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Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because 
they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2D and 3D numerical 
simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability 
regime requires finite amplitude initial perturbations and linearly stable ARTI modes are more easily 
destabilized in 3D than in 2D. It is shown that for conditions found in laser fusion targets, short wavelength 
ARTI modes are more efficient at driving mixing of ablated material throughout the target since the 
nonlinear bubble density increases with the wave number and small scale bubbles carry a larger mass flux 
of mixed material. 

 
The Rayleigh-Taylor Instability (RTI) [1-2] occurs in a 

multitude of natural and engineered systems in which 
buoyancy forces exist. It occurs when a heavy fluid is 
accelerated against a light fluid and is manifested by the 
formation of upward rising bubbles of the light fluid and 
downward sinking spikes of the heavy fluid. Examples 
include the oceanic meridional overturning circulation [3], 
buoyant magnetic flux-tubes in the solar corona [4], current 
sheet reconnection [5], and jet-driven lobes in the 
intergalactic cluster medium [6]. RTI also plays a central 
role in the evolution of supernova (SN) explosions [7].  

RTI is a major obstacle to achieving ignition via inertial 
confinement fusion (ICF), which has motivated a large 
simulation effort [8]. In an ICF implosion, a dense spherical 
shell is ablated either by intense UV laser beams or soft x-
rays, causing an inward acceleration. Mass ablation drives a 
dynamic pressure like in a rocket, causing the ablated light 
fluid at the outer surface of the shell to push against the 
denser shell (or heavy fluid) during the acceleration phase, 
leading to the ablative RTI (or ARTI).  

ARTI can dramatically degrade the capsule implosion by 
reducing the final compression, mixing the ablator material 
into the fuel, and even completely breaking up the 
imploding shell. The degradation of the capsule’s 
performance depends on the extent and speed with which 
bubbles penetrates the heavy fluid. Understanding the 
nonlinear behavior of ARTI modes [9] and characterizing 
their excitation conditions is, therefore, essential to 
estimating their effect on the target performance and to 
ultimately determining the conditions required for 
achieving thermonuclear ignition. 

Classical RTI theory [1] shows that a single mode 
perturbation grows exponentially in the linear phase, at a 
rate 

TA kgγ =  that increases with wave number ݇ , 
acceleration g, and Atwood number 

( ) / ( )T h l h lA ρ ρ ρ ρ= − + . Here, hρ  and lρ  are the density 
of the heavy and light fluids, respectively. RTI enters the 
nonlinear phase when the mode amplitude exceeds a 

fraction of its wavelength λ , around 0.1λ . In the deep 
nonlinear phase, the bubble reaches a terminal constant 
velocity as it penetrates into the heavy fluid [10-11]. The 
bubble velocity is  (1 ) /cl

b d gU g r C k= −  with 3gC =  in two-

dimensions (2D) and 1gC =  in three-dimensions (3D). 
Here, /d l hr ρ ρ= is the fluid density ratio.  

It has long been argued that the ablation process 
produces a restoring force (dynamic pressure) and reduces 
the linear growth rate with respect to the classical value, 
especially for sufficiently short wavelength modes at which 
the instability is suppressed [12-17]. For large Froude 
numbers ( 2

0/r aF V gL= ), the ARTI linear growth rate can be 
written as: 2 2 2 / (1 )T T a d T aA kg A k V r A kVγ = − − +  [17]. Here aV  is 
the ablation velocity and L0 is the thickness of the ablation 
front. In the linear regime, both theory and simulations 
show that mass ablation leads to a linear cutoff wave 
number l

ck  in the unstable spectrum, beyond which the 
ARTI modes are linearly stable [14-17]. This has justified 
the common practice of neglecting short wavelength modes 
in ICF modeling. However, recent direct drive studies 
indicate that tiny micron-size defects covering the target 
surface are the main cause of degradation in OMEGA high 
performance implosions [18-20]. Such short wavelength 
perturbations were previously thought to be fully stabilized 
by ablation. This Letter shows that all short wavelength 
perturbations that are linearly suppressed by ablation can be 
nonlinearly destabilized by finite initial perturbations above 
a critical amplitude. We also show that those short 
wavelength perturbations can efficiently mix large amounts 
of ablator material with the thermonuclear fuel. 

The nonlinear theory [21] based on a sharp boundary 
approximation and the ordering of an ablative potential 
flow much greater than the rotational flow suggested that 
the ARTI beyond the linear cutoff can be excited by a finite 
amplitude perturbation. It was speculated that only high 
wave number modes with terminal bubble velocity smaller 



  

than the ablation velocity are absolutely stable for any 
initial amplitude. The same theory also suggested that the 
ARTI terminal bubble velocity is unaffected by ablation 
and is the same as the classical value. Therefore, the critical 
“nonlinear cutoff” nl

ck , can be obtained by comparing the 
classical terminal bubble velocity with the ablation 
velocity, i.e. (1 ) / nl

d g c ag r C k V− = . However, since the small 
rotational flow ordering breaks down for fully developed 
small-scale bubbles, recent studies [22-23] have shown that 
the bubble velocity can be further accelerated above the 
classical value due to the ablation generated vorticity, 
which is not taken into account in the derivation of the 
nonlinear cutoff. In this Letter we show that all modes 
beyond the linear cutoff and even beyond the nonlinear 
cutoff can be destabilized by a finite amplitude perturbation 
greater than a critical value. In laser fusion targets, the 
finite amplitude perturbation can be induced by defects on 
the target surface from target fabrication [18] and laser 
imprinting [24]. Furthermore, we show that the perturbation 
amplitude required for destabilizing a mode is significantly 
smaller and the mode grows much faster in 3D than in 2D 
for the same wave number. We speculate that these results 
can be generalized to all instabilities that exhibit a cutoff 
wave number in the linearly unstable spectrum.  

 

 
FIG. 1. (Color online) (a) Initial equilibrium density 

profile in Z direction. (b) The time evolution of a linearly 
stable ARTI mode under different perturbation amplitudes, 
showing that it becomes unstable if the amplitude exceeds a 
critical value. 

By defining the normalized vorticity 0 /a dV rkω η=  ( η  
represents the vorticity intensity), the nonlinear terminal 
bubble velocity can be written as: 

2 2(1 ) / / 4rot
b d g a dU g r C k V rη= − + . The enhancement of the 

terminal bubble velocity by vorticity can alter the finite 
amplitude excitation of the ARTI mode around the 
nonlinear cutoff nl

ck . Since 1dr < , the nonlinear terminal 
bubble velocity can always be larger than the ablation 
velocity when 2η > . Therefore all ARTI modes beyond 
the linear cutoff can be destabilized if initial perturbations 
are large enough to produce significant vorticity inside the 
bubble. Another important finding in this Letter is that 
these small-scale bubbles are capable of carrying large 

amounts of mass since the bubble density increases with the 
wave number, thereby making them particularly efficient at 
mixing materials. In this work, the excitation of the single-
mode ARTI by a finite amplitude perturbation is studied 
numerically in the typical parameter range of direct-drive 
laser fusion. The simulations are carried out using the 
hydrodynamic code ART. 

Extended to 3D in Ref. [23], ART [22] solves the single-
fluid equation in Cartesian coordinates with Spitzer-Harm 
thermal conduction [26] and an ideal gas equation of state.  
In our studies, both two dimensional (2D) and three 
dimensional (3D) planar targets are investigated (Fig. 1). 
The initial condition of the target satisfies a quasi-
equilibrium state which corresponds to a typical 
acceleration phase of the direct-drive target designed for the 
National Ignition Facility (NIF) [26]. The planar 
approximation is valid during most of the acceleration 
phase as long as the target thickness, mode wavelength, and 
conduction zone region are much smaller than the target 
radius. As shown in Fig. 1 (a), the target is ablated from the 

0Z =  side with an ablation velocity 3.5 /aV m nsμ= . The 
initial ablation front is located at 0 60Z mμ=  and the 
maximum density is 25.3 /a g cmρ = . The ablated plasma at 

60Z mμ<  has a higher temperature and lower density, 
while the unablated plasma at 60Z mμ>  is cold and dense. 
The characteristic thickness of the ablation front is 

