1− 2σ). (50)

For σ < 1, θ′′ ≥ 1− 2σ is the stronger lower bound, and
in particular

θ′′ = θ′ for σ < 1. (51)

The bounds pinch together as σ → 1/2, which is the
boundary of the region in which the thermodynamic limit
exists for thermodynamic properties.

It is known that θ = −1 in the short-range model
[22] and the same is believed for the present model when
σ > 2 [11, 12]. In these cases the energy of a single mi-
crowall converges almost surely, as we saw in Sec. IVA.
In the nearest-neighbor short-range case, the energies for
a microwall on different edges are independent, and the
cheapest one will scale as L−1. This is expected to hold
in the other models mentioned also. As σ decreases be-
low 2, we expect that θ increases from −1, subject to
the bound (45). For 1 < σ < 2, where we expect that
the energy for a single microwall at a given fixed position
converges (for example for 3/2 < σ < 2, see Proposition
5 above), it is again important that θ is defined as the
lowest energy for a domain wall, which involves minimiz-
ing over positions in an interval of length L (it may also
consist of more than one microwall). A value θ > −1
can occur presumably because of correlations among the
energies of microwalls at different positions, due to the
long-range interactions. When the expectation of the sin-
gle microwall energy diverges as a positive power, it does
so with exponent 2 − 2σ − θ′′ which is at least 2 − 2σ,
and > 0 if σ < 1. This shows that in this regime the
cheapest domain wall energy, for which the exponent is
θ ≤ 1 − σ for σ < 1, is definitely less than than the ex-
pectation of the energy for a single microwall at a given
position; minimizing the energy makes a difference. In
fact, we expect that θ′′ = θ′ = 0 in the region σ < 1.

It has been argued that for σ < 2, θ = 1 − σ is an
exact result [11, 12, 14], rather than only a bound as we
find for σ < 1. The arguments known to us for this con-
jecture do not seem entirely convincing. For σ < 1, the
conjecture agrees with the scaling of the standard devi-
ation for the microwall energy [or with the bound (45)],
as if the spin products sisj in the sum were indepen-
dent of the bonds. However, recent work [16] has argued
that θ = 1 − σ does not hold for 1/2 < σ < 2/3, and
that θ = 1/6 (the value obtained from replica symme-
try breaking) may hold there instead (correspondingly,
θ = d/6 is suggested for d > 6 in a short-range model in
dimension d). Obviously, if correct, this undercuts the
conjecture, and if θ = 1 − σ holds for σ > 2/3 it would
mean that θ is a discontinuous, non-monotonic function
of σ in the region 1/2 < σ < 1, which we believe is un-
likely. Numerical work in Refs. [13, 15, 16] is compatible
with θ < 1− σ for 2/3 < σ < 1 as well as for σ < 2/3.

In the region of interest to us here, 1 < σ < 2, it is
credible that θ = 1−σ could be exact, because all indica-
tions (including the results of the present paper) are that
this region has rather simple behavior. Again, numerical
results are consistent with this for σ not much larger than
1 [13]. This would then imply that θ′′ = 1 − σ > −σ, so
θ′′ = θ′ = 1− σ, and then the expectation of the energy
of a single microwall, or of a rung energy, at a fixed po-
sition would converge. More generally, while a negative
θ′′ could spoil the convergence of the expectation of the
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single microwall energy, a value 0 ≥ θ′′ ≥ 2 − 2σ would
allow it to converge.
We may finally return to the original issue, the almost-

sure convergence of the rung (or of microwall) energies.
The preceding arguments have suggested the scaling be-
havior of various properties, though unfortunately with-
out providing sufficiently strong bounds to settle the
question (even granting the scaling assumptions). They
suggest that the expected value of the single microwall
energy converges for σ not too small, while if θ′′ is not too
negative, the correlation of Jij with sisj is weak. If the
correlation of other long bonds Jkl with sisj are also weak
for |i− j|, |k − l| large (an issue we have not addressed),
then the conditions for the Three Series Theorem could
be “almost” met, leading to almost-sure convergence for
σ > 1. Heuristically, the absence of a transition at T > 0
strongly suggests this, and the later arguments in this
section are not much better than that.

