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Data from a 1152 × 760 × 1280 direct numerical simulation [Mueschke & Schilling, Phys. Fluids
21, 014106 (2009)] of a Rayleigh–Taylor mixing layer modeled after a small Atwood number water
channel experiment is used to investigate the validity of gradient-diffusion and similarity closures a
priori. The budgets of the mean flow, turbulent kinetic energy, turbulent kinetic energy dissipation
rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate
transport equations across the mixing layer were previously analyzed [Schilling & Mueschke, Phys.
Fluids 22, 105102 (2010)] at different evolution times to identify the most important transport and
mixing mechanisms. Here, a methodology is introduced to systematically estimate model coefficients
as a function of time in the closures of the dynamically significant terms in the transport equations by
minimizing the L2-norm of the difference between the model and correlations constructed using the
simulation data. It is shown that gradient-diffusion and similarity closures used for the turbulent
kinetic energy K, turbulent kinetic energy dissipation rate ǫ, heavy-fluid mass fraction variance
S, and heavy-fluid mass fraction variance dissipation rate χ equations, capture the shape of the
exact, unclosed profiles well over the nonlinear and turbulent evolution regimes. Using order of
magnitude estimates [Schilling & Mueschke, Phys. Fluids 22, 105102 (2010)] for the terms in the
exact transport equations and their closure models, it is shown that several of the standard closures
for the turbulent production and dissipation (destruction) must be modified to include Reynolds
number scalings appropriate for Rayleigh–Taylor flow at small to intermediate Reynolds numbers.
The late-time, large Reynolds number coefficients are determined to be different from those used
in shear flow applications, and largely adopted in two-equation Reynolds-averaged Navier–Stokes
(RANS) models of Rayleigh–Taylor turbulent mixing. In addition, it is shown that the predictions of
the Boussinesq model for the Reynolds stress agree better with the data when additional buoyancy-
related terms are included. It is shown that an unsteady RANS paradigm is needed to predict
the transitional flow dynamics from early evolution times, analogous to the small Reynolds number
modifications in RANS models of wall-bounded flows in which the production-to-dissipation ratio
is far from equilibrium. Although the present study is specific to one particular flow and one set of
initial conditions, the methodology could be applied to calibrations of other Rayleigh–Taylor flows
with different initial conditions (which may give different results during the early-time, transitional
flow stages, and perhaps asymptotic stage). The implications of these findings for developing high-
fidelity eddy viscosity-based turbulent transport and mixing models of Rayleigh–Taylor turbulence
are discussed.

PACS numbers: 47.20.-k, 47.20.Ma, 47.27.-i, 47.27.Cn, 47.27.E-, 47.27.ek, 47.27.wj, