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In the first two papers of this series, we characterized the structure of maximally random jammed
(MRJ) sphere packings across length scales, including a variety of different correlation functions,
spectral functions, hole probabilities, and local density fluctuations. From the remarkable struc-
tural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical
properties can be expected. Here, we employ these structural descriptors to estimate effective trans-
port and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical
approximation formulas. These property formulas include interfacial bounds as well as universal
scaling laws for the mean survival time and the fluid permeability. We also estimate the principal
relaxation time associated with Brownian motion among “traps.” For the propagation of electro-
magnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres
within a matrix of another dielectric material forms, to a very good approximation, a dissipationless
disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare
the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium
hard-sphere packings, and lattices of hard spheres. The analytic bounds predict the qualitative
trend in the physical properties associated with these structures, which provides guidance to more
time-consuming simulations and experiments. Moreover, we generalize results to micro- and macro-
scopically anisotropic packings of spheroids with tensorial effective properties. Our predictions of
the physical properties of MRJ sphere packings provide impetus for new experiments to design ma-
terials with unique bulk properties resulting from hyperuniformity, including structural-color and
color-sensing applications.

I. INTRODUCTION

Using results from homogenization theory that links
statistical correlation functions to effective properties, we
estimate effective transport and electromagnetic proper-
ties of maximally random jammed (MRJ) packings of
identical spheres distributed throughout a matrix (or
void) phase. Packings of hard spheres exhibit a rich
multitude of states [1–4] and serve as simple, yet effec-
tive models of diverse many-particle systems or hetero-
geneous materials [5–9]. An especially remarkable struc-
ture among the set of all isotropic, frictionless and sta-
tistically homogeneous sphere packings has been found
in the maximally random jammed (MRJ) state [10]. In-
tuitively speaking, MRJ packings are the maximally dis-
ordered among all mechanically stable packings. More
precisely, they minimizes among the jammed packings
some order metric Ψ [10–18]. The MRJ state can be
unambiguously identified for a particular choice of the
order metric, and a variety of sensible, positively corre-
lated order metrics produce an MRJ state in three di-
mensions with the same packing fraction 0.64 [11]. This
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definition is mathematically more precise than the fa-
miliar notion of random closed packing (RCP) [19–27].
Moreover, while similar packing fractions have been re-
ported for three-dimensional RCP and MRJ packings of
identical spheres [10, 20, 23], there are other structural
attributes that differ distinctly [11, 28, 29]. The distinc-
tion between these states become especially vivid in two
dimensions [30].

The most remarkable structural feature of MRJ pack-
ings is their singular property of hyperuniformity [31, 32].
There is a anomalous suppression of infinite-wavelength
density (volume-fraction) fluctuations, which results in
d-dimensional Euclidean space Rd in negative quasi-long-
range pair correlations that decay asymptotically like
−1/rd+1 [33, 34]. The disordered hyperuniformity of
the MRJ state can be interpreted as an ‘inverted critical
phenomenon’ because the direct correlation function be-
comes long-ranged, in contrast to thermal critical points
in which this function remains short-ranged [31, 35].

In this series of papers, we characterize in detail the
complex and subtle structure and physical properties of
three-dimensional MRJ packings of identical spheres. In
the first paper [36], we structurally characterized MRJ
sphere packings generated in Ref. [29] using Voronoi
statistics, including certain types of correlation functions.
We compared these computations to corresponding cal-
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culations for overlapping spheres and equilibrium hard
spheres.

In the second paper [37], we further characterized the
MRJ sphere packings using the void-void, surface-void,
and surface-surface correlation functions, as well as, the
spectral density, the exclusion (“hole”) probability, and
density fluctuations.

In this paper, we use these structural characteris-
tics to predict a variety of effective properties of the
MRJ packings via rigorous bounds, exact expansions
and accurate analytical approximation formulas. Such
a characterization of the microstructure provides sim-
ilar bounds on seemingly unrelated physical effective
properties, and it allows one to apply cross-property
relations [38, 39]. Here, we specifically estimate the
mean survival time [40, 41] and principal relaxation
time associated with Brownian motion of point particles
among spherical traps [9, 42], fluid permeability [43–45]
and effective complex dielectric constant associated with
the propagation of electromagnetic waves in the long-
wavelength limit [46].

We compare the property predictions for MRJ pack-
ings to those for overlapping spheres (ideal gas) and equi-
librium hard-spheres. The analytic bounds allow one to
compare the properties of these different complex mi-
crostructures without time-expensive computer simula-
tions. It turns out that the property bounds capture well
the qualitative trend of the actual physical properties,
which is confirmed by universal scaling laws.

Most importantly, we study the effect of disordered
hyperuniformity on the propagation of electromagnetic
waves. Because of the anomalous suppression of large-
scale density fluctuations, a hyperuniform material is
nearly dissipationless in the long-wavelength limit [46].
This attribute could be useful for the design of photonic
materials with novel structural color characteristics [47–
50] or color-sensing capabilities [51]. It was shown that
the imaginary part of the effective dielectric constant van-
ishes exactly through lowest order in perturbation expan-
sion and third-order in the wave vector. Here, we apply
these results to demonstrate how the imaginary part of
the MRJ sphere packings is orders of magnitude smaller
than those of the overlapping or equilibrium hard spheres.

The rest of the paper is organized as follows. In Sec. II,
we determine both void and interfacial bounds for the
fluid permeability and the mean survival time. The ana-
lytic calculations of the corresponding integrals over the
correlation functions for finite packings and the extrap-
olation to infinite system sizes is summarized in Ap-
pendix A. In Appendix B, the pore-size bounds on the
mean survival time are calculated for lattices. In Sec. III,
we consider the principal diffusion relaxation. The effec-
tive dielectric constant is studied in Sec. IV. Finally, in
Sec. V, tensorial effective physical properties are evalu-
ated for anisotropic packing of oriented spheroids. We
summarize the results and make concluding remarks in
Sec. VI.

FIG. 1. (Color online) Laminar flow through the void space of
a two-dimensional hard-disk packing. The color (gray value)
indicates the magnitude of the flow velocity. The image is
reproduced from Ref. [9] by permission from Springer.

II. FLUID PERMEABILITY AND MEAN
SURVIVAL TIME

The fluid permeability k, characterizes slow laminar
flow of an incompressible viscous fluid through porous
media according to Darcy’s law [52]

U = −k
µ

∆p0, (1)

where U is the average fluid velocity, ∆p0 is the applied
pressure gradient, and µ is the dynamic viscosity [53].
Figure 1 shows an example of a two-dimensional flow
through the void space of a two-dimensional hard-disk
packing.

The mean survival time τ and the trapping con-
stant γ characterize diffusion and reaction among absorb-
ing “traps” that are static [54]. The reactants diffuse in
the void phase and the spheres form perfectly absorbing
traps [55]. In this diffusion-controlled regime, the time
until the species diffuse to the trap interface is long rela-
tive to the characteristic time associated with the surface
reaction [56]. Figure 2 visualizes such a diffusion between
perfectly absorbing spheres. In steady state, the rate of
removal by the traps is exactly compensated by produc-
tion rate G of reactants per unit volume (within the void
phase). The trapping constant γ relates the average con-
centration field C to the rate of production G [57]

G = γDC, (2)
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FIG. 2. (Color online) Diffusion of a particle through the void
space of a three-dimensional packing of perfectly absorbing
spheres. The blue trajectory shows an approximation of its
Brownian motion. The particle is absorbed once it touches
the surface of a sphere (indicated by a small white ball).

where D is the diffusion constant. The trapping constant
is trivially related to the mean survival time τ of a Brow-
nian particle. It is the expected time that the diffusing
particle survives before it is absorbed by a trap [58]. For
diffusion in the void phase, it is given by [9]:

τ =
1

(1− φ)Dγ
. (3)

The permeability and the trapping constant (or equiva-
lently the mean survival time) characterize quite different
physical processes. Both are closely related to (different)
geometrical properties of the pores. The permeability
may be regarded, roughly speaking, as an effective pore
channel area of the dynamically connected part of the
pore space, and the trapping constant is related to the
average pore size [9].

If the transport occurs in parallel channels of constant
cross-section, the permeability and mean survival time
are strictly related to each other [59]. For more general
porous media, there is a cross-property relation, an upper
bound on the permeability in terms of the mean survival
time [38]. Taking advantage of the similar underlying
mathematical structure, similar variational bounds can
be derived for both quantities that are based on the same
geometrical properties, namely integrals over void and
interfacial correlation functions.

Here, we estimate these structure integrals for MRJ
sphere packings and determine an upper bound on their
permeability as well as on their mean survival time.

Moreover, we use universal scalings to derive precise es-
timates for these quantities. We compare these results to
those for equilibrium hard-sphere liquids and overlapping
spheres, as well as lattices formed by hard spheres. Us-
ing the analytical bounds, we provide a prediction of the
qualitative trend between these different structures with-
out the need for time-consuming direct computer simu-
lations.

A. Bounds on the fluid permeability

In the second paper of this series, we determined the
two-point correlation function S2(r) of MRJ sphere pack-
ings, that is the probability that two random points at a
distance r lie in the phase formed by the spheres. It is
closely related to the void-void correlation function Fvv
and the autocovariance χ

V
(r) of the two-phase medium:

χ
V

(r) := Fvv(r)− (1− φ)2 = S2(r)− φ2, (4)

where φ is the packing fraction.

Variational principles allows one to derive rigorous up-
per bounds on the fluid permeability [9]. Using an energy
representation that is minimized by the (true) fluid per-
meability, upper bounds can be derived from appropriate
trial velocity fields (that satisfy the Stokes momentum
equation without satisfying the incompressibility and no-
slip conditions). The following “void” upper bound on k
in three dimensions is given by an integral over the au-
tocovariance [9]:

k/ks ≤
12

φD2

∫ ∞
0

r[S2(r)− φ2]dr. (5)

The normalizing constant ks = D2/(18φ) is the Stokes
dilute-limit permeability for a sphere of diameter D.

For overlapping spheres, the improper integral in
Eq. (5) and thus the bound on the fluid permeability can
be calculated using a numerical integration of the explicit
analytic formulas for the two-point correlation function.
For the hard-sphere packings, a careful estimation of the
improper integrals based on finite samples is needed. We
describe the details of our analysis in Appendix A.

We find for the fluid permeability of MRJ sphere pack-
ings an upper bound of 0.05965(8)ks, which is less than
half of the upper bound for the equilibrium hard-sphere
liquid 0.13090(6)ks. In part this can be explained by the
larger packing fraction of the MRJ spheres (φ = 0.636),
but not entirely. Comparing the bounds for overlapping
spheres at φ = 0.636 to those at φ = 0.478, there is only
a decrease by about 0.622.

Using variational principles, Doi [60] derived a bound
on the fluid permeability that includes interfacial two-
point information. They were rederived by Rubinstein
and Torquato [45] and generalized to arbitrary dimension
in Ref. [9]. The “interfacial upper bound” on the fluid
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FIG. 3. (Color online) The interfacial bounds on the fluid
permeability k as a function of the packing fraction φ: The
bounds for the MRJ sphere packings (at φ = 0.636) are
compared to those of an equilibrium hard-sphere liquid (at
φ = 0.478) and overlapping spheres, as well as cubic lattices
of hard spheres: the simple cubic (SC, gray lines), the body-
centered cubic (BCC, green lines), and the face-centered cubic
(FCC, dark-red lines) lattice. Because of the rescaling with
ks = D2/(18φ), the bounds converge for φ → 0 to finite val-
ues.

permeability in three dimensions is given by

k

ks
≤ 12φ

D2

∫ ∞
0

r
[ (1− φ)2

s2
Fss(r)

− 2(1− φ)

s
Fsv(r) + Fvv(r)

]
dr,

(6)

where Fss is the surface-surface correlation function, and
Fsv the surface-void correlation function; for more de-
tails, see the second paper of this series [37].

For overlapping spheres, the improper integral can
again be computed by a numerical integration of the
explicit well-known formulas for the surface correlation
functions. For the estimation of the bounds for hard-
sphere packings, see Appendix A. The resulting curves
are shown in Fig. 3.

The additional information about the correlation of
the interface strongly improves the bounds. The up-
per bound on the fluid permeability decreases for the
MRJ spheres by a factor of 0.551 to 0.03287(7)ks, and
for the equilibrium hard-sphere liquid by a factor 0.585
to 0.07661(8)ks.

Our estimate for the equilibrium hard-sphere liquid,
which is based on an analytic integral of the explicit
expressions for the correlation functions of finite simu-
lated samples, agrees with previous results [61] based on
a Verlet-Weis modification [62] of the Percus-Yevick ap-
proximation [8].

The complex structure of the MRJ packings, which
suppresses large pores and pore channels, can be expected
to result in a large trapping constant but small perme-
ability, as our calculation of the bounds suggests.
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FIG. 4. (Color online) Universal scaling of the fluid perme-
ability k: The interfacial bounds for overlapping and equilib-
rium spheres as well as MRJ sphere packings are compared
to the universal scaling law for hard and overlapping spheres
(solid lines, dark-red and black).

B. Universal scaling of the fluid permeability

Martys et al. [63] found a universal scaling of the fluid
permeability for sphere packings. Using numerical simu-
lations of Stokes flow and a scaling ansatz motivated by
the rigorous bounds, they found an excellent agreement
for a variety of model microstructures.

Here we employ the following approximation of the per-
meability (based on Eq. (6) in Ref. [63]):

k ≈ 2(φ+ φc1)

s2
(1− φ2 − φc1)f , (7)

where s is the specific surface area, f = 4.2, and φc1 =
0.0301(3) is the void percolation threshold of overlapping
monodisperse spheres from Ref. [64].

In Fig. 4, the interfacial bounds for the disordered
sphere packings (MRJ, equilibrium, and overlapping) are
compared to the prediction of the universal scaling. As
expected, the bounds are not sharp, but they provide
accurate trends when comparing different systems.

C. Bounds on the mean survival time

The integral from Eq. (5) also provides a rigorous up-
per bound on the mean survival time in three dimensions,
which can again be derived by a variational principle [65]:

τ/τs ≤
12

(1− φ)φD2

∫ ∞
0

r[S2(r)− φ2]dr. (8)

The normalizing constant τs := 12φD/D2 is the Smolu-
chowski result for the dilute-limit of a spherical trap of
diameter D. Note that the upper bounds on τ/τs and
k/ks only differ in a prefactor involving (1− φ).



5

As mentioned in the previous subsection, the same
variational principles that provide a sharper interfacial
bound on the fluid permeability also allow for an inter-
facial upper bound on the mean survival time [60, 66].
Both of these bounds are based on the same improper
integral of the surface two-point correlation functions.
They again only differ in the prefactor:

τ

τs
≤ 12φ

(1− φ)D2

∫ ∞
0

r
[ (1− φ)2

s2
Fss(r)

− 2(1− φ)

s
Fsv(r) + Fvv(r)

]
dr.

(9)

The upper bound on τ can be complemented by a lower
bound that is based on the mean size of pores in the
void phase. A pore size δ is the maximum radius of a
spherical pore that can be assigned to a random point
in the void phase such that the pore remains in the void
phase; for more details, see the second paper of this series.
Given the mean pore size 〈δ〉, that is, the first moment of
the pore-size distribution, the mean survival time in the
diffusion-controlled limit (κ→∞) in three dimensions is
bounded from below by

τ/τs ≥
12φ〈δ〉2

D2
. (10)

The bound was derived by Prager [40]. A generalization
for arbitrary absorbing traps, that is, finite values of κ,
can be found in Ref. [42].

The mean pore size for MRJ sphere packings was de-
termined in the second paper of this series. The result-
ing lower bound is 0.003990(2)D2/D. The bound for
the MRJ spheres is by an order of magnitude smaller
than the bound for overlapping spheres at the same vol-
ume fraction covered by spheres. The latter bound is
0.0132977 · · ·D2/D.

For comparison, the lower bound for the equilibrium
hard-sphere liquid at φ = 0.478 is 0.00968(1)D2/D. For
equilibrium hard-sphere liquids at packing fractions be-
low the freezing point, the pore-size bound can be cal-
culated using analytic approximations of the pore size
probability density [9, Sec. 5.2.5.]. Our simulation result
is in good agreement with the analytic approximation.

Figure 5 depicts both the upper and lower bounds on
the mean survival time; cf. Fig. 3 for the fluid perme-
ability.

D. Universal scaling of the mean survival time

By rescaling the mean survival time by the diffu-
sion constant D and the diameter D of a single sphere,
Torquato and Yeong [41] found a universal scaling law for
a broad class of model particulate- and digitized-based
models. It allows for accurate predictions of τ based on
the mean pore size, specific surface, and porosity.
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FIG. 5. (Color online) Mean survival time τ rescaled by the
diffusion constant D and the diameter D of a single sphere and
plotted as a function of the packing fraction φ, is compared
for the MRJ sphere packings (red), to equilibrium hard-sphere
liquids (blue), and overlapping spheres (black). The interfa-
cial upper bound, see Eq. (9), is indicated by solid triangles
(N) and a dashed-dotted line; the pore-size lower bound, see
Eq. (10), by open triangles (4) and dashed lines. The gray-
shaded region indicates for the overlapping spheres the mean
survival times between these bounds. The solid lines and the
crosses (+) indicate the prediction of the mean survival time
using the universal scaling relation, see Eq. (12).

First, a characteristic time-scale τ0 is defined:

τ0 :=
3φ

s2(1− φ)D
, (11)

where s is the specific surface of the two-phase medium,
that is, the ratio of the surface area and the volume of
the whole system; for more details, see the second paper
of this series.

The universal scaling of the mean survival time is then
given by

τ

τ0
=

8

5

〈δ〉2

τ0D
+

8

7

(
〈δ〉2

τ0D

)2

. (12)

Thus the mean survival time can be predicted from the
packing fraction φ, specific surface s, mean pore size 〈δ〉,
and diffusion constant D [67].

Figure 5 shows the predictions of the scaling law for the
mean survival time τ for diffusion in the pores of MRJ
sphere packings. The results are compared to those of
overlapping spheres and equilibrium hard-sphere liquids.
For the latter, the above mentioned approximation of the
pore size probability density [9, Sec. 5.2.5.] allows for an
accurate prediction of the mean survival time of equilib-
rium hard-sphere liquids for packing fractions below the
freezing transition.

For the MRJ sphere packings, the approximation of the
mean survival time yields 0.006431(3)D2/D. It is indeed
less than half of the mean survival time 0.01580(2)D2/D
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that is predicted for the equilibrium hard-sphere liquid
(at φ = 0.478). Moreover, it is more than three times
smaller than the mean survival time 0.02146 . . . D2/D for
overlapping spheres at the same packing fraction as the
MRJ spheres (at φ = 0.636).

As discussed above and expected from the bounds,
the strong suppression of large pores in the MRJ sphere
packings dramatically reduces the mean survival time
compared to the equilibrium hard-sphere liquid and es-
pecially to the very irregular pattern of non-interacting
spheres.

III. PRINCIPAL DIFFUSION RELAXATION
TIME

Both the trapping constant and the mean survival time
characterize the steady-state trapping problem, that is, if
the concentration does not change over time. The time-
dependent trapping problem with a continuous decay of
the concentration is characterized by the associated re-
laxation times. These time scales are closely related to
the characteristic length scales of the pore region. Be-
sides chemical reactions, this process is also especially
important for the nuclear magnetization density in nu-
clear magnetic resonance experiments.

In the diffusion controlled limit, the concentration
obeys a Laplace equation, the time-dependent diffusion
equation, with Dirichlet boundary conditions, that is, the
concentration vanishes at the interface of the void and
particle phase. The corresponding eigenvalues λn (with
0 < λ1 ≤ λ2 ≤ . . .) define the diffusion relaxation times

Tn :=
1

Dλn
. (13)

The principle diffusion relaxation time T1 dominates the
behavior at long times, for example, the tail of the sur-
vival probability is proportional to exp(−t/T1).

Like the mean survival time τ , the principal relaxation
time T1 is intimately related to the first and second mo-
ments of the pore-size probability density function [42].
While the mean pore sizes allows to predict the mean
survival time of the steady-state problem, the variance
of the pore sizes provides a bound on the principal re-
laxation time in the time-dependent problem. Based on
the first and second moment of the pore size distribution,
Torquato and Avellaneda [42] found an lower bound on
the principal diffusion relaxation time T1 for arbitrary
values of the surface reaction rate κ (using a variational
principle similar to that used for the lower bound on
the mean survival time). In the here studied diffusion-
controlled regime, that is, in the limit κ → ∞ where a
particle is immediately trapped once it diffuses to the sur-
face, the lower bound is given by only the second moment
of the pore-size distribution:

T1 ≥
〈δ2〉
D

. (14)

0

0.04

0.08

0.12

0 0.2 0.4 0.6

Overlapping

MRJ

BCC

FCC

SC

L

o

w

e

r

b

o

u

n

d

s

o

n

T
1
D
/D

2

φ

Equil.

FIG. 6. (Color online) Pore-size lower bounds on the princi-
pal diffusion relaxation time T1, see Eqs. (13) and (14): the
bounds for the MRJ sphere packings is distinctly smaller than
those for equilibrium or overlapping spheres, and only slightly
larger than dense lattice packings of hard spheres, which are
perfectly ordered but anisotropic.

Like the first moment of the pore sizes in MRJ sphere
packings, we have also determined the second moment in
the second paper of this series and compared it to that of
the equilibrium hard-sphere liquid. The lower bound for
the MRJ spheres is 0.006301(3)D2/D, which is less than
half of the corresponding value for the equilibrium hard-
sphere liquid 0.01437(2)D2/D. The results are shown
in Fig. 6, which includes also the lower pore-size bound
for equilibrium hard-sphere liquids as a function of the
packing fraction, based on the analytic approximation
of the pore size probability density [9, Sec. 5.2.5.]. The
principal relaxation time can be expected to be distinctly
smaller in the hyperuniform MRJ state than in the more
irregular equilibrium fluid, and close to the crystalline
(but anisotropic) BCC and FCC structures.

IV. EFFECTIVE DIELECTRIC CONSTANT

The dielectric constant, or permittivity, relates the po-
larization in a medium to the applied electric field. In
heterogeneous materials, the propagation of electromag-
netic waves can be described by an effective complex di-
electric tensor εe. It is needed, for example, for remote
sensing [68], to study wave propagation through turbu-
lent atmospheres [69], to actively manipulate compos-
ites [70], to probe artificial materials [71], and especially
to study electrostatic resonances [72, 73].

We are interested in the long-wavelength regime, that
is, when the wavelength is much larger than the scale of
the inhomogeneities of the two-phase medium (because
in the complementary regime ray-tracing techniques yield
appropriate solutions). This is schematically depicted
in Fig. 7. Rechtsman and Torquato [46] derived an ex-
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FIG. 7. (Color online) Schematic of a plane electromagnetic
wave in the long-wavelength limit (the red and blue arrows
depict its values along four lines) entering a heterogeneous di-
electric medium that is formed by an MRJ hard-sphere pack-
ing. The spheres (steel-gray) have a dielectric constant ε2,
and the intermediate space (green) has a dielectric constant
ε1.

act strong-contrast expansion for εe, which is explicitly
given in terms of integrals over the n-point correlation
function of the random two-phase medium. Because the
heterogeneous microstructures studied here are isotropic,
we can use a scalar effective dielectric constant εe. For
former approximations of the effective dielectric constant
see, e.g., Refs. [68, 71, 74].

In a typical isotropic, locally disordered system there
is dissipation for the transport of electromagnetic waves
with long wavelengths (due to density fluctuations in the
system). Dissipationless transport is only possible in
crystal lattices with no large-scale density fluctuations.
However, crystals are not isotropic. An amorphous, hy-
peruniform systems, like the MRJ sphere packing can be
both isotropic and globally uniform similar to a crystal.
It could allow for an optimal solution among the isotropic
systems. Therefore, unique transport properties can be
expected.

A. The two-point approximation of the
strong-contrast expansion

Following Ref. [9], Rechtsman and Torquato [46] ex-
panded the effective dielectric tensor εe for a random
two-phase medium where the single phases are assumed
to be isotropic. We here additional assume that their di-
electric constants are real valued. Due to the disorder of
the two-phase medium, the effective dielectric constant
will nevertheless exhibit a non-vanishing imaginary part.

