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Abstract. According to Landauer’s principle, the minimum heat emission required for 

computing is linked to logical entropy, or logical reversibility. The validity of Landauer’s 

principle has been investigated for several decades and was finally demonstrated in recent 

experiments by showing that the minimum heat emission is associated with the reduction in 

logical entropy during a logically irreversible operation. Although the relationship between 

minimum heat emission and logical reversibility is being revealed, it is not clear how much free 

energy is required to be dissipated for a logically irreversible operation. In the present study, in 

order to reveal the connection between logical reversibility and free energy dissipation, we 

numerically demonstrated logically irreversible protocols using adiabatic superconductor logic. 

The calculation results of work during the protocol showed that, while the minimum heat 

emission conforms to Landauer’s principle, the free energy dissipation can be arbitrarily 

reduced by performing the protocol quasi-statically. The above results show that logical 

reversibility is not associated with thermodynamic reversibility, and that heat is not only emitted 
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from logic devices but also absorbed by logic devices. We also formulated the heat emission 

from adiabatic superconductor logic during a logically irreversible operation at a finite operation 

speed. 

 

I. Introduction 

Understanding the thermodynamic connection between energy and computing is crucial for 

future computer design, because the minimum heat emission in computing is predicted to be 

linked to the entropy of logic devices by Landauer’s principle [1]. According to Landauer’s 

principle, the entropy of a logic device is associated with its logical entropy and thus ΔS = ΔH, 

where ΔS is the change of the entropy, and ΔH is the change of the logical entropy or the 

Shannon entropy [2] regarding the probability distribution of logic states. Therefore, the 

minimum heat emission during an irreversible logic operation is expected to be given by the 

Landauer bound or -kBTΔH, where kB is the Boltzmann constant, and T is temperature. 

Numerous studies investigated the physical limits in computing based on Landauer’s principle 

[3-8], and the validity of Landauer’s principle has been investigated and discussed extensively 

[9-14]. Recent precise experiments using Brownian particles [11,12] clearly demonstrated that a 

logically irreversible operation with ΔH = -ln2 induces a heat emission larger than kBTln2 in 

accordance with Landauer’s principle. Although the relationship between minimum heat 

emission and logical reversibility is being revealed, it is not clear how much free energy is 

required to be dissipated for a logically irreversible operation and if logical reversibility is 

associated with thermodynamic reversibility. Theoretically, a logically irreversible operation can 

be performed without dissipation [15,16]. However, in conventional logic such as 

complementary metal–oxide–semiconductor (CMOS), switching events are always far from 

equilibrium and dissipative due to its operation principle [7]. Therefore, it is worth investigating 
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if a logically irreversible operation can be performed without free energy dissipation using a 

practical logic device.  

 In the present study, numerical calculations using superconductor logic devices are 

performed in order to reveal the minimum free energy dissipation required for a logically 

irreversible operation. We first demonstrate a restore-to-one (RT1) protocol [1], which is a 

typical logically irreversible operation, and discuss the minimum heat emission during the 

protocol via a numerical calculation of the work performed on the superconductor devices by 

power supplies. Followed by some modification to the RT1 protocol, we then investigate the 

minimum free energy dissipation for a logically irreversible operation. The calculation results 

reveal that, while the minimum heat emission during a logically irreversible operation conforms 

to the Landauer bound, the free energy dissipation during a logically irreversible operation can 

be arbitrarily reduced. This is a circuit-level demonstration revealing the difference between 

logical and thermodynamic reversibility.  

 

II. Restore-to-one (RT1) operation 

For the numerical calculation, we use adiabatic quantum-flux-parametron (AQFP) [17], which 

is an adiabatic superconductor logic based on quantum-flux-parametron (QFP) [18]. The 

switching energy of a single AQFP gate can be arbitrarily reduced [19] via adiabatic switching 

[20,21], in which the potential energy of the gate varies gradually between a single-well shape 

and a double-well shape through using ac excitation currents. The operation principle of AQFP 

logic is described in detail in previous works [17,19]. In the present study, we investigate the 

minimum energy dissipation required for a logically irreversible operation by introducing 

stochastic processes into an AQFP gate. Figure 1 shows the schematic of the AQFP circuit used 

in the numerical calculation, the circuit parameters of which are described in the caption. The 
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device parameters, such as a sub-gap resistance, are based on the AIST high-speed standard 

process (HSTP) [22]. Here we briefly explain how the circuit works. An AQFP gate is 

composed of the inductors, L1, L2, and Lq, and the Josephson junctions, J1 and J2. The input flux, 

Φin = kin(LinLq)0.5Iin, decides to which logic state the gate switches. The dc-offset flux, Φd = 

kd1(Ld1L1) 0.5Id+ kd2(Ld2L2) 0.5Id = 2kd(LdL) 0.5Id, decides the initial potential energy shape, where 

we assumed that kd = kd1 = kd2, Ld = Ld1 = Ld2, and L = L1 = L2. The excitation flux, Φx = 

kx1(Lx1L1) 0.5Ix+kx2(Lx2L2) 0.5Ix = 2kx(LxL) 0.5Ix, varies the potential energy shape between a single 

well and a double well, where we assumed that Lx = Lx1 = Lx2. For Φd = 0 (Φd = ±Φ0), the initial 

potential energy shape is a single-well (a double-well), and the potential energy evolves into a 

double-well shape (a single-well shape) by increasing Φx from 0 to Φ0, where Φ0 = h/2e is a 

single flux quantum, h is the Planck constant, and e is the elementary charge. The detailed 

relationship between potential energy shapes and applied magnetic fluxes is given in the 

literature [23]. For Φin > 0 (Φin < 0), the AQFP gate switches into logic 1 (logic 0) while the 

potential energy varies from a single-well shape into a double-well shape. It is noteworthy that, 

for Φin = 0, the AQFP gate stochastically switches to either logic 0 or logic 1, because the shape 

of the potential energy changes symmetrically, which indicates the ease of introducing 

stochastic processes into an AQFP gate.  

 Through using the circuit shown in Fig. 1, we perform an RT1 operation, which is a 

typical logically irreversible operation in information thermodynamic studies [9-14]. Figure 2 

shows the protocol to perform an RT1 operation using the AQFP gate with a dc-offset flux of Φd 

= -Φ0. Figure 2a describes the evolution of the potential energy of the AQFP gate during the 

protocol, which was obtained using the equation reported by Ko [24]. The potential energy, U, is 

a function of φ+, where φ+ = φ1+φ2, and φ1 and φ2 are the phase differences of the Josephson 

junctions, J1 and J2, respectively. Figure 2b shows the waveforms during the protocol at 4.2 K, 
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which was obtained using the Josephson circuit simulator, JSIM_n [25]. φ+ represents the logic 

state of the AQFP gate; positive φ+ represents logic 1 and negative φ+ represents logic 0. At the 

initial stage (A), the shape of potential energy is a double well due to Φd = -Φ0 but the logic 

state is stochastically determined, because no input flux is applied (Φin = 0). Therefore, the 

logical entropy of the AQFP gate at Stage A is given by H = ln2, because the probability of 

being in logic 0 is the same as that of being in logic 1. After Stage A, Φx increases and the 

potential energy varies from a double-well shape into a single-well shape at Stage B. Followed 

by increasing Φin to approximately 0.038Φ0 during Stages B and C, Φx returns to zero and the 

AQFP gate switches to logic 1 at Stage C due to Φin > 0. As a result, whether the initial logic 

state is 0 or 1 (A), the final logic state (C) is fixed to 1, which indicates the reduction in logical 

entropy from ln2 to 0. The RT1 operation is logically irreversible [26], because it is not possible 

to determine the initial logic state (A) after reaching the final state (C) due to the reduction in 

logical entropy. According to Landauer’s principle, the minimum heat emission during the RT1 

operation equals kBTln2 so that the total entropy of the relevant system does not decrease.  

 

III. Heat emission required for a logically irreversible operation 

In this section, we calculate the heat emission during the RT1 protocol to confirm if the 

Landauer bound (kBTln2) appears in the AQFP gate. First we discuss how to calculate heat 

emission. Let E be the average energy of the AQFP gate, W be the average work performed on 

the AQFP gate by the power supplies, which generate Ix and Iin, Q be the average heat absorbed 

by the AQFP gate from the thermal bath. According to the first law of thermodynamics, the 

change in E is given by ΔE = W+Q. In the RT1 protocol, the energy of the initial state (A) is the 

same as that of the final state (C), and therefore ΔE = 0 between the initial and final states. As a 

result, -Q = W is obtained, which shows that the average heat emission (-Q) from the AQFP gate 
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during the RT1 protocol is directly obtained by calculating the average work (W) performed on 

the AQFP gate by the power supplies (Ix and Iin) during the protocol. We calculate the work by 

using JSIM_n. The work performed by Ix (Iin) is obtained by integrating the product of Ix (Iin) 

and voltages across Lx1 and Lx2 (Lin) over time [27]. Note that Id is dc and thus does not perform 

work during the protocol. In the numerical calculation using JSIM_n, thermal noise current 

sources are added in parallel to the Josephson junctions [28], the amplitude of which is given by 

the Monte Carlo method and follows the Gaussian law with the standard deviation given by 