0 0.011L mμ≈ with the minimum density gradient scale 
length 08.1 0.1mL L mμ≈ ≈ . The target material is ablated 
with a constant heat flux 25.9 /q MW mμ= , which is 
determined from the equilibrium conditions. The peak 
pressure of the ablated target is located at the ablation front 
with a value of 120aP Mbar= . An effective gravity with an 
initial value of 2

0 100 /g m nsμ=  is used and adjusted in time 
to balance the ablative pressure such that the simulation is 
in a frame co-moving with the ablation front. Based on the 
equilibrium parameters of the target, the Froude number is 

11rF ≈ . Using eqs. 5 and 6 in Ref. [17], it is found that the 

linear cutoff wave number is 11l
ck mμ −≈  (corresponds to a 

wavelength of about 6μm). Comparing the classical 
terminal bubble velocity to the ablation velocity [21], as 
described above, yields a critical nonlinear cutoff wave 
number of 2 12.1nl D

ck mμ −≈  and 3 15.3nl D
ck mμ −≈  in 2D and 

3D ARTI, respectively. It was speculated that all modes 
with nl

ck k>  are stable regardless of their initial amplitude 
[21]. Instead, as shown here, this nonlinear cutoff is not a 
true cutoff in the unstable spectrum since a nonlinear finite 
amplitude instability exists beyond this critical wave 
number. In this Letter, all wave numbers are normalized 
with the linear cutoff wave number. 



  

In order to excite ARTI beyond l
ck , a finite amplitude 

velocity perturbation is initialized around the ablation front. 
The perturbation in Z direction has a form of 

0 0( ) ( | |)pz pV V cos kx exp k z z= × × − −  in 2D simulations and 

0 00.5[cos( ) cos( )] ( | |)pz pV V kx ky exp k z z= × + × − −  in 3D simulations. 
Meanwhile, the perturbation in x and y direction has a form 
of 

0 0sin( ) ( | |)pv pV V ks exp k z z= × × − − ( ,s x y= ). In this case, the 
velocity perturbation forms a finite vortex around the 
ablation front. It should be noted that we have also used 
surface perturbations to excite the linearly stable ARTI 
modes, with results similar to those obtained with velocity 
perturbations. However, since surface density perturbations 
require higher grid-resolution when the perturbation is 
small, we have mostly used initial velocity perturbations. 
Using very small perturbation amplitudes, we have first 
verified that the single mode ARTI is linearly unstable at 

l
ck k<  and linearly stable when l

ck k> . Then, using finite 
perturbation amplitudes we show that a critical threshold 
value exists for the linearly stable ARTI modes to become 
nonlinearly destabilized. Figure 1(b) shows the time 
evolution of a typical ARTI mode beyond the linear cutoff 
for different initial amplitudes. The dotted blue curve 
represents the unstable growth triggered by the finite 
amplitude instability, while the dashed light blue curve 
shows the evolution in proximity of the critical unstable 
amplitude. The mode shown in Fig. 1 (b) has wave number 

1.57k = , which lies between the linear and the nonlinear 
cutoffs.   
 

  
FIG. 2. (Color online) (a): Critical velocity perturbation 

amplitude versus wave number in 2D and 3D ARTI. The 
linear dispersion relation (red line) is indicated by the solid 
red line and Y-axis on the right. Linear wave number cutoff 
is kc

l=1, while the nonlinear cutoff wave number is 
kc

nl2D=2.1 in 2D and kc
nl3D=5.3 in 3D. (b): Vorticity at the 

bubble vertex for different ARTI modes. 

The wave number dependence of the critical amplitude 
required for nonlinear destabilization is shown in Fig. 2 (a), 
for both 2D and 3D ARTI. It also shows that the 2D and 3D 
ARTI can be destabilized by a finite amplitude perturbation 
even when the wave number is beyond the nonlinear cutoff 

nl
ck . The new unstable region indicates that vorticity is a 

primary driver of the nonlinear excitation of ARTI at 

nl
ck k> , since it is the vorticity accumulation in the bubble 

that modifies the terminal bubble velocity. In 2D ARTI, the 
critical perturbation amplitude increases with wave number 
when 2l nl D