One of the two phases is chosen as a reference phase
surrounding the heterogeneous material. The phase of
reference is here denoted by q, the complementary phase

by p. Both choices q = 1 or q = 2 yield valid strong-
contrast expansions. Depending on the microstructure,
the rate of convergence may differ.

The strong contrast refers to the difference between
the two dielectric constants ε1 and ε2 of the two phases
i = 1, 2. By choosing a beneficial strong-contrast ex-
pansion parameter βpq, based on Padé approximations,
they achieved a wide radius of convergence (compared
to the weak-contrast expansion that uses only the dif-
ference ε1 − ε2). However, whenever one phase consists
of a disconnected (dispersed) particles in a percolating
matrix, the expansion will converge rapidly [9, 46] and
hence truncation of the series a low orders can yield a
very good approximation of the effective dielectric con-
stant. In three dimensions,

βpq :=
εp − εq
εp + 2εq

. (15)

Accordingly, the effective polarizability βeq is defined us-
ing on the effective dielectric constant εe:

βeq :=
εe − εq
εe + 2εq

. (16)

This strong contrast expansion allows predictions for
large ratios between the dielectric constants of the two
phases. Their results of Ref. [46] suggest that (in the
long-wavelength limit) truncation of the expansion at
the level of the two-point correlation function S2(r) still
yields a good approximation to the effective dielectric
constant for any phase contrast ratio for the aforemen-
tioned class of particle dispersions. It is given by

βpqφ
2
pβ
−1
eq = φp − βpqA2, (17)

where A2 includes the two-point information about the
random media:

A2 := 2k2q

∫ ∞
0

eikqrr[S
(p)
2 (r)− φ2p]dr, (18)

using the two-point correlation function S
(p)
2 (r) and vol-

ume fraction φp of phase p.
In the static problem, A2 always vanishes for a statisti-

cally isotropic and homogeneous medium. For the propa-
gation of electromagnetic waves, the imaginary part of A2

corresponds to its attenuation in the disordered medium,
see Ref. [46].

In the long-wavelength limit, it is determined in
leading-order by the local-volume-fraction fluctuations.
More precisely, it is proportional to the square of the
coarseness of the material, that is, of the asymptotic
standard deviation of volume fractions in the limit of an
infinitely large window. As a rule of thumb, the more
disordered a heterogeneous material, the stronger is the
attenuation of the electromagnetic waves. Interestingly,
the coarseness vanishes by definition for a hyperuniform
material. A hyperuniform material allows for an almost
dissipationless transport of electromagnetic waves.
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FIG. 8. (Color online) The two-point approximation of the effective dielectric constant εe in the strong-contrast expansion, see
Eq. (20), as a function of the ratio ε2/ε1 of the dielectric constants in the particle and void phase for various absolute values
of the wave vectors kq. Both the real part (top) and imaginary part (bottom) are plotted for the MRJ state (right hand side)
and compared to the results for the equilibrium hard spheres (center) and overlapping spheres (left hand side).

Formally this can be shown by the Taylor expansion of
A2 through third order in kq at kq = 0:

A2 = 2k2q

∫ ∞
0

r[S
(p)
2 (r)− φ2p]dr

+ 2ik3q

∫ ∞
0

r2[S
(p)
2 (r)− φ2p]dr +O(k4q).

(19)

The leading term is proportional to the spectral density
at wavenumber zero χ̃

V
(0), see Eq. (11) in the second

paper of this series [37]. A two-phase medium is hyper-
uniform if and only if χ̃

V
(0) = 0. Therefore, the leading

term of A2 vanishes for a hyperuniform material. The
material is is exactly dissipationless through lowest order
in perturbation expansion and third-order in kq. We can
therefore expect an only small attenuation for the MRJ
sphere packing.

Note that A2 at finite values of kq is proportional to
the spectral density χ̃

V
(k) For a stealthy disordered hy-

peruniform system, the spectral density vanishes for all
wave vectors below a finite threshold k < k0 [75]. In
such a system, a completely dissipationless transport of
electromagnetic waves with long but finite wavelengths
is possible.

B. The effective dielectric constant of MRJ sphere
packings

Using the second-order approximation from Eq. (17),
we here estimate both the real and imaginary part of the

effective dielectric constant εe for the MRJ sphere pack-
ings (φ = 0.636). We compare them to those of the hard-
sphere liquid (φ = 0.478) and overlapping spheres (at the
same mean volume fraction as the MRJ packings). For
the MRJ sphere packings as well as for the overlapping
spheres, the particle phase is chosen as the phase of refer-
ence, i.e., q = 2. For the equilibrium hard-sphere liquid,
the particle phase does not percolate. Therefore, the void
phase serves as the phase of reference, i.e., q = 1. These
choices for the overlapping and equilibrium spheres agree
with those in Ref. [46].

Solving Eq. (17) for εe, we derive

εe
εq

=
φp −A2βpq + 2βpqφ

2
p

φp −A2βpq − βpqφ2p
, (20)

which provides a good approximation to all orders. To
calculate A2, we numerically integrate the analytic two-
point correlation function S2(r) from the second paper
of this series. We compute A2 for each sample separately
and then estimate the expectations of the real and imag-
inary part of A2.

Figure 8 shows the two-point approximation of both
the real and imaginary part of εe for the MRJ spheres,
and compares them to those of the overlapping and equi-
librium hard spheres. The effective dielectric constant
εe is plotted as a function of the dielectric constant ε2 of
the particle phase, both in units of the dielectric constant
ε1 of the void phase. In each plot, the family of curves
represent various absolute values kq of the wave vectors,
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where kq = 0 represents the static case and kq ≈ 0.7/D
corresponds to a wavelength about nine times the diam-
eter D of a single sphere.

If ε2 → ε1, the two phases become indistinguishable
and εe → ε1. For ε2 > ε1, the effective dielectric constant
is strong monotonically increasing as a function of ε2.

The real part of εe hardly depends on kq, in contrast
to the imaginary part. For the overlapping spheres, the
latter strongly increases even within the range of kq stud-
ied here. As mentioned above, the integral A2 vanishes
in the static case (kq = 0) for any isotropic system, and
therefore the imaginary part of εe vanishes.

Moreover, in the static case, the real part of εe only de-
pends only on the volume fraction φ (because of A2 = 0).
Therefore, Re[εe] is identical for the overlapping spheres
and the MRJ state despite their extremely different mi-
crostructure. Although it depends only weakly on kq
and the difference between Re[εe] for overlapping or for
MRJ spheres remain small even for kq ≈ 0.7/D, we ob-
serve that the real part of the dielectric constant remains
smaller for the MRJ than for the overlapping spheres. An
explanation is that the MRJ spheres are less connected.

In the dynamic case (kq > 0), the imaginary part
Im[εe] depends distinctively on subtle structural details.
In accordance with Ref. [46], the imaginary part is much
larger for the overlapping spheres than for the equilib-
rium hard spheres. This is intuitive, because the non-
overlap constraint in the latter system decreases the
coarseness of the system (compared to the completely
independent overlapping spheres).

Most interestingly, we find an even much smaller imag-
inary part of the dielectric constant for the MRJ state.
It practically vanishes for a considerable range of phase
contrast ratio and wavelengths. This vanishing of Im[εe]
arises from the hyperuniformity of the MRJ sphere pack-
ings, as predicted in Sec. IV A. The coarseness converges
to zero for kq → 0; in the second paper of this series,
we showed how the spectral density χ̃

V
vanishes in the

limit of infinite wavelengths. The small functional values
of χ̃

V
at small absolute values of the wave vector is, as

mentioned above, strictly related to small leading order
terms of Im[εe], see Ref. [46, Eq. (B5)]. Roughly speak-
ing, propagating waves in the long-wavelength limit are
no longer scattered off because the heterogeneities vanish
on large length-scales. MRJ spheres form a nearly dissi-
pationless disordered and isotropic two-phase medium.

