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The theory of magnetic flux conservation is developed for a subsonic plasma implosion and used
to describe the magnetic flux degradation in the MagLIF concept [S. A. Slutz et al. Phys. Plasmas
17, 056303 (2010)]. Depending on the initial magnetic Lewis and Péclet numbers and the electron
Hall parameter, the implosion either falls into a superdiffusive regime in which the magnetization
decreases or a magnetized regime in which the magnetization increases. Scaling laws for magnetic
field, temperature and magnetic flux losses in the hot spot of radius R are obtained for both regimes.
The Nernst velocity convects the magnetic field outwards, pushing it against the liner and enhancing
the magnetic field diffusion, thereby reducing the magnetic field compression and degrading the
implosion performance. However, in the magnetized regime, the core of the hot spot becomes
magnetically insulated and undergoes an ideal adiabatic compression (T ∼ R−4/3 compared to

T ∼ R−2/3 without magnetic field), while the detrimental Nernst term is confined to the outer part
of the hot spot. Its effect is drastically reduced, improving the magnetic flux conservation.

In inertial confinement fusion (ICF), fuel areal den-
sities ρR > 0.3 g/cm2 and implosion velocities exceed-
ing 30 cm/µs are required for the onset of the ignition
process[1]. Magneto inertial fusion (MIF) concepts[2, 3]
are based on magnetizing the fuel in order to sup-
press heat losses and enhance confinement of the fusion
products[4], thereby relaxing implosion velocity and areal
density requirements and increasing fusion yields[5, 6].

In 2010, Slutz et al.[7] proposed the magnetized liner
inertial fusion (MagLIF) scheme, in which a pulsed power
device drives the implosion of a cylindrical beryllium liner
filled with fusion fuel. The target is initially magnetized
with a 10− 30T magnetic field, and the fuel is preheated
by a laser to temperatures 200 − 400 eV. The implo-
sion velocity is of the order of 10 cm/µs, while the fi-
nal areal density is about 0.07 g/cm2. The first fully
integrated experiments testing the MagLIF concept pro-
duced up to 2×1012 thermonuclear deuterium-deuterium
neutrons, demonstrating its viability[8]. In 2012, Slutz
and Vesey[9] reported implosions simulations of targets in
which a dense cryogenic deuterium-tritium layer is added
on the inside surface of the metal liner. The fusion energy
gains exceeded 100, which is adequate for fusion energy
applications.

A major degradation mechanism reported in Ref. 7 is
the loss of magnetic flux during compression caused by
the Nernst effect (magnetic field convection due to per-
pendicular temperature gradients), which degrades the
fusion yield enhancement. Understanding the Nernst
effect as well as the evolution of the magnetohydrody-
namic variables is a crucial step to improve the design
of this scheme. In MagLIF implosions, the Mach num-
ber Ma is typically less than unity. Subsonic unmagne-

tized implosions have been analytically studied in an ICF
context[10–13], whereas the Nernst term effect on mag-
netic flux conservation in a plasma slab in contact with
a cold wall has been investigated in Refs. 14 and 15.
In this work, we describe a detailed analytical model

of a cylindrical subsonic magnetized plasma implosion,
relevant for free fall, deceleration and stagnation phases.
We consider a deuterium plasma (hot spot) surrounded
by an imploding shell of cold high-density plasma (liner)
made of the same material for simplicity. The indepen-
dent variables are time t and radial distance r. We ana-
lyze the hot spot region limited by the inner wall of the
liner, r = R(t). The implosion velocity Vi = −dR/dt is
assumed to be constant and set by the conditions dur-
ing the acceleration phase. We consider a fully ionized
plasma fluid model with Braginskii’s expressions and no-
tation for the transport coefficients[16] and the ideal gas
assumption with adiabatic index γ = 5/3. The state of
the plasma is determined by the ion particle density n,
plasma temperature T , pressure p = pi+pe = 2nT , radial
velocity v and axial magnetic field B. We introduce the
thermal to magnetic pressure ratio β = 8πpc/B

2
c . Here-

inafter, the sub-index c denotes the value of the variables
at the center r = 0 (symmetrical axis), which evolve in
time, while the sub-index 0 refers to the value at t = 0.
The problem is greatly simplified noticing that Ma ≪ 1
and β ≫ 1 in many typical implosions. The analysis is
performed in this double limit. Momentum conservation
simplifies to isobaricity p(t, r) = pc(t). Ion continuity,
total energy conservation and induction equations read:
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FIG. 1. Dependence of transport coefficients on the magneti-
zation (electron Hall) parameter xe.
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The coefficient χ⊥ accounts for electron plus ion conduc-
tivities, Dm⊥ = α⊥c

2/4πe2n2 is the magnetic field dif-
fusion coefficient appearing in the Joule term, and βuT

∧

refers to the transport coefficient for the thermoelectric
Nernst effect.
As initial conditions, we impose that the target is uni-

formly magnetized with an external magnetic field B0.
Additionally, an initial temperture profile needs to be
proposed. As boundary conditions, we consider that
during the implosion, the liner remains colder than the
plasma in the hot spot: T (R, t) = 0. The cold dense
liner acts as an electric insulator where currents cannot
flow, and the axial magnetic field is equal to the external
field, B (R, t) = B0. In addition, we require v = dR/dt
(= −Vi) at r = R. The thermal conductivity can be
neglected at the inner liner surface, and the heat con-
duction losses are recycled back via the ablated liner
material[10, 11] (r = R represents an ablation front).
The energy conservation balance in the hot spot enclosed
by the cold liner states that, although the hot spot mass
increases with time, it behaves like a closed system that
is adiabatically heated: pcR

2γ is kept constant.
We normalize the spatial coordinate, η = r/R(t), the

implosion time, τ = log [R0/R(t)], the plasma temper-

ature θ(η, τ) = [T/Tc(τ)]
5/2

, magnetic field φ(η, τ) =
B/Bc(τ) and velocity u (η, τ) = v/Vi. The trans-
port coefficients can therefore be written as χ⊥ =

K̄T
5/2
c θPc, Dm⊥ = D̄T

−3/2
c θ−3/5Pd, with K̄ = 8.64 ×

1027 sec−1cm−1keV−5/2 and D̄ = 93.2 cm2keV3/2/sec
conductivity and diffusivity constants, and cβuT

∧
/en =

[(γ − 1)χ⊥/γp]PnB. The latter relation indicates that
the Nernst term in Eq. 3 accounts for magnetic field
convection in the heat flux direction. The terms Pc(xe),
Pn(xe) and Pd(xe) represent the effect of magnetization
on thermal conduction, Nernst effect and magnetic dif-
fusivity, respectively[14]. They are rational functions of
the local electron Hall parameter (electron cyclotron fre-
quency times the electron collision time) xe = ωeτe =
xecθφ and plotted in Fig. 1:
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with ∆e = x4
e + δ1x

2
e + δ0 and ∆i = x4

i + 2.70x2

i + 0.677,

and xi = ωiτi =
√

2me/mixe standing for the ion mag-
netization. The values for the coefficients γ′

0, δ0, etc
are taken from Braginskii[16] and specified for a deu-
terium plasma (Z = 1, A = 2). A blow-off velocity based
on thermal conduction can be defined as Vb = 2(γ −
1)K̄T

7/2
c /5γRpc[10–13]. The global plasma parameters

are thereby reduced to three dimensionless numbers: the
Péclet number Pe = Vi/Vb, the magnetic Reynolds num-

ber Re = ViR/Dc, with Dc = D̄T
−3/2
c , and the electron

Hall parameter at the center xec. These numbers evolve
during the implosion. For convenience, we use the mag-
netic Lewis number instead of the Reynolds, defined as
Le = VbR/Dc = Re/Pe. In addition, the thermal to mag-
netic pressure ratio β can be related to Le, xec through:

Le =
(γ − 1)γ0
20γα0

βx2

ec = 0.12βx2

ec. (4)

In order to be consistent with the β ≫ 1 assumption, we
restrict our analysis to Le ≫ x2

ec.
The dimensionless velocity can be written as u =

−η + uc, where uc = (1/Pe)Pcθ
2/5∂θ/∂η stands for the

contribution of thermal conduction. Using this expres-
sion, Eqs. (1), (3) after normalization read:

∂θ2/5
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, (5)
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where the eigenvalues λT = (dnc/dτ) /nc − 2= 2(γ −
1) − (dTc/dτ) /Tc and λB = 2 − (dBc/dτ) /Bc, with
nc = pc/2Tc, describe the evolution of the variables at
the center and measure how much it differs from an ideal
implosion (infinite Pe and Re: no ablation and nc ∼ R−2,
Tc ∼ R−4/3, Bc ∼ R−2). Two opposite effects are ac-
counted for in the advection term in Eq. (6): convection
due to uc, in the opposite direction to the heat flux, and
convection due to the Nernst term, in the same direc-
tion. For xe < xeth = 4.37, 1 − Pn is negative and the
latter prevails, Fig. 1(b). All the information about the
initial state is condensed into the initial Péclet Pe0 and
Lewis Le0 numbers, the initial Hall parameter xec0 and
the initial profiles for θ and φ.
The system (5)-(6) is coupled through the magnetiza-

tion effect on the thermal conductivity, Pc(xe). Solving
it allows to obtain the temperature and magnetic field
profiles and the eigenvalues λT and λB. From the defi-
nition of Pe, Le and xec, their evolution in time can be
easily described in terms of λT and λB:

d log Pe

dτ
=

7

2

(

λT − 2

3

)

, (7)

d

dτ

(

LePe10/7
)

= 0, (8)

d log xec

dτ
= 2− λB − 5

2
λT . (9)

In order to gain insight into the physics of the implo-
sion, we first consider the case where the magnetization
is very low xec ≪ 1. In this limit, Pc = 1, Eq. (5) is
decoupled from (6), and simplifies to:

∂θ2/5

∂τ
− λT θ

2/5 =
θ4/5

Peη

∂

∂η

(

η
∂θ

∂η

)

. (10)

This equation has a stable stationary solution
θs(η)[10–13], corresponding to a self-similar implosion,
Fig. 2(a). In this self-similar state, PeλT = 3.48, and in-
serting this into Eq. (7), we obtain that the Péclet num-
ber tends to a constant Pe = Pes = 5.22, and λT = 2/3.
Consequently, the Lewis number also tends to a con-
stant whose value depends upon the initial conditions:

Le = Le0 (Pe0/Pes)
10/7. The velocity self-similar profile

is us(η) = −η+(1/Pes) θ
2/5
s dθs/dη. The temperature at

the center evolves as Tc ∼ R−2/3, while the hot spot mass

Mh = 2π
∫ r=R

r=0
nrdr increases as Mh ∼ R−2/3. Material

from the cold liner is ablated into the hot spot, cooling
it down and causing the temperature increase to be less

than expected for an ideal adiabatic compression of a gas
(
T ∼ R−4/3

)
.

In the unmagnetized limit (xec ≪ 1), Eq. (6) simplifies
to:

∂φ
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φ
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=

1

PeLeη
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ηθ−3/5 ∂φ

∂η

)

, (11)

where the parameter δ = 1 − Pn(0) = −0.24 can be
switched to δ = 1 in order to artificially turn the Nernst
term off for comparison purposes. Once the tempera-
ture reaches the self-similar state, the magnetic field also
tends to a stationary self-similar solution φ = φs(η; Le),
and λB = λB(Le) gets independent of time. The mag-
netic field at the center evolves as Bc ∼ RλB−2, whereas

the magnetic flux Φ = 2π
∫ r=R

r=0
Brdr decreases as Φ ∼

RλB . The eigenvalue λB and the self-similar profile φs

are shown in Figs. 2(b), 2(c), 2(d) as a function of the
Lewis number.
When the Lewis number is small, the parameter λB =