(2kBT/RΔt)0.5, where Δt is a simulation time step, and R is the sub-gap resistance. In the present 

study, Δt = 0.2 ps, R = 1000 ohm. Figure 3 shows the calculation results of the average work 

(W) or average heat emission (-Q) as a function of the rise and fall time of the excitation and 

input currents, τrf, at three different temperatures: 4.2 K, which is a typical operation 

temperature for AQFP, 2 K, and 1 K. W was calculated over 2,000 iterations of the RT1 protocol 

(A to C in Fig. 2) at each temperature. The figure shows that, as τrf increases and the RT1 

protocol is performed more slowly, -Q decreases and asymptotically approaches kBTln2 at all 

temperatures, which agrees well with Landauer’s principle and studies related to it [11,12,14]. 

The above results clearly indicate that the entropy of an AQFP gate is associated with its logical 

entropy, or ΔS = ΔH.  

 

IV. Free energy dissipation required for a logically irreversible operation 

In this section, we investigate the minimum free energy dissipation during an RT1 operation, in 

order to see if a logically irreversible operation (RT1) can be performed in a thermodynamically 

reversible manner. If logical reversibility is tied to thermodynamic reversibility, an RT1 

operation determines a non-zero minimum energy dissipation, as well as the minimum heat 

emission of kBTln2. First, we discuss how to calculate free energy dissipation. Dissipated free 
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energy or work is given by [29]:  

Fdiss = W-ΔF,        (1) 

where ΔF is the change in the free energy of the AQFP gate. We assume a protocol, in which the 

initial and the final states of the AQFP gate are the same in terms of energy and entropy. For this 

protocol, ΔF is zero and thus Eq. 1 becomes: 

Fdiss = W,        (2) 

which shows that free energy dissipation can be directly obtained by calculating average work, 

if the initial and the final states of the AQFP gate are the same. In other words, in the RT1 

protocol shown in Fig. 2, it is not possible to obtain free energy dissipation from the calculation 

of work, because the initial and final logical entropy are different. In order to calculate the 

minimum free energy dissipation during an RT1 operation, we modify the RT1 protocol so that 

the initial and the final states are the same. Figure 4 shows the modified RT1 protocol with Φd = 

0. At Stage A, the potential energy shape is a single well due to Φd = 0. During Stages A and B, 

Φx increases and the potential energy evolves from a single-well shape into a double-well shape. 

Since no input flux is applied (Φin = 0), the AQFP gate stochastically switches to either logic 0 

or 1 at Stage B (H = ln2). Between Stages B and D, an RT1 operation is performed in the 

similar way to the procedure shown in Fig. 2. At stage E, Φx returns to zero and potential energy 

shape returns to a single-well. In the modified protocol, the initial (A) and the final (E) states are 

the same and an RT1 operation is included between Stages B and D. Fig. 5 shows the 

calculation results of the average work (W) or free energy dissipation (Fdiss) as a function of τrf 

at three different temperatures: 4.2 K, 2 K, and 1 K. W was calculated over 2,000 iterations of 

the modified RT1 protocol (A to E in Fig. 4) at each temperature. The figure shows that, unlike 

the calculation results shown in Fig. 3, Fdiss decreases without energy bounds at all temperatures, 

which indicates that Fdiss = 0 or ΔStot = 0 in the quasi-static limit. In other words, the modified 



 

8 

 

protocol can be performed in a thermodynamically reversible manner due to the conservation of 

Stot, even if a logically irreversible operation (RT1) is included. This demonstrates that a 

logically irreversible operation can be performed thermodynamically reversibly and that logical 

reversibility is not associated with thermodynamic reversibility, as recent theoretical studies 

suggested [15,16]. In fact, both the protocols shown in Figs. 2 and 4 are considered to be 

thermodynamically reversible from the viewpoint of time reversibility [15,16,29-32]; the 

probability distribution of the logic state at each stage is the same, even if we perform the 

protocols in a time-reversal way. Moreover, the above calculation results show that heat is not 

only emitted (-Q = kBTln2) from the AQFP gate during an RT1 operation (ΔH = -ln2) but also 

absorbed (-Q = -kBTln2) by the AQFP gate during Stages A and B (ΔH = ln2).  