c ck k k< < , reaching a peak as  k approaches 
2nl D

ck . Figure 2 (a) shows a clear transition into a new 

instability regime beyond the nonlinear cutoff 2nl D
ck where 

the critical amplitude slightly decreases with wave number. 
This result indicates that the vorticity effect becomes 
dominant in the ARTI destabilization at 2nl D

ck k> . Figure 2 
(a) also shows that the critical amplitude for the 
destabilization of the 3D ARTI is lower than in 2D and it 
converges to the 2D result when the wave number 
approaches the linear cutoff. Therefore, 3D ARTI is more 
easily destabilized than in 2D. The reduction of the critical 
amplitude in 3D is caused by the enhanced vorticity in 3D 
versus 2D for the same mode amplitude (Fig. 2 (b)).  

The initial perturbations required for destabilization in 
Fig. 2(a) can occur in ICF implosions due to isolated 
defects. In 2D, the largest critical velocity perturbation 
required for destabilization of ARTI is about  10p aV V≈  
(where the coefficient is about the size of the Froude 
number) and it occurs at the nonlinear cutoff wave number. 
This can be translated into a critical surface perturbation 
amplitude of about 1.4μm if the initial perturbation is a 
displacement of the surface. Moreover, in a direct drive 
target implosion, the ablation velocity is usually a few 
percent of the post shock velocity. The velocity 
perturbation is usually induced by variations in the post 
shock velocity due to non-uniform laser irradiation. Since 
the post shock velocity is proportional to 1/3I  ( I is the laser 
intensity on target) [27], speckles in the laser beams with 
significant variations in laser intensity can imprint velocity 
perturbations several times larger than aV .  

 

 
 

FIG. 3.  (Color online) Comparison of the 2D vortex 
structures between ARTI modes (a) 4 mλ μ= (k=1.57) and 
(b) 2.5 mλ μ=  (k=2.5) at different times. Initial 
perturbation amplitude is 3.6p aV V= for 4 mλ μ= , and 



  

9.9p aV V= for 2.5 mλ μ= . The black line shows the 
ablation front interface. Panel (c) is the 3D iso-surface of 
the density for 4 mλ μ= . 

To further investigate the role of vorticity in the 
destabilization of ARTI beyond the nonlinear cutoff, the 
unstable 2D ARTI mode structure is compared between 

1.57k = ( 2nl D
ck< ) and 2.5k =  ( 2nl D

ck> ) (Fig. 3 (a) and 
(b)). At t=0.4ns, the ARTI is mainly driven by the initial 
perturbation. At that time, in the 1.57k =  case, the 
instability is at the onset of the nonlinear stage and the 
vortex is located midway between the bubble vertex and 
spike tip. In the 2.5k =  case, the instability is in the fully 
nonlinear stage and a strong vortex is generated near the 
bubble vertex at t=0.4 ns. The average vorticity within a 
region of size 1/ k  down from the bubble vertex is about 

0 0.4 /a dkV rω =  and 0 0.94 /a dkV rω =  for the 1.57k =  and 
2.5k =  simulations, respectively. The classical RTI 

predicts a terminal bubble velocity smaller than the ablation 
velocity for the 2.5k = mode, in which case the ablation 
front overtakes the bubble and suppresses the instability. 
However, by exerting a centrifugal force on the bubble tip 
[22-23], the intense vorticity in the 2.5k =  mode 
accelerates the bubble above the classical terminal velocity 
and, more importantly, above the ablation velocity. It is 
also found that the bubble velocity is always larger than the 
ablation velocity for all the destabilized ARTI modes at 

2nl D
ck k> . Therefore, the destabilization of the ARTI 

modes beyond the nonlinear cutoff is due to the 
enhancement of the bubble velocity by the significant 
vorticity produced by the initial perturbation. In contrast, 
the bubble in the 1.57k =  mode is less affected by 
vorticity at early times (t=0.4ns). The initial bubble velocity 
is below the classical value but above the ablation velocity. 
Therefore, it is able to grow without the aid of vorticity. In 
the late nonlinear phase, when the bubble is fully 
developed, vorticity increases and extends throughout the 
bubble for both 1.57k =  and 2.5k = . At this late stage, 
the vorticity is dominating the bubble velocity in both cases. 
Similar results are found in the 3D ARTI simulations. 
Furthermore, it is shown that the mode structure of the 3D 
ARTI is quite different from that of 2D ARTI (Fig. 3) in the 
deep nonlinear phase. In the early nonlinear phase, the 3D 
spike and bubble have almost equal width. In the deep 
nonlinear phase, the 3D spike becomes much wider and the 
bubble’s “stem” near the spike tip is significantly thinner 
(Fig. 3 (c)). 