2, the magnetic field at the center Bc attains a constant
value and consequently the magnetic flux decreases as
Φ ∼ R2. However, for Le > 0.93 with Nernst and Le >
0.78 without, λB < 2 and the magnetic field at the center
increases in time.
When the Lewis number is large, diffusion can be ne-

glected in principle and the magnetic field is convected
by the plasma motion and the Nernst velocity. If the lat-
ter is not taken into account, the magnetic field is frozen
into the plasma and the mass ablated into the hot spot
would squeeze it inwards, steepening the B-field profile
until diffusion becomes important. An asymptotic analy-
sis in this large Lewis number and no Nernst limit shows
that the self-similar profile is φs(η) = exp

(
−PesLeη

2/6
)
,

the field is not diffused through the liner, λB → 0 and
the magnetic flux is conserved. When the Nernst term
is taken into account, the Nernst convection dominates
and the magnetic field is advected outwards. It pene-
trates into the ablated mass, it is pushed against the
liner and dissipated in a thin layer where diffusion be-
comes important. An asymptotic expansion for large
Lewis numbers shows that the thickness of the diffusion

layer is O
(

1/
√
Le
)

and the peak of the profile scales as

Le1/5. The parameter λB → −2δ/3 ≈ 0.16, and can-
not be further reduced by increasing the Lewis number,
which indicates that the Nernst term plays a crucial role
in degrading the magnetic flux conservation during the
implosion even for a very conductive plasma.

According to Faraday-Lenz’s law, the magnetic field
in the hot spot is always compressed. The evolution of
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FIG. 2. Unmagnetized plasma implosion. (a) Temperature
and velocity self-similar profiles. (b) Stationary values for λB

and Bc. (c), (d) Magnetic field self-similar profiles.

the magnetization depends, however, on a balance be-
tween the collision and cyclotron frequencies, Eq. (9).
In the low magnetization limit (ωeτe < 1, λT = 2/3), the
collision frequency increases more than the cyclotron fre-
quency whenever λB < 1/3, hence the magnetization
decreases in time and the hot spot remains unmagne-
tized during the whole implosion. This unmagnetized
regime represents an attractor of the complete system
of equations (5)-(6), and will be denoted as “superdif-
fusive regime”. For λB > 1/3, which takes place for
Le > Lecr = 7.10 with Nernst and Le > 3.02 without,
the collision frequency increases less than the cyclotron
frequency, the hot spot gets magnetized and the hydro-
dynamic profiles are consequently modified.
We consider now a strong magnetization limit, xec ≫

1. The plasma is magnetically insulated at the cen-
ter, and the continuity and induction equations (5), (6)
give λT = 0, λB = 0. The central temperature and
magnetic field undergo an ideal adiabatic compression:
Tc ∼ R−4/3, Bc ∼ R−2 . The Péclet number evolves as
Pe ∼ R7/3, and consequently Le ∼ R−10/3. In this limit,
Eq. (9) establishes that the magnetization keeps increas-
ing in time as xec ∼ R−2, hence this regime represents
another attractor, which will be denoted as “magnetized
regime”. According to Eq. (4), the pressure ratio β de-
creases in this limit as β ∼ R2/3. Therefore, pressure
ratios of order unity and below could be attained by the
end of the implosion. Consequently, for these results to
be valid in the magnetized regime for a suffciently long
time, β has to be large initially, which is typically the
case in MagLIF (β0 ∼ several hundred).
In Figs. 3(a) and (b), the temporal evolution of the

temperature and magnetic field profiles of a magnetized
implosion are shown. The initial state corresponds to
a characteristic MagLIF parameter range: Pe0 = 50,
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)

,
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τf = log(30) ≈ 3.4, 5. (c) Normalized hot spot mass in im-
plosions with the same initial parameters but different initial
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Le0 = 100 and xec0 = 1.5, which gives β0 = 361, and
we choose θ0 (η) = cos

(
πη6/2

)
, φ0 (η) = 1. In this

case study, the magnetization increases in time and the
magnetized regime is reached. The temperature profile
presents two distinguishable regions. Close to the liner,
where the temperature is low and the plasma is unmag-
netized, cold material is ablated through the ablation
front. It penetrates into the hot spot until it reaches the
magnetically insulated region, where Pc ≈ 0 and uc ≈ 0.
More and more layers of cold material are accumulated at
the outer part of the hot spot, cooling it down and form-
ing an ablation front like structure that separates the hot
highly magnetized plasma from the cold less magnetized
plasma.