C. Extension to σ > 1/2

Now we must argue, as promised, that the energy
for creating any given finite domain (of fixed size) in a
ground state is almost surely finite, not infinite (spins
are never “locked” by the bonds), and that the ground
state energy per spin is likewise finite, for all σ > 1/2,
if the ground state used is drawn from a ground-state
metastate. (In other situations, for σ < 1 spins may be
locked; see Ref. [10].) We do not show that these domain
energies converge in the infinite-size limit in general, only
that their distribution has no weight at infinite energy.
We then build on these results to show how the construc-
tions of the various metastates used in this paper can be
extended to all σ > 1/2, and extend the main Theorem
likewise.
We recall that Lemma 1 proved the absolute almost-

sure convergence of the energy change when any finite
set of spins is flipped, provided σ > 1. The probability
measure used here is νκJ , and α is a ground state drawn
from this measure; here κJ is used in the more general
conditions σ > 1/2 discussed at the end of Section II B.
For statements in finite size, we use simply ν. We should
define tightness of a family of probability measures µq

(q ∈ Q indexes the family) of a real random variable X
(Ref. [28], p. 94): the family is tight if for any ε > 0 there
exists an interval I ⊂ R such that

inf
q∈Q

µq(I) > 1− ε. (52)

More generally, for a family of measures on a general
space, the interval I is replaced by a compact set. (Some
authors use the term “uniformly tight” for what we call
tight.)
Proposition 6: For σ > 1/2, with probability one (i) the
ground state energy density is a finite constant, indepen-

dent of α; (ii) there exists an excitation metastate κ♯
J

that extends κJ , and for any such extension the exci-
tation energies ∆E♯ [including the flexibility Fij of any

edge (i, j)] are almost-surely finite; and (iii) the family
of finite-size joint distributions of the energy changes of
any finite collection of fixed finite domains is tight.
Proof: We first consider the ground state energy in fi-
nite size L, E0(L) = −

∑

i<j Jijsisj , where we leave the

finite-size cut-off on the summations implicit. E0(L) =
− 1

2

∑

i

∑

j:j 6=i Jijsisj , and the local terms ei(L) =
∑

j:j 6=i Jijsisj ≥ 0 (in fact, > 0 with probability one)

because 2ei(L) is the energy to flip the single spin i.
Note that for σ < 1 it is not clear that ei(L) has a
limit as L → ∞, even for a fixed ground state config-
uration. Then the ground state energy per spin in fi-
nite size, E0(L) = E0(L)/L, is also a sum of negative
terms. The ground state energy per site in the limit
of an infinite-size system is limL→∞ E0(L) = E0 (if the
limit exists). We are not aware of direct bounds on this
quantity, but there are lower bounds on the expected free
energy per site f = limL→∞ F (T )/L at T > 0, where¯de-
notes disorder average E and, for finite L, F = −T lnZ,
where Z is the partition function; these bounds are used
in the proof [3, 30] that F (T )/L has a limit. Moreover,
F (T )/L tends to a limit almost surely (by a variance
bound ∼ L[1−2σ]+−1 similar to those in Appendix A, in
which the T → 0 limit can be taken). Unfortunately,

the bound on F (T )/L is not uniform in T as T → 0,
so it cannot be used to obtain a bound on E0. How-
ever, we can appeal to thermodynamics, which implies
that df/dT = −s(T ), where s is the entropy per site
(and we leave the L → ∞ limit implicit). Both −f and

−f(T ) are convex functions of T , which implies that s
and s are defined as functions of T for almost all T (in

Lebesgue measure on T ), and that s(T ) is an increas-

ing function of T (if there are values of T at which s(T )

jumps we can define the value of s(T ) there so that it
is increasing at all T ). Moreover, E(T ) = f + Ts is the
internal energy per site, and dE(T )/dT = Tds/dT ≥ 0
is the specific heat (the heat capacity per site). (Here
we define the derivative for all T by allowing it to in-
clude δ-functions at jumps of s; this is legitimate as it
will be integrated, not used as a function.) The entropy

per site obeys 0 ≤ s ≤ ln 2, and E(T ) is finite at T > 0.
Integrating

∫ T

0

ds(T ′)

dT ′
dT ′ =

∫ T

0

1

T ′

dE(T ′)

dT ′
dT ′ (53)

gives a finite number s(T ), so dE(T )/dT can also be
integrated over the same range, showing that E0 =
limT→0 E(T ) = limT→0 f(T ) > −∞. The existence of
the various limits and the finiteness of the expectation
shows that E0 is integrable (with respect to νκJ ), and
hence that the limit E0 exists and is finite almost surely,
which is statement (i).
For the second part of the proof, we return to the