 

 
FIG. 4.  (Color online) The bubble density profile for 2D 

and 3D ARTI modes along Z in the deeply nonlinear stage. 

As the bubble penetrates into the heavy fluid in the 
deeply nonlinear phase, the ablated material from the spike 
tip fills the inside of the bubble and is carried to the rear 
surface of the imploding shell. The penetration of the 
bubble into the target results in material mixing between 
the ablator on the outermost shell and the fuel during the 
capsule implosion, which significantly degrades the capsule 
performance. The denser the material inside the bubble, the 
greater the mixing of ablator material into the fuel. It is 
found that the light fluid inside the 2D bubble develops a 
density plateau in the nonlinear phase (Fig. 4). The density 
of the 2D bubble increases with wave number and is almost 
constant in time. In the 3D ARTI case, the bubble density is 
similar to the 2D results at l

ck k< . However for wave 
numbers beyond the linear cutoff, the density of the 3D 
bubbles increases with time and saturates at much higher 
levels than in the 2D case. The saturated density of the 3D 
bubbles also increases with the wave number. This result 
implies that 3D bubbles beyond the linear cutoff carry 
greater amounts of ablated material toward the opposite 
shell surface and are effective vehicles for driving ablator-
fuel mix. 

 

 
FIG. 5.  (Color online) (a): Time evolution of the bubble 

velocity normalized to the classical value. (b) Bubble mass 
flux for different wave numbers. 

To determine the flux of light fluid material mixing into 
the heavy fluid, we compute the nonlinear bubble velocity 
for modes beyond the linear and nonlinear cutoffs. Similar 
to Ref. [23], we find that in the deep nonlinear phase, the 
bubble velocity can be significantly accelerated by the 
finite vorticity. Figure 5 (a) shows the evolution of the 



  

bubble velocity at l
ck k> . Note that the terminal bubble 

velocity exceeds the classical value in the deep nonlinear 
phase for both 2D and 3D ARTI. Since the vorticity near 
the 3D bubble tip is much higher than 2D (Fig. 2 (b)), the 
normalized terminal bubble velocity of the 3D ARTI 
saturates at much higher level than the 2D ARTI for the 
same wave number. Considering the 3  times larger 
classical terminal bubble velocity, the 3D bubble penetrates 
into the target much faster than in 2D. In order to assess the 
material mixing due to ARTI, the mass flux carried by the 
bubble is further estimated by multiplying the terminal 
bubble velocity with the density of the bubble plateau (Fig. 
5 (b)). It is shown that the mass flux increases with wave 
number and that the mass flux of the 3D bubbles is much 
larger than in 2D, especially when the wave number is 
larger than the linear cutoff. As discussed in Fig. 4, 3D 
bubbles beyond the linear cutoff exhibit both higher density 
and higher terminal velocity than in 2D thereby enhancing 
their ability to drive mix. 

In summary, it is shown that small scale ARTI modes 
can be excited at all wave numbers beyond the linear and 
the nonlinear cutoff starting from finite amplitudes above a 
critical value. The finite amplitude excitation is investigated 
in both 2D and 3D. The destabilization of the ARTI beyond 

nl
ck  is due to an enhancement of the bubble velocity above 

the ablation velocity by strong vorticity generated by large 
initial perturbations. The 3D ARTI is more easily 
destabilized and can grow much faster than in 2D due to 
larger vorticity. Furthermore, nonlinearly unstable 3D 
bubble saturates at a much higher bubble velocity and 
bubble density than in 2D. This implies that short 
wavelength modes in 3D ARTI are very effective at driving 
mix in ICF implosions and their role in setting the 
implosion performance should not be overlooked. 
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