The Nernst term is confined within the unmagnetized
region. Close to the liner, where 1 − Pn < 0, the mag-
netic field is pushed towards it and dissipated in a thin
layer. Deeper into the hot spot, the Nernst term is dras-
tically reduced, and the advection direction is inverted:
1 − Pn > 0. The magnetic field is convected by the
plasma motion inwards and accumulates at the border
of the highly magnetized region. Consequently, the mag-
netic field in the less magnetized region is expelled out
both to the liner and to the hot plasma. The magnetic
field dissipated at the liner cannot thereby be replaced
and the normalized B-field in the cold region decreases.
During this process, the width of the diffusion layer is
maintained, but the magnetic field peak is reduced until
the layer eventually vanishes and the magnetic flux losses
are thereon suppressed.
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The magnetization decreases mass ablation and im-
proves magnetic flux conservation. In the magnetized
regime, the hot spot mass also scales asymptotically as
Mh ∼ R−2/3, but the constant of proportionality is re-
duced, Fig. 3(c). As previously commented, the diffusion
layer tends to vanish in this limit, the magnetic flux losses
are drastically reduced and the magnetic flux in the hot
spot reaches a constant value Φf dependent upon the
initial state, shown in Fig. 3(d).
Whether an implosion falls into the superdiffusive or

magnetized regime depends on the initial Péclet, Lewis
and Hall parameter. In Fig. 4, the boundary between
both regimes is plotted in a Pe0 − Le0 map for different
xec0. For a small initial magnetization, the border corre-

sponds to Le0Pe
10/7
0

= LecrPe
10/7
s ≈ 75, which falls back

to lower values of Le0, Pe0 when the initial magnetization
is increased.
According to the results previously derived, in the de-

sign of magnetized inertial fusion implosions it is impor-
tant to be placed in the “Magnetized regime” part of
the chart plotted in Fig. 4. This can be assured if the
implosion design point satisfies

Le0Pe
10/7
0

= 386

(
T0

1 eV

)3/7
(

ρ0

1 mg/cm
3

)3/7

(
R0

1 cm

)10/7(
Vi

1 cm/µs

)10/7

> 75, (12)

where R0 and ρ0 are the initial radius and fuel density.
In Table I, three different schemes have been analyzed,
and their position is shown in Fig. 4. Both the pulsed
power MagLIF and laser driven magnetized liner implo-
sions tested at Laboratory for Laser Energetics satisfy
well this requirement, but the low density, low implosion

MagLIF OMEGA MTF
T0(eV) 300 200 50

ρ0(mg/cm3) 3 2.7 0.005
R0(cm) 0.2 .03 0.5

Vi(cm/µs) 10 18.8 1
Pe0 53 37 2
Le0 67 15 31

Le0Pe
10/7
0

20.000 2.500 80

TABLE I. Characteristic initial values of the magnethydro-
dynamic variables for three different magnetized inertial fu-
sion schemes. MagLIF corresponds to Ref. 7, OMEGA cor-
responds to the laser-driven magnetized liner inertial fusion
studied at the LLE (OMEGA Laser) in Refs. 17 and 18, and
MTF corresponds to the magnetized target fusion regime ex-
plored in spherical geometry in Ref. 2.

velocity regime explored in the past by Lindemuth and
Kirkpatrick[2] in spherical geometry may need to be ad-
justed for cylindrical geometry since it lays close to the
threshold.

To conclude, the existence of two regimes, superdif-
fusive and magnetized, has been proved in a hot spot
model of magnetized cylindrical implosions. Scaling laws
for temperature, magnetic field, mass ablation and mag-
netic flux losses for every regime have been derived. The
Nernst term convects the magnetic field outwards and
enhances diffusion, degrading thereby the magnetic flux
conservation even for a highly conductive plasma. In the
magnetized regime, the core of the hot spot gets magnet-
ically insulated, and the effect of the Nernst term is re-
duced since it is confined to the outer part of the hotspot
close to the liner.
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