expectation of the ground state energy in finite size,
E0(L) = − 1

2

∑

i ei(L), so E0(L)/L = − 1
2ei(L) for any

fixed i (by translation invariance), and we know that this



15

quantity has a finite limit. It follows from this, first, that
the family (as L runs over all positive values) of probabil-
ity distributions of ei(L) (induced from ν) for any given
i is tight: no weight goes off to infinity as L → ∞. If it
were not tight, by the definition above that would mean
that for some ε > 0 and for any finite interval I = [0,∆],
there would be some L for which P[ei(L) > ∆] > ε, and
so E[ei(L)Θ(ei(L)−∆)] > ε∆, which goes to infinity as
∆ (and hence also L) tends to ∞, contradicting finiteness
of the limit. Similarly, the family of joint distributions
of ei(L) for i in a fixed finite set Λ containing n = |Λ|
sites (with L sufficiently large, so that Λ is contained in
the system) is tight also. For this, it is sufficient to show
that for any ε > 0 there is some cube C∆ = [0,∆]n in the
space of n-component vectors e(L) = (ei(L)) for i ∈ Λ
such that, for all L, P[e(L) 6∈ C∆] ≤ ε. As

P [e(L) 6∈ C∆] = P

[

⋃

i∈Λ

{ei(L) > ∆}

]

(54)

≤
∑

i∈Λ

P [ei(L) > ∆] , (55)

we can use the tightness of the families of distributions
for each ei(L) (these distributions are the marginals of
the present joint distribution), putting ε/n in place of ε
in the definition of tightness and using the corresponding
value ∆ (independent of i by translation invariance), to
show that P[e(L) 6∈ C∆] ≤ ε. The energy change for
reversing the spins in a fixed finite set Λ, starting from the
ground state α, differs from

∑

i∈Λ ei(L) only by a fixed
finite set of terms Jijsisj , and so we obtain tightness of
the family of joint distributions of these energy changes,
which is statement (iii). As similar energies upper-bound
the minimum excitation energies ∆E♯,L for an excitation
♯ = (Λ, S(Λ)), we then find that the distributions of the
latter are tight as well. This allows the construction of an

excitation metastate κ♯
J extending κJ as in Section II,

which is statement (ii). (The last result is also obtained
in Appendix A by a different method.) QED
The usual NS ground-state metastate does not include

information on the energy change for reversing the spins
in a given finite domain in a ground state α drawn from
the metastate. In the cases of the EA model or the long-
range one-dimensional model with σ > 1, these energies
can simply be calculated from a ground state (because in
the latter models the energy for reversing a finite set of
spins is almost surely finite and convergent, respectively).
For 1/2 < σ < 1, there is a convergence issue if we take
the infinite-size ground state α and attempt to take the
limit as the regularization (truncation) of the sum for
the domain energy is removed. But now, because the
distributions of these energies are known to be tight, we
can obtain (similarly to the construction of the excitation

metastate [26]) a “natural” extended metastate κ♮
J which

gives the joint distribution of all such energy changes as
well as ground state configurations. (As usual, there is
also an AW version of this construction.) We will write
α♮ for a ground state spin configuration α augmented by

the collection of energy changes for reversing each fixed
finite set of spins. It is now legitimate to call the configu-
ration α a ground state in infinite size, as all its possible
energy changes (needed when verifying that it is truly a
ground state) have definite (non-negative) values in an α♮

drawn from the natural metastate κ♮
J . It is natural that

such a construction is required in the power-lawmodel for
σ < 1, because the convergence of the energy changes de-
pends on the configuration (and the bonds) far away from
the origin, and this information is obtained by sampling
from a (NS or AW) metastate. This construction can also
be combined with the construction of a metastate that
gives minimum excitation energies for constrained con-

figurations, κ♯
J , to obtain another metastate κ♮♯

J , which

has both κ♮
J and κ♯

J as marginal distributions.

All constructions of superdomains in Section II can

now be carried through, simply by using κ♮
J in place of

κJ , because these constructions simply involve reversing
finite sets of spins in either α♮ or β♮. This makes most
uses of Lemma 1 unnecessary, and we can formulate the
main Theorem with σ > 1/2 in place of σ > 1. One
use of Lemma 1 that cannot be replaced in this way was
its use to show that, for each type, either all rung en-
ergies (for given α♮ and β♮) converge, or none do. This
involves differences of rung energies; these differences are
not energy changes for reversing a finite number of spins
in a ground state, so the sums are not finite sums of ei,
and hence the approaches here and in Appendix A do
not apply. Thus when stating and proving the Theorem,
we cannot use that result. Accordingly, we here consider
rungs at arbitrary positions, not only in W . While an
edge in W can still be classified as type I or type II, a
rung may be used as the left or right end of a super-
domain, and the asymmetric regularization of its energy
is defined accordingly, in one of two ways, giving type
I and type II rung energies for each rung (so one may
converge and the other not, for example). We now have
the following extension of the main Theorem, where the