V. MICRO- AND MACROSCOPICALLY
ANISOTROPIC PACKINGS OF SPHEROIDS

Hitherto, we have examined two-phase media com-
posed of an isotropic distribution of spheres in a matrix
phase. By a linear transformation, a scaling in one direc-
tion, they can easily be generalized to anisotropic pack-
ings of oriented spheroids, see Fig. 9. There is a scaling
transformation that maps the results of the isotropic into
equivalent results for the anisotropic systems [76]. Both

FIG. 9. An anisotropic packing of spheroids resulting from a
linear transformation (stretching) of an MRJ sphere packing.

microstructural and physical properties of the oriented
spheroids can be expressed by properties of the corre-
sponding sphere systems [77–80].

If slight deviations from the perfect alignment appear
in experimental realizations, the rigorous bounds for per-
fectly aligned grains should still be a good approximation.
Of course, in the opposite case of an isotropic distribution
of orientations, the effective properties could differ dra-
matically, especially for highly aspherical shapes. Then
the system would be macroscopically isotropic, i.e., the
conductivity tensor is isotropic.

Here we use the explicit bounds on (anisotropic) phys-
ical properties of aligned spheroids from Ref. [80]. Such
a system can model certain laminates or short-fiber com-
posites.

The symmetry axis of the spheroids is chosen to point
in z-direction, and the corresponding semi axis has length
b. The other semi-axis length a is equal to the radius
of the original spheres. The aspect ratio is denoted by
ε = b/a; ε = 0 corresponds to disks and ε =∞ to needles.

A. Mean survival time

Using the scaling transformation, Torquato and Lado
[80] generalized he two-point upper bound on the mean
survival time of a particle diffusing between spheres [65],
see Eq. (8), to the corresponding bound for oriented
spheroids. The latter is simply given by the bound for
spheres multiplied by a factor ξ1(ε), which only depends
on the aspect-ratio ε of the spheroids.

ξ1(ε) =

{
ε√

1−ε2 tan−1
√
1−ε2
ε , ε < 1 (oblate)

ε
2
√
ε2−1 ln ε+

√
ε2−1

ε−
√
ε2−1 , ε > 1 (prolate)

(21)

The bounds for MRJ and equilibrium sphere packings (as
well as for overlapping spheres at the same volume frac-
tions) are plotted in Fig. 10. As expected, the bound on
τ increases monotonically with the aspect ratio, and the
overlapping spheroids have a larger mean-survival time
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FIG. 10. (Color online) Upper bound on the mean survival
time τ as a function of the aspect ratio ε = b/a of the
spheroids. At the top, exemplary spheroids are depicted; from
left to right: oblate ellipsoid (ε < 1), sphere (ε = 1), and a
prolate ellipsoid (ε > 1).

than the hard-spheroid packings at the same volume frac-
tion, because a smaller surface area available for reaction
increases the mean-survival time [80].

B. Effective conductivity

Electric or thermal conductivity are mathematically
equivalent. In an isotropic material, the conductivity is a
scalar proportionality constant between the electric cur-
rent and the electric field (Ohm’s law) or between the
heat flux and the temperature gradient (Fourier’s law).
If the material is anisotropic, the conductivity is a ten-
sor, a linear mapping of the electric current to the field
(or of the heat flux to the temperature gradient). For
a macroscopically anisotropic material, the conductivity
tensor σ is not proportional to the unit tensor, but there
will be a preferred orientation of the flux.

The MRJ sphere packings are an example of a “bicon-
tinuous” two-phase system [9], that is, they have a both
a percolating particle phase (due to the rigid, jammed
backbone) and a percolating matrix phase. Thus, if the
phase conductivity contrast ratio of particles to matrix
is infinite (e.g., for superconducting spheres), then the
effective conductivity of the two-phase system will be
superconducting. We note in passing that the percola-
tion behavior of MRJ sphere packings have recently been
studied [81].

For macroscopically isotropic two-phase media, Hashin
and Shtrikman [82] derived the optimal bounds on the

effective conductivity given only the volume fractions of
the phases. Actually, these are two-points bounds, but
because they only depend on the two-point correlation
function in the limits r → 0 and r →∞, only the volume
fractions are explicitly involved.

Their anisotropic generalization for the effective con-
ductivity tensor σe depends nontrivially on the two-point
correlation function if there are no further symmetry as-
sumptions [77, 78, 80]. However, in the special case of
aligned grains with transverse isotropy and azimuthal
symmetry (like our spheroids), the two-points bounds de-
pend only on the volume fraction explicitly, like in the
isotropic case.

Without loss of generality, it is therefore sufficient to
state the bounds for σ2 ≥ σ1, where σ1 and σ2 are the
bulk conductivities of phases 1 and 2, respectively. Sim-
ply by renaming the phases, the bounds for σ2 ≥ σ1 fol-
low; it results in a trivial “swapping” of upper and lower
bounds.

For our choice of spheroids aligned in z-direction, the
effective conductivity tensors can be represented by a di-
agonal matrix:

σe =

[
(σe)xx 0 0

0 (σe)yy 0
0 0 (σe)zz

]
, (22)

where (σe)xx = (σe)yy but (σe)xx 6= (σe)zz for ε 6= 1.
The upper bound (σU )xx and lower bound (σL)xx on

(σe)xx are given by [77, 78, 80]:

(σU )xx
σ1

=
σ2
σ1

+
φ1(1− σ2

σ1
)

1 + φ2Q
1−σ2/σ1

σ2/σ1

, (23)

(σL)xx
σ1

= 1 +
φ2(σ2

σ1
− 1)

1 + φ1Q(σ2

σ1
− 1)

, (24)

and the corresponding bounds (σU )zz and lower bound
(σL)zz on (σe)zz are given by [77, 78, 80]:

(σU )zz
σ1

=
σ2
σ1

+
φ1(1− σ2

σ1
)

1 + φ2(1− 2Q) 1−σ2/σ1

σ2/σ1

, (25)

(σL)zz
σ1

= 1 +
φ2(σ2

σ1
− 1)

1 + φ1(1− 2Q)(σ2

σ1
− 1)

, (26)

where Q depends only on the shape of the single grains,
i.e., on the aspect ratio ε of the spheroids:

Q =
1

2
+

1

2ε2 − 2
[1− ξ1(ε)] . (27)

In Fig. 11, we examine the effective conductivity ten-
sor as a function of the phase contrast σ2/σ1 of the two
phases spheres (2) and matrix (1). It plots both the
upper and the lower bounds on the diagonal elements
(σe)xx and (σe)zz of the tensor. The bounds in x- or
z-direction hardly differ for spheroids that are close to
a sphere, see Fig. 11 (center), but the bounds differ dis-
tinctly for both the oblate ellipsoids (top) and the prolate
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FIG. 11. (Color online) Effective conductivity tensor σe as a
function of the contrast between the conductivities σ1 and σ2

of the two phases: The three plots depict the results for differ-
ent aspect ratios ε from “disk-like” (top) to “needle-like” bot-
tom. The shaded areas indicate the upper and lower bounds
on the diagonal elements of the tensors, distinguishing the x-
and z-direction, where the latter is the direction of the dila-
tion.

ellipsoids (bottom). The material is not only microscop-
ically anisotropic, but the macroscopic physical property
becomes anisotropic as well.

Not surprisingly, we find a greater effective conduc-
tivity in the orientation of the “needles” or in the plane
of the “disks” independent of which phase is insulating,
because both phases become elongated.

Interestingly, the bounds become sharp for the oblate
ellipsoids as well as the effective conductivity for prolate
ellipsoids in the direction of the symmetry axis [9, 77, 78].
The explicit, rigorous formulas allow for a precise predic-
tion of the effective conductivity. The sharpness of the
bounds can be confirmed analytically. In the limit ε→ 0,
the shape parameter Q vanishes (Q → 0). The rigorous

upper bounds collapse with the corresponding rigorous
lower bounds, see Eqs. (23)–(26). The elements of the ef-
fective conductivity tensor are exactly given by [77, 78]:

(σe)xx = σ1φ1 + σ2φ2, (28)

(σe)zz =
σ1σ2

σ1φ2 + σ2φ2
, (29)

which are the arithmetic and the harmonic averages of
the phase conductivities. The effective conductivity ten-
sor is the same as for a simple laminate composite, which
consists of alternating layers (parallel to the x-y-plane)
of random thickness [9].