 From the fitting curves shown in Figs. 3 and 5, one can derive an equation regarding 

the heat emission during an RT1 operation as follows: Θ Δ ,                                                                                                    3  

where the first term on the right-hand side represents free energy dissipation, the second term on 

the right-hand side represents the heat due to logical entropy change, and Θ is the energy-delay 

product (EDP) of the system, which is independent of temperature. In AQFP logic, the energy 

scale is given by IcΦ0, and the time scale is given by Φ0/IcRsg [33], where Rsg is the sub-gap 

resistance and shows the damping condition of Josephson junctions, and hence the EDP of an 

AQFP gate should be proportional to IcΦ0
2/(IcRsg). By using the fitting curves shown in Fig. 3 

and the device parameters: Ic = 10 μA and IcRsg = 10 mV, the EDP of an AQFP gate during an 

RT1 operation is determined as follows: 

Θ 6.7 Φ .                                                                                                       4  

Equations 3 and 4 formulate the heat emission from an AQFP gate during an RT1 operation.  
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V. Conclusion 

We numerically performed two types of protocols using adiabatic superconductor logic in order 

to calculate both the minimum heat emission and the minimum energy dissipation required for a 

logically irreversible operation. Via the RT1 protocol, which is a logically irreversible operation 

accompanied by a reduction in logical entropy of ln2, the heat emission from the AQFP gate 

into the thermal bath was calculated from the work performed on the AQFP gate by power 

supplies. The calculation results showed that the minimum heat emission during an RT1 

operation equlas kBTln2 in accordance with Landauer’s principle, which indicates that logical 

entropy is associated with entropy. Via the modified RT1 protocol, where the initial and final 

states of the AQFP gate are the same and an RT1 operation is performed in the middle of the 

modified protocol, free energy dissipation was calculated from the work. It was found that the 

energy dissipation decreases without energy bounds as the modified protocol is performed more 

slowly, which indicates that a logically irreversible operation can be performed in a 

thermodynamically reversible manner and that logical reversibility is not associated with 

thermodynamic reversibility. Based on the above numerical calculation results, we also 

formulated the heat emission from the AQFP gate during an RT1 operation.  
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Fig. 1  Schematic of the AQFP circuit used for numerical calculation. L1 = L2 = 6.58 pH, Lq = 

26.3 pH. The critical currents of J1 and J2 are Ic = 10 μA. Since typical AQFP gates are designed 

symmetrically, L1 = L2 = L, Lx1 = Lx2 = Lx, and Ld1 = Ld2 = Ld. Id decides the initial potential 

energy shape. Ix evolves the potential energy shape between a single well and a double well. Iin 

determines to which logic state the gate switches.  
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Fig. 2  RT1 protocol. (a) Evolution of the potential energy of the AQFP gate. (b) Waveforms of 

the AQFP gate. At the initial stage (A), the logical entropy of the AQFP gate, H, is ln2, because 

the probability of being logic 1 is equal to that of being 0. Through forming a single-well 

potential in Stage B, H reduces to 0 in the final stage (C). This protocol is logically irreversible 

due to the reduction in logical entropy.  
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Fig. 3  Numerical calculation results of the average heat emission, -Q, during the RT1 protocol. 

-Q was calculated over 2,000 iterations of the protocol at three different temperatures: 4.2 K, 2 

K, and 1 K. The fitting curves are -Q = 2.89×10-32/τrf+kBTln2. As the rise and fall time of the 

excitation and input currents, τrf, increases, the average heat emission reduces and 

asymptotically approaches kBTln2 in accordance with Landauer’s principle.  
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Fig. 4  Modified RT1 protocol. (a) Evolution of the potential energy of the AQFP gate. (b) 

Waveforms of the AQFP gate. The initial state of the AQFP gate at Stage A is the same as the 

final state at Stage E. An RT1 operation is performed between Stages B and D.  
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Fig. 5  Numerical calculation results of the free energy dissipation, Fdiss, during the modified 

RT1 protocol. Fdiss was calculated over 2,000 iterations of the modified protocol at three 

different temperatures: 4.2 K, 2 K, and 1 K. The fitting curve is Fdiss = 6.25×10-32/τrf. As τrf 

increases, the energy dissipation reduces without energy bounds. 

 