probability measure is νκ♮
J κ′ ♮

J (κ♮
J and κ′ ♮

J are natural
metastates, extending κJ , κ′

J , all for the same disorder
J ):
Theorem (extended): Suppose σ > 1/2. For any pair

of translation-covariant metastates κ♮
J , κ′ ♮

J , there is zero

probability that augmented ground states α♮, β♮ drawn
from them have any convergent rung energies of both
types, unless β = α or α; that is, either any such metas-

tate κ♮
J is supported on the same ground state pair α,

α, where the energy changes do not have to be the same
(that is, the underlying ground-state metastate is triv-
ial and unique, so κJ = κ′

J ), or if there are augmented

ground states α♮, β♮ with β 6= α or α in the metastate
pair then all the rung energies of at least one type are
non-convergent, and further if some of those of the other
type are convergent then their infimum must be zero.
Proof: The extended Theorem follows as before from ver-
sions of Propositions 1–4, which however must also be ex-
tended. Proposition 1 is unchanged, but also there is the
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parallel result that, for each type of rung energy, the set
of rungs whose energies of that type converge has non-
zero density, or else is empty. Propositions 2 and 3 must
be extended, as follows (σ > 1/2, and the augmented
ground states α♮ and β♮ are obtained as in the statement
of the extended Theorem):
Proposition 2 (extended): There is zero probability that
some rung energies of both types I and II converge and
that the infimums of both sets of convergent rung ener-
gies are zero.
Proposition 3 (extended): For each type of rung energy,
there is zero probability that some converge and that the
infimum of those that converge is positive.
The proof of the extended Proposition 2, using the sets
of rungs with converging energies of either type, then in-
volves only minor changes of wording from that given be-
fore. It involves two rungs, one with energy of each type,
and an edge (i, i + 1) ∈ W between them, and also uses
the extended Proposition 4. The remaining statements
and proofs involve the use of the extensions to metastates

κ♮♯
J , κ′ ♮♯

J . The statement and proof of Proposition 4 are
unchanged. The proof of the extended Proposition 3 in-
volves a rungR = (i0−1, i0) with convergent rung energy
of one type, and the infimum of the set of rung energies of
this type is assumed to be nonzero. In addition, there are
edges R1 = (i, i + 1) and R2 = (j − 1, j), both in W , of
types II and I as before, and arranged as before. Super-
satisfied edges do not exist for σ < 1, because the sums in
ineq. (32) diverge with probability one by the Three Se-
ries Theorem. Instead, for each of α♮ and β♮, we consider
the four sites i, i+1, j−1, j as a set Λ, and the six edges
between these sites as the set D (see Sec. II D). Then we
examine excitations to various S(Λ) using the excitation
metastates, and consider transitions among these config-
urations as the bonds JD between these sites are varied,
similarly to the discussion of transition value and flexi-
bility for a pair of sites. For each of α♮ and β♮, these are
determined by an effective Hamiltonian hS(Λ)(J

D) [see
eq. (26)] for the four spins which, apart from an unim-
portant S(Λ)-independent function of the original bonds
J (determined by the ground state α or β), contains the
generalized transition values that can be viewed as six
two-spin, and a single four-spin, interaction terms (with
finite coefficients), in addition to the terms containing
JD. The generalized transition values, or values of the
effective couplings, are independent of the six bonds JD

among the four spins, like the transition values earlier.
Then Ji+1,j−1si+1sj−1 can be increased sufficiently so
that reducing Ji,jsisj by the requisite ε (with the other
four bonds held fixed) does not change si+1sj−1 from its
value in α and β, as in the earlier proof of Proposition
3. The remainder of the proof is unchanged: Because
of the unbounded support of the probability distribution
of the bonds, this leads to a non-zero probability for an
event that violates the ergodic theorem. This completes
the proof of the extended Theorem.

The extended Theorem leaves open the possibility
that, for augmented ground states α♮, β♮, rung energies

of one type never converge, while some of those of the
other type converge and have zero infimum. Symmetry
between the two types (i.e. reflection symmetry of the
model) suggests that this should not occur.
The extension of the Theorem removes the restriction

to σ > 1, but it does not remove the issue of the con-
vergence of the rung energies (of each type). It is highly
unlikely that the rung energies ever converge when σ < 1.
Hence the extended Theorem is probably not a great ad-
vance over the original one. As the original Theorem is
much simpler to state and to prove, that is the one we
have emphasized.

D. Bond-diluted power-law models

In this section, we briefly consider a family of variants
on the power-law model in one dimension that have also
been studied in the literature [38]. In these models, we
can establish both the absence of a transition at positive
temperature and the triviality of the metastate for σ > 1
with some ease.
In these models, not all bonds are nonzero; instead the

bonds are “diluted”. For σ > 1/2, the probability that
Jij is nonzero is taken to be

p(i, j) = p1/|i− j|2σ, (56)

(0 ≤ p1 ≤ 1) independently for all pairs i 6= j (|i− j| can
be replaced by rij in the finite-size variants); the non-
zero bonds are assigned values for Jij drawn indepen-
dently from a distribution (say, Gaussian) with variance
one (when conditioned on being non-zero), independent
of their length |i− j|. Thus the variance of the bonds is
VarJij = p1/|i− j|2σ as before. Let us refer to non-zero
bonds simply as bonds (i.e. bonds that are present). The
advantage of such a model for numerical purposes [38] is
that the expected number of bonds ending at i is conver-
gent, and so finite as L → ∞, for all σ > 1/2, unlike the
original model. The phase diagram, and the exponents
at the transition with Tc > 0 to the spin glass state for
σ < 1, are expected to be essentially the same as in the
original power-law model.
In this model in infinite size, the probability that site

0 has no bonds connecting it to other sites is

∏

j:j 6=0,j∈Z

(

1−
p1

|j|2σ

)

, (57)

which if p1 < 1 converges to a non-zero value (rather
than diverging to zero) if and only if the sum

∞
∑

j=1

1

|j|2σ
(58)

converges. Hence for σ > 1/2 and p1 < 1 there is non-
zero probability for a given site to be disconnected, and
there will be a non-zero density of such sites. Similarly,
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when p1 < 1, there will be finite sets of sites with no con-
nection to the remainder of the system. Consequently
for σ > 1/2 and p1 < 1, these models have degenerate
ground states with extensive entropy, and it will be more
appropriate to think of using a Gibbs state at zero tem-
perature, rather than individual ground states.
Similarly, the probability that there are no bonds be-

tween two halves of the system, say i ≤ 0 and j > 0, is
nonzero for p1 < 1 if and only if the sum

p1
∑

i≤0,j>0

1

|i− j|2σ
(59)

converges. As before, this diverges as L[2−2σ]+ , and so
converges if and only if σ > 1. [The sum also gives the ex-
pected number of bonds crossing (0, 1).] Then for p1 < 1
and σ > 1, by the ergodic theorem there is a non-zero
density of “cutting edges”, that is pairs (i, i + 1) that
are not crossed by any bonds; the system breaks into
infinitely many disjoint intervals, each of finite length,
that are not coupled to one another. This implies imme-
diately that in these cases there is no transition at T ≥ 0;
the Gibbs state is unique at all temperatures, including
T = 0, so the zero-temperature metastate is trivial and
unique.
For p1 = 1 and σ > 1/2, for a continuous (e.g. Gaus-

sian) distribution of bonds there will be unique ground
states, up to overall spin flip, in finite size with prob-
ability one, as in the earlier models. For p1 = 1 and
σ > 1, the probability that no bonds of length at least
2 cross a given edge (i, i + 1) is still non-zero, and there
is a non-zero density of such edges; we call the corre-
sponding bonds of length one “links”. We call the finite
intervals between adjacent links “blobs”. A blob is an in-
terval that cannot be further decomposed into intervals
coupled only by length-one bonds; it is either a single
site, or has length ≥ 2, and each blob is coupled to its
two neighbors by links. The system then behaves some-
what like the one-dimensional short-range model, with
blobs in place of single sites. At zero temperature, the
links are all satisfied, like all the bonds in the short-range
model. The ground state (up to spin flip) can be found
by first finding that of each blob, ignoring the links, and
then stringing together the ground states of the blobs,
satisfying the links, to obtain the ground state. Conse-
quently, in infinite size the ground state is unique up to a
global spin flip, and the ground-state metastate is unique
and trivial. We also observe that the blobs-and-links pic-
ture for σ > 1 implies that a microwall or rung energy is
almost surely a finite sum, and hence convergent. This
implies that there is no transition at T > 0 in these mod-
els for any σ > 1 when p1 = 1 (as well as when p1 < 1).
For σ ≤ 1, the question of the metastate remains open,
as for the other models (however, see also Ref. [24]).
Further, the blobs-and-links picture implies (heuristi-

cally) that the domain wall exponent θ takes the value
θ = −1 for all σ > 1 when p1 = 1. Comparing two finite-
size ground states that differ by reversal of the boundary

condition (see Appendix A), a domain wall can be made
at little energy cost by finding the link that is weakest
(in magnitude), and the links are independent. This gives
the result of the short-range one-dimensional model as an
upper bound, θ ≤ −1. A domain wall could instead be
created within a single blob, but the energy of a single
microwall is almost surely finite, regardless of location,
and the blobs are independent. Some blobs may be large,
so the minimum microwall energy within a single blob
might scale as a negative power of its length, but it does
not seem possible to arrive at θ < −1, and we expect
that θ = −1. As a transition at T > 0 seems to occur
when σ < 1 [39], implying θ ≥ 0 there, this also implies
discontinuous behavior of θ at σ = 1.