In the limit ε → ∞, the bounds on (σe)xx do not
collapse, but converge to the two-dimensional version of
the Hashin-Shtrikman bounds for isotropic materials [83],
see Eqs. (21.21) and (21.22) in Ref. [9]. The bounds on
(σe)zz, however, do collapse to the arithmetic mean:

(σe)zz = σ1φ1 + σ2φ2. (30)

These collapses of the upper and lower bounds implies
that for extreme elongation or compression the effective
conductivity (in the preferred orientation) only depends
on the volume fraction of the two phases.

VI. CONCLUSIONS AND OUTLOOK

It is the complex geometry that essentially determines
the physical properties of heterogeneous materials, es-
pecially for such a remarkable structure as that formed
by MRJ sphere packings. These mechanically stable yet
maximally disordered packings are locally disordered, but
are globally uniform due to their hyperuniformity prop-
erty. In the first two papers of this series, we have stud-
ied in detail subtle and distinct geometrical features of
the MRJ sphere packings and characterized the structure
across length-scales by a score of various characteristics.
Here, we show how these features affect the physical prop-
erties of MRJ sphere packings.

We use bounds and approximations based on the struc-
ture characteristics that we determined in the second
paper. Thus, we predict flow properties as well as the
response to propagating electromagnetic waves and we
study the trapping problem in the void phase of MRJ
spheres packings. These predictions are compared both
to crystal lattices and to non-hyperuniform systems,
overlapping spheres and an equilibrium hard-sphere liq-
uid below the freezing point.

Although rigorous bounds on the effective properties
using limited two-point and pore-size information can-
not be expected to yield exact predictions of the proper-
ties, they allow one to study the qualitative behavior of
different structures without the need of time-consuming
simulations. More precise quantitative predictions can
easily be made using ratios of the bounds to those of a
system with well-known physical properties. Moreover,
the results are confirmed by employing universal scaling
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relations. They provide guidance to carry out more ex-
pensive simulation procedures, e.g., of flow profiles using
finite element methods, and experiments for the design
of hyperuniform meta-materials with unique bulk prop-
erties, like a transport of electromagnetic waves that is
dissipationless simultaneously in all directions.

Stealthy hyperuniformity makes it possible to design
isotropic materials with large and complete photonic
band gaps [84]. The MRJ sphere packing is strictly
speaking not stealthy hyperuniform, but has a linearly
decreasing structure factor (with values close to zero for
a considerable range and hence nearly stealthy). It could
therefore be used to produce photonic materials with
desirable structural-color [47–50] or color-sensing [51]
characteristics. Additive manufacturing fabrication tech-
niques offer a simple production of samples for experi-
ments with microwaves.

Summarizing our results for flow and diffusion pro-
cesses in the void phase of the MRJ sphere packings,
the void and interfacial correlation functions allow for
rigorous bounds on the fluid permeability as well as on
the mean survival time or the closely related trapping
constant. The lower bounds for the trapping constant
correspond to the inverse of upper bounds on the mean
survival time as well as on the permeability. We have
estimated the involved improper integrals from integrals
over the correlation functions of finite simulated samples,
taking advantage of the corresponding analytic explicit
expressions derived in the second paper of this series.

We find distinctly stronger bounds on the permeability
for the MRJ sphere packings (at φ = 0.636) compared to
an equilibrium hard-sphere liquid at φ = 0.478, which
can only in part be explained by the larger packing frac-
tion. It is reasonable to assume that in the hyperuniform
MRJ packings large pores and pore channels are sup-
pressed, resulting in a large trapping constant but small
permeability. This could point to extremal properties of
the MRJ packings among isotropic two-phase media.

Extending the analysis of the steady-state trapping
problem, we study the mean survival time. We compute
both the interfacial upper bounds and a pore-size lower
bound and compare these bounds to predictions from the
universal scaling of the mean survival time for particulate
models. As indicated by the bounds, also the universal
scaling predicts a strongly reduced mean survival time in
the MRJ sphere packings compared to the equilibrium
liquid at φ = 0.478 but also to overlapping spheres at
the same φ = 0.636 as the MRJ spheres. The mean sur-
vival time and principle relaxation time in another type
of strongly hyperuniform systems (in stealthy disordered
systems) has been recently studied in Ref. [85].

Because the hyperuniform MRJ state is more regu-
lar than the equilibrium liquid of hard spheres, we ex-
pect a distinctly smaller principal relaxation time in the
time-dependent trapping problem. This would, for ex-
ample, imply a fast decay of the survival probability of a
Brownian particle diffusing in the pore space of the MRJ
spheres.

Studying the propagation of electromagnetic waves
through disordered media, we find that it strongly de-
pends on subtle structural features. Especially the imag-
inary part of the effective dielectric constant strongly de-
pends on the microstructure.

For any hyperuniform material, the imaginary part of
the effective dielectric constant vanishes exactly through
lowest order in perturbation expansion and third-order in
kq. Therefore the MRJ state is a disordered and isotropic
two-phase medium that is nearly dissipationless. The
imaginary part is negligible compared to that of over-
lapping or equilibrium hard spheres. When a system is
hyperuniform and stealthy, that is, the structure factor
vanishes at finite wave vectors, the lowest order in the
perturbation expansion has exactly no imaginary part
(for all orders in kq).

Finally, the results can easily be generalized to pack-
ings of spheroids with a fixed orientation by a linear
transformation (which corresponds to a stretching the
sphere packings). The aligned spheroids form not only
a microscopically anisotropy structure, but the physical
properties also become macroscopically anisotropic. The
mean survival time depends on the aspect-ratio of the
particles but remains a scalar quantity. In contrast to
this, the fluid permeability and conductivity have to be
represented by tensors that indicate the preferred ori-
entation of the flow or current. In the limit of infinite
compression or elongation, the rigorous two-point bounds
on the effective conductivity in the preferred orientation
collapse to a function that only depends on the volume
fraction of the two phases.
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Appendix A: Integrating correlation functions
derived from finite simulation boxes

In the second paper of this series, we derived explicit
formulas for S2(r), Fsv(r), and Fss(r) for finite pack-
ings of hard spheres. They allow for a fast and accurate
calculation of the integrals that are needed for void and
interfacial bounds [45, 60, 65, 66, 86]. For finite pack-
ings, we can analytically evaluate the corresponding in-
tegrals of these correlation functions. However, the void
and interfacial bounds on the permeability k and trap-
ping constant γ invoke improper integrals, which we must
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estimate from the integrals over correlation functions of
finite packings.

1. Integral for the void bounds

First we study the key integral that is needed for the
void bounds

I(x) :=

∫ x

0

r[S2(r)− φ2]dr, (A1)

where χ(r) := S2(r) − φ2 is the autocovariance. The
integral has units length squared. We have analytically
evaluated a lengthy but explicit expression for I(x) for
arbitrary values of the upper limit x of the integral.

While the accessible values of x are limited by the finite
sizes of the simulation boxes of the various samples, the
void bound uses the improper integral I := limx→∞ I(x).
A straightforward approximation is to evaluate I(x) for
the maximal possible value of x. This naive approach,
however, might induce an unknown systematic bias. Be-
cause of the oscillations in the two-point correlation func-
tion, also the integral I(x) oscillates as a function of x,
see Fig. 12.

A constant choice of the maximum value of x for differ-
ent samples would almost surely induce a constant offset.
Because the box sizes vary for the samples produced by
the TJ algorithm, also the maximum values of x vary
and the average over several samples appears to produce
reliable estimates of the improper integral, see Fig. 12.
However, for a rigorous analysis we must extrapolate the
integrals I(x) for each single packing before averaging
over all samples.

For a numerically robust extrapolation, we apply the
trick of “α-convergence,” that is, we introduce an addi-
tional factor exp(−αr) to the integrand of Eq. (A1):

I(x, α) :=

∫ x

0

e−αrr(S2(r)− φ2)dr. (A2)

Note that I(x) = limα→0 I(x, α) and therefore I =
limx→∞ I(x) = limx→∞ limα→0 I(x, α).