While it is satisfying that in these models the ground
state metastate is trivial for σ > 1, the very simplicity of
the analysis, and the close relation with the short-range
model, suggests that in this regime these models may be
a bit too simple to replace the original power-law model,
which required a deeper analysis. However, these results
might also suggest alternative approaches to the original
model.

V. CONCLUSION

To conclude, we have proved that a translation-
covariant ground-state metastate of the power-law one-
dimensional spin glass model with exponent σ (and zero
magnetic field) is trivial and unique for all σ > 3/2. That
is, only the same single pair of ground states will be seen
(in any finite window) in asymptotically large systems,
with probability one. The main part of the proof is the
Theorem, which holds for all σ > 1/2 and was proved
following an argument of NS [26], but involves the hy-
pothesis that the rung energies converge, which has been
proved only for σ > 3/2. However, we suspect that the
latter can be proved for all σ > 1, the region in which
it is known that there is no transition at T > 0. We
also obtained scaling arguments for related quantities,
including rigorous bounds on scaling exponents such as θ
in the scaling-droplet theory, and provided constructions
of metastates for the model of wider interest.

The approach used to prove triviality of the metastate
cannot work when there is a transition to a spin-glass
phase at some T > 0, because then domain wall (and
presumably rung) energies will diverge. At the moment,
a non-trivial metastate certainly cannot be ruled out in
the low-temperature region in those cases.
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Appendix A: Bounds on exponents θ and θ′

Here we prove the upper bounds on the exponents θ
and θ′ defined in Section IVB, and some related results.
This is included for completeness; the basic results are
due to Aizenman and Fisher [40] and Newman and Stein
[19], who considered θ in the EA model, and the method
is presumably similar to theirs. Here we work in finite-
size systems, with probability distribution ν. In a fairly
general form, the basic result is the following:
Lemma 2: if F+ is the free energy of an Ising spin glass
Hamiltonian, and F− is the free energy for a Hamilto-
nian that is the same except that Jij has been replaced
with −Jij for the edges (i, j) in a set that we call the
“cut”, and if the bonds Jij for edges in (or “crossing”)
the cut are independent Gaussians with zero mean, then
the variance of F+ − F− obeys

Var (F+ − F−) ≤ 4
∑

(i,j)∈cut

VarJij . (A1)

The statement holds more generally, provided that the
bonds are independent, with the distribution of each one
invariant under reversing the sign of the bond. It also
holds similarly for other types of disorder in an Ising
Hamiltonian, such as random fields (single-site terms),
or interactions involving p > 2 spins, provided similar
conditions hold.
To obtain the θ exponent bound from Lemma 2, we use

the periodic boundary condition model. Let the cut be
the set of pairs i < j with i ≤ 0, j > 0, and j − i < L/2.
Then F+−F− as defined here is the change in free energy
due to reversing the boundary condition, and the bound
is

Var (F+ − F−) ≤ 4
∑

−L/2<i≤0,0<j<L/2
j−i<L/2

1

(j − i)2σ
(A2)

∼ L[2−2σ]+ (A3)

for large L. If the left hand side scales as L2θ, then we
obtain

θ ≤ max(1 − σ, 0) = [1− σ]+. (A4)

In a similar set-up in d dimensions, in which VarJij ∼
1/r2dσij (σ > 1/2), and the boundary condition is reversed
in one of the d directions on the hypercube, we obtain
θ ≤ max[d(1−σ), (d−1)/2] similarly. (This reduces to the
bound θ ≤ (d−1)/2, obtained by the authors cited, in the
EA model with d ≥ 1 or at σ > 1, and is stronger than
the bound θ ≤ d/2 suggested for the power-law model in
Ref. [11].) Note that when σ > 1, the variance bound is
stronger than that on the exponent, θ ≤ 0, as it rules out
any diverging behavior for the domain wall free energy
including behavior slower than any power law, such as
logarithmic or sub-logarithmic growth with L.
Proof of Lemma 2: We will provide a longer sketch of

the proof than did Ref. [19], which indicated the idea.