For non-vanishing values of α, the factor exp(−αr)
suppresses the oscillations at large values of x, and
therefore limx→∞ I(x, α) can well be approximated by
I(maxx, α), where maxx is the maximum possible value
of x. Extrapolating I(maxx, α) for α→ 0 using interme-
diate values of α thus provides a reliable estimate of I (as-
suming that the limits can be interchanged). Figure 13
visualizes this extrapolation for single samples of MRJ
packings as well as the equilibrium hard-sphere fluid.

We extrapolate the integral for each packing and cal-
culate for each the void bounds from Eqs. (8) and (5).
For the equilibrium hard-sphere liquid, the average over
100 samples each containing 10000 spheres yielded a
void bound 7.640(4)γs for the trapping constant and
0.13090(6)ks for the fluid permeability. The normalizing
constant γs := 12φ/D2 corresponds to the well-known

FIG. 12. (Color online) The integral I(x) for each finite MRJ
sphere packing oscillates but converges to the unbounded in-
tegral

∫∞
0
r[S2(r) − φ2]dr. Although the integrals over the

finite packings still deviate significantly from this limit, the
average over several packings appears to provide a robust esti-
mate. However, depending on variations in the cutoff radius,
an unknown systematic bias might appear. The unit of length
is the diameter of a single sphere.

Smoluchowski result for the dilute-limit of a spherical
trap of diameter D.

The average of the bounds over 1015 MRJ packings
each containing 2000 spheres yielded the void bounds
16.48(1)γs and 0.06068(3)ks, respectively. Despite the
small statistical error, systematic errors due to a fi-
nite system size at the order of magnitude O(0.1γs) [or
O(0.01ks)] can still remain. Therefore, we have also ana-
lyzed 16 MRJ packings with 10000 spheres, the estimated
void bounds are 16.76(2)γs and 0.05965(8)ks. These lat-
ter values are used in Secs. II and III.

The systematic bias in the simple estimate via an av-
erage of the integrals evaluated at the maximum value of
x turns out to be small for the MRJ sphere packings an-
alyzed here; the resulting void bounds are 16.78(4)γs for
the trapping constant and 0.0598(1)ks for the fluid per-
meability. It actually coincides with the estimate based
on the extrapolated large MRJ packings.

2. Integrals for the interfacial bound

For the interfacial bounds we have to estimate the im-
proper integral in Eqs. (6) and (9). The same problems
and procedures apply to this integral as for the integral
discussed in the previous subsection. Again we have de-
rived explicit expressions for both the proper integrals
and the versions for “α-convergence” with the additional
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FIG. 13. (Color online) Extrapolation of the integral of
the two-point correlation function for the void bound, see
Eq. (A2): for α > 1, the limit limx→∞ I(x, α) is well ap-
proximated by I(maxx, α). Thus, I(maxx, α) with α ∈ (1, 2)
allows for a robust extrapolation to I (i.e., α → 0) for both
equilibrium (top) and MRJ (bottom) hard spheres. Each plot
shows the results for ten packings. The unit of length is the
diameter of a single sphere.

factor exp(−αr):

J(x, α) :=

∫ x

0

e−αrr
[ (1− φ)2

s2
Fss(r)

− 2(1− φ)

s
Fsv(r) + Fvv(r)

]
dr,

(A3)

and with a fit in the range 0.12 < α < 0.30. Fig-
ure 14 shows examples of the extrapolation for both MRJ
and equilibrium hard-sphere liquids. For each packing,
we extrapolate the integral (analogously to the previ-
ous subsection) and calculate the interfacial bounds using
Eqs. (6) and (9).

The average over the 100 samples of an equilib-
rium hard-sphere liquid provided the interfacial bounds
13.06(1)γs for the trapping constant and 0.07661(8)ks

1.1·10
−2

1.2·10
−2

1.3·10
−2

0 1 2 3 4

Equilibrium hard spheres

J
(m

ax
x
,
α
)

α

4.2·10
−3

4.4·10
−3

0 1 2 3 4

MRJ sphere pakings

J
(m

ax
x
,
α
)

α

FIG. 14. (Color online) Extrapolation of the integral of the
correlation functions for the interfacial bound, see Eq. (A3):
for α > 1, the limit limx→∞ J(x, α) is well approximated by
J(maxx, α). Thus, J(maxx, α) with α ∈ (0.12, 0.30) allows
for a robust extrapolation to J (i.e., α → 0) for both equi-
librium (top) and MRJ (bottom) hard spheres. Each plot
shows the results for ten packings, where each contains 10000
spheres. The unit of length is the diameter of a single sphere.

for the fluid permeability. >From the MRJ packings
with 2000 spheres, we derived the interfacial bounds
29.82(2)γs and 0.03355(2)ks, respectively. However,
in Secs. II and III, we use the bounds based on the
MRJ packings with 10000 spheres: 30.42(7)γs and
0.03287(7)ks.

Appendix B: Pore sizes and bounds for sphere
packings on Bravais lattices

Figure 15 shows Wigner-Seitz cells W of three Bravais
lattices. The volume of the Wigner-Seitz cell is in the
following denoted by vW . We consider a packing of hard,
monodisperse spheres with diameter D = 2R, the centers
of which coincide with the lattice points. The volume of
such a sphere B is vB = πD3/6. The unit of length
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is defined by the maximal diameter of spheres (without
overlap), which corresponds to the maximum packing
fraction. Here the lattice spacing is fixed; lower pack-
ing fractions φ = vB/vW correspond to smaller sphere
diameters.

1. Moments of pore sizes

By definition of the Wigner-Seitz cell (as a Voronoi
cell), the lattice point that is closest to any of the points
in its interior is the origin. Because in a Bravais lattice
all Voronoi cells are congruent to each other and (because
a point in a Poisson point process is almost surely inside
some Voronoi cell), all moments of the pore-size δ dis-
tribution of a lattice can be evaluated by corresponding
integrals over (the interior of) the Wigner-Seitz cell only.

〈δn〉 =

∫
W\B(|x| −R)nd3x

vW − vB
(B1)

=

∫
W

(|x| −R)nd3x−
∫
B

(|x| −R)nd3x

vW − vB
(B2)

=

∫
W

(|x| −R)nd3x− 4π
∫ R
0
r2(r −R)ndr

vW − vB
(B3)

=

∫
W

(|x| −R)nd3x

vW − vB

+
4πRn+3

vW − vB

[
(2n+ 4)(−1)n+1

n2 + 4n+ 3
+

2(−1)n

n+ 2

]
(B4)

For the mean pore size (n = 1), we find

〈δ〉 =

∫
W
|x|d3x− 1

2vWD + π
48D

4

vW − vB
(B5)

For the second moment n = 2, we find

〈δ2〉 =

∫
W
|x|2d3x−D

∫
W
|x|d3x+ 1

4vWD
2 − π

240D
5

vW − vB
(B6)

The first integral in the last equation is equal to the trace
of a Minkowski tensor[87, 88]:

trW 2,0
0 (W ) =

∫
W

|x|2d3x. (B7)

(a) (b) (c)

FIG. 15. (Color online) Wigner-Seitz (Voronoi) cells of three
Bravais lattices: (a) SC, (b) FCC, and (c) BCC.

Note that the integrals in Eqs. (B5) and (B6)

C1(W ) :=

∫
W

|x|d3x, (B8)

C2(W ) :=

∫
W

|x|2d3x. (B9)

are independent of the sphere diameters (and thus also of
the packing fraction). Once these constants of a lattice
(as well as the constant volume vW ) are determined, the
first and second moments of the pore-size distribution are
given as explicit functions of the packing fraction:

〈δ〉(φ)

D
=

1

1− φ

[(
π

6φ

)1/3
C1(W )

v
4/3
W

− 1

2
+
φ

8

]
(B10)

〈δ2〉(φ)

D2
=

1

1− φ

[(
π

6φ

)2/3
C2(W )

v
5/3
W

−
(
π

6φ

)1/3
C1(W )

v
4/3
W

+
1

4
− φ

40

]
(B11)

using D−3 = π/(6vWφ). Note that C2(W )/v
5/3
W is the

scaled dimensionless lattice quantizer error [89]. The mo-
ments of the pore size distributions could be determined
via a numerical integration of the void exclusion prob-
ability, see Refs. [37, 89]. However, here the quantizer
error and the integral for the first moment are expressed
as surface integrals, which can then be easily evaluated
for (three examples of) cubic lattices.