First, if f(τ1, . . . , τM ) is a function of random variables
τI , I = 1, . . . , M , then its variance is

Var f = Ef2 − (Ef)2. (A5)

If ET , where T is a subset of {1, . . . ,M}, is expec-
tation over the variables τI for I ∈ T with the re-
maining variables fixed (i.e. conditional expectation), so
E = E{1,...,M}, then by adding and subtracting terms we
have

Var f = E(f −E{1}f)
2

+E(E{1}f −E{1,2}f)
2

. . .+E(E{1,...,M−1}f −E{1,...,M}f)
2 (A6)

(a “martingale decomposition”). Each term can be
viewed as a variance with respect to one variable τI of
fI , where fI is already averaged over the τJ for J < I,
and with τK for K > I held fixed, and a final average
over τK for K > I.
The key observation in the case that f = F+ − F−

(in which the τI are the Jijs) is that E{(ij)∈cut}f = 0,
provided only that the joint distribution of these bonds
is invariant under inversion (in particular, for indepen-
dent bonds, if the marginal distribution of each one is
symmetric). By enumerating the bonds beginning with
those in the cut, this observation reduces the expression
to a sum over terms that correspond to the bonds in the
cut only.
The Ith term (I = 1, . . . , M) in the sum is the vari-

ance over τI with the later τK held fixed. For each term
we use a standard bound for the variance of a Lipschitz
function f of a single random variable τ : if f has Lips-
chitz constant L, that is

|f(τ)− f(τ ′)| ≤ L|τ − τ ′| (A7)

for all τ , τ ′ (L < ∞), then by averaging the square of eq.
(A7) over τ and τ ′ (independently), we obtain

Var f ≤ L2Var τ. (A8)

For the free energy of an Ising spin glass, the Lipschitz
constant is L = 1 for each random bond, independent of
the values of the other bonds. This follows by integrating
the bound

∣

∣

∣

∣

∂ lnZ

∂Jij

∣

∣

∣

∣

= β|〈sisj〉| ≤ β (A9)

(where again β = 1/T ) and if Jij is unbounded this is
the best possible value. For the difference of free ener-
gies, the Lipschitz constant is doubled. The same bounds
hold for the expectation of the free energy, or differences
thereof, over some other random variables. Assembling
these facts proves Lemma 2.
We can also apply the method of proof of Lemma 2

to obtain a bound on the width of the distribution of
transition values (defined in Sec. II D). We single out
one bond Jij and omit it from the Hamiltonian. We fix
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the spins si and sj , and let F+ be the free energy for
sisj = +1, F− the free energy for sisj = 1 (obviously the
spins si and sj should not summed over in calculating
these free energies in finite size). At T = 0, the difference
of the corresponding ground state energies is 2Kij, that
is, twice the transition value for Jij . The expectation of
F+ − F− over only the bonds ending at i or j (these in
effect constitute the cut) is zero, and then we find that
the bound on Var (F+ − F−) is ∼ L[1−2σ]+ (the distance
|i − j| does not enter the bound), and so is bounded
when σ > 1/2. This implies immediately that θ′ ≤ 0. In
addition, by applying any one of the standard Gaussian
bounds for the tail of the probability distribution of a
Lipschitz function of Gaussian variables [35], we find that
the distribution of Kij (and hence also of Fij) is tight—
no weight goes off to infinity as L → ∞.
More generally, we can constrain the values of the spins

on a finite set Λ, as used in the excitation metastate. We

can apply the same argument to the difference of free
energies for two fixed distinct configurations S(Λ) on Λ,
and find a similar bound by a constant that depends on
|Λ|. Thus (using a method similar to that in the proof of
Proposition 6) the family (indexed by L) of joint distri-
butions of the differences of all such free energies as S(Λ)
runs through the 2|Λ| configurations are tight. Passing
to zero temperature and the thermodynamic limit, we
can draw a ground state α from κJ , and one of the S(Λ)
coincides with S(α)(Λ). Then, by carrying this out for
all finite Λ and using subsequence limits, we obtain an
excitation metastate for any σ > 1/2.
Finally we should mention that while the upper bounds

on the variance, and on the tail of the distribution, of
a Lipschitz function go back further in the probability
literature (see Ref. [35] for references), a classic reference
in the case of statistical mechanics of disordered systems
is Ref. [41], which also gives lower bounds on the variance.
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[9] J. Fröhlich and B. Zegarlinski, Commun. Math. Phys.

110, 121 (1987).
[10] A. Gandolfi, C.M. Newman, and D.L. Stein, Commun.

Math. Phys. 157, 371 (1993).
[11] D.S. Fisher and D.A. Huse, Phys. Rev. Lett. 56, 1601

(1986); Phys. Rev. B 38, 386 (1988).
[12] A.J. Bray, M.A. Moore, and A.P. Young, Phys. Rev. Lett.

56, 2641 (1986).
[13] H.G. Katzgraber and A.P. Young, Phys. Rev. B 67,

134410 (2003).
[14] M.A. Moore, Phys. Rev. B 82, 014417 (2010).
[15] C. Monthus and T. Garel, Phys. Rev. B 88, 134204

(2013).
[16] T. Aspelmeier, W. Wang, M.A. Moore, and H.G. Katz-

graber, Phys. Rev. E 94, 022116 (2016).
[17] C.M. Newman and D.L. Stein, J. Phys.: Condens. Matter

15, R1319 (2003).
[18] N. Read, Phys. Rev E 90, 032142 (2014).
[19] C.M. Newman and D.L. Stein, Phys. Rev. B 46, 973

(1992).
[20] G. Parisi, Phys. Rev. Lett. 43, 1754 (1979); J. Phys. A:

Math. Gen. 13, L115 (1980); ibid., 13, 1101 (1980); ibid.,
13, 1887 (1980).

[21] M. Mezard, G. Parisi, and M.A. Virasoro, Spin Glass

Theory and Beyond, Lecture Notes in Physics, Vol. 9

(World Scientific, Singapore, 1987).
[22] A.J. Bray and M.A. Moore, J. Phys. C 17, L463, L613

(1984); Phys. Rev. B 31, 631 (1985); Heidelberg Collo-

quium on Glassy Dynamics and Optimization, Lecture
Notes in Physics, Vol. 275, eds. J.L. van Hemmen and I.
Morgenstern (Springer-Verlag, Berlin, 1986), p. 121.

[23] W.L. McMillan, J. Phys. C 17, 3179 (1984); Phys. Rev.
B 30, 476 (1984).

[24] M. Wittmann and A.P. Young, J. Stat. Mech. Theor.
Exp. 2016, 013301 (2016).

[25] A. Billoire, L.A. Fernandez, A. Maiorano, E. Marinari,
V. Martin-Mayor, J. Moreno-Gordo, G. Parisi, F. Ricci-
Tersenghi, and J.J. Ruiz-Lorenzo, Phys. Rev. Lett. 119,
037203 (2017).

[26] C.M. Newman and D.L. Stein, Commun. Math. Phys.
224, 205 (2001).

[27] L.-P. Arguin, M. Damron, C.M. Newman, and D.L.
Stein, Commun. Math. Phys. 300, 641 (2010).

[28] K.L. Chung, A First Course in Probability Theory, 3rd
Ed. (Academic, San Diego, CA, 2001).

[29] L. Breiman, Probability (Society for Industrial and Ap-
plied Mathematics, Philadelphia, 1992).

[30] P. Contucci and C. Giardina, Perspectives on Spin

Glasses (Cambridge University, Cambridge, 2013).
[31] A. Bovier, Statistical Mechanics of Disordered Sys-

tems: A Mathematical Perspective (Cambridge Univer-
sity, Cambridge, 2006).

[32] C.M. Newman and D.L. Stein, Phys. Rev. Lett. 76, 4821
(1996); Phys. Rev. E 55, 5194 (1997).

[33] C.M. Newman and D.L. Stein, in Mathematics of Spin

Glasses and Neural Networks, eds. A. Bovier and P. Picco
(Birkhauser, Boston, 1997).

[34] M. Aizenman and J. Wehr, Commun. Math. Phys. 130,
489 (1990).

[35] S. Boucheron, G. Lugosi, and P. Massart, Concentration
Inequalities: A Nonasymptotic Theory of Independence

(Oxford University, Oxford, 2013).
[36] D. Ruelle, Commun. Math. Phys. 9, 267 (1968).
[37] G.H. Hardy and M. Riesz, The General Theory of Dirich-

let’s Series (Cambridge University, Cambridge, 2015).



20

[38] L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and J.J. Ruiz-
Lorenzo, Phys. Rev. Lett. 101, 107203 (2008).

[39] L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, J.J. Ruiz-
Lorenzo, Phys. Rev. B 91, 064202 (2015).

[40] M. Aizenman and D.S. Fisher (unpublished; cited in Ref.
[19]).

[41] J. Wehr and M. Aizenman, J. Stat. Phys. 60, 287 (1990).