2. Surface integrals

The crucial step in an analytic calculation of the first
and second moment of the pore-size distribution is to de-
termine the integrals C1 and C2. Using the divergence
theorem, these volume integrals can be rewritten as sur-
face integrals. The first integral yields

C1(W ) =

∫
W

1

4
div|x|xd3x =

1

4

∮
∂W

|x|x · ndS, (B12)

because

div|x|x = 3|x|+ x · ∇|x| = 3|x|+ x · x
|x|

= 4|x|. (B13)

The second integral results in

C2(W ) =

∫
W

1

5
div|x|2xd3x =

1

5

∮
∂W

|x|2x · ndS, (B14)

because

div|x|2x = 3|x|2 + x · ∇|x|2 = 5|x|2. (B15)

Because the Wigner-Seitz cells are polytopes, the inte-
grals can be rewritten as sums of integrals over the two-
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dimensional facets

C1(W ) =
1

4

∑
F∈F2(W )

n ·
∫
F

|x|xH2(dx), (B16)

C2(W ) =
1

5

∑
F∈F2(W )

n ·
∫
F

|x|2xH2(dx), (B17)

where H2 denotes the two-dimensional Hausdorff-
measure. The calculation for a regular polytope can
be further simplified, because each term in the sum is
a scalar quantity. Faces that can be mapped onto each
other by a rotation will yield the same contributions.

3. Three cubic lattices

For the simple cubic (SC) lattice with a cube as
Wigner-Seitz cell, the integrals are given by

C1(WSC) =
3Dmax

4

∫∫ Dmax/2

−Dmax/2

√
D2

max

4
+ y2 + z2dydz,

(B18)

C2(WSC) =
3Dmax

5

∫∫ Dmax/2

−Dmax/2

(
D2

max

4
+ y2 + z2)dydz,

(B19)

where Dmax is the maximal diameter, which is here set
to one by the choice of units.

For the face-centered cubic (FCC) lattice, the Wigner-
Seitz cell is a rhombic dodecahedron with 12 identical
faces. Its edge length is aFCC :=

√
3/8Dmax, and its

volume is vFCC := D3
max/

√
2. The corners of one of

its faces are given by c
(rd)
1 :=

√
2Dmax

4 (2, 0, 0)t, c
(rd)
2 :=

√
2Dmax

4 (0, 0, 2)t, c
(rd)
3,4 :=

√
2Dmax

4 (1,±1, 1)t. The normal

vector is n =
√
2
2 (1, 0, 1)t. Two difference vectors of the

corners are ∆1 := c
(rd)
3 − c(rd)1 and ∆2 := c

(rd)
4 − c(rd)1 .

A parametrization of the face by two parameters s, t ∈
[0, 1] is c

(rd)
1 + s∆1 + t∆2. For an integration based on

this parametrization, we need the Jacobian Determinant
J =
√

2D2
max/4. Explicit expressions for the integrals C1

and C2 are then given by

C1(WFCC) =
12

4
√

2

∫∫ 1

0

2D2
max

16
(2− t− s+ t+ s) ·

√
(2− t− s)2 + (t− s)2 + (t+ s)2 J dsdt (B20)

=
3D4

max

16

∫∫ 1

0

√
(2− t− s)2 + (t− s)2 + (t+ s)2 dsdt, (B21)

C2(WFCC) =
3
√

2D4
max

80

∫∫ 1

0

((2− t− s)2 + (t− s)2 + (t+ s)2)dsdt. (B22)

For the body-centered cubic (BCC) lattice, the
Wigner-Seitz cell is a truncated octahedron, which is
formed by 6 squares and 8 hexagons. Its edge length
is aBCC := Dmax/

√
6, and its volume is vBCC :=

4D3
max/(3

√
3). The sphere does not touch the squares,

which are at a distance Dmax/
√

3 from the origin. The
integral over these squares is similar to that for the sim-
ple cubic lattice. The contributions from the squares are
given by:

C1,squares(WBCC) =

√
3Dmax

2

∫∫ Dmax
2
√

6

−Dmax
2
√

6

√
D2

max

3
+ y2 + z2 dydz, (B23)

C2,squares(WBCC) =
2
√

3Dmax

5

∫∫ Dmax
2
√

6

−Dmax
2
√

6

(
D2

max

3
+ y2 + z2

)
dydz. (B24)
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The sphere touches each hexagon. Their distance to the
origin is therefore Dmax/2. For convenience, the inte-
gral over each hexagon can be split in an integral over a
rectangle (with side-lengths am and

√
3am) and over two

(symmetric) triangles. The contributions from the first
integrals are (again similar to the SC lattice and) given
by:

C1,rectangles(WBCC) = Dmax

∫ Dmax
2
√

6

−Dmax
2
√

6

∫ Dmax
2
√

2

−Dmax
2
√

2

√
D2

max

4
+ y2 + z2 dydz, (B25)

C2,rectangles(WBCC) =
4Dmax

5

∫ Dmax
2
√

6

−Dmax
2
√

6

∫ Dmax
2
√

2

−Dmax
2
√

2

(
D2

max

4
+ y2 + z2

)
dydz. (B26)

To calculate the integral over the triangles, con-
sider one representative where the vertices are
(Dmax

2 ,±Dmax

2
√
2
, Dmax

2
√
6

) and (Dmax

2 , 0, Dmax√
6

). The bounds

of the integral of the y-component depend on the
z-coordinate: f(z) = Dmax/

√
2 −

√
3z. The final

contributions of the integrals are then given by:

C1,triangles(WBCC) = 2Dmax

∫ Dmax√
6

Dmax
2
√

6

∫ f(z)

−f(z)

√
D2

max

4
+ y2 + z2 dydz, (B27)

C2,triangles(WBCC) =
8Dmax

5

∫ Dmax√
6

Dmax
2
√

6

∫ f(z)

−f(z)

(
D2

max

4
+ y2 + z2

)
dydz. (B28)

The final constants C1(WBCC) and C2(WBCC) are then
given by the sum of these contributions.

The final integrals for SC, FCC, and BCC lattice
packings were evaluated via numerical integration using
Maple 18 [90].

C1(WSC) ≈ 0.480295978227526, (B29)

C2(WSC) =
1

4
= 0.25, (B30)

C1(WFCC) ≈ 0.295745942288160, (B31)

C2(WFCC) =
3
√

2

32
≈ 0.132582521472478, (B32)

C1(WBCC) ≈ 0.330947379746666, (B33)

C2(WBCC) =
19
√

3

216
≈ 0.152356321036154. (B34)

The resulting moments of the pore size (evaluated with
15 digits numerical precision) are for the SC, FCC, and
BCC lattice packings at their corresponding maximum

packing fractions given by:

〈δ〉min(SC) ≈ 0.0960237355283125, (B35)

〈δ2〉min(SC) ≈ 0.0138833656248951, (B36)

〈δ〉min(FCC) ≈ 0.0416461321138215, (B37)

〈δ2〉min(FCC) ≈ 0.00285167445050149, (B38)

〈δ〉min(BCC) ≈ 0.0466976980202309, (B39)

〈δ2〉min(BCC) ≈ 0.00312370712463761. (B40)

To mutually check the simulations and the analytic cal-
culations, these numerical integrals can be compared to
simulation results for these lattice-packings based on 107

sampling points:

〈δ〉simmin(SC) ≈ 0.09604(2), (B41)

〈δ2〉simmin(SC) ≈ 0.013887(5), (B42)

〈δ〉simmin(FCC) ≈ 0.04163(1), (B43)

〈δ2〉simmin(FCC) ≈ 0.002850(1), (B44)

〈δ〉simmin(BCC) ≈ 0.04668(1), (B45)

〈δ2〉simmin(BCC) ≈ 0.003122(1). (B46)

They are in excellent agreement with each other.
Using Eqs. (B29)–(B34) and Eqs. (B10) and (B11),

the pore-sizes of lattice packings at arbitrary packing
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FIG. 16. (Color online) For the three Bravais lattices FCC,
BCC, and SC, the analytic curves and simulation results for
the mean pore size 〈δ〉 and the second moment 〈δ2〉.

fractions can easily be calculated. Figure 16 compare
the analytic results to simulations. They are in excellent
agreement.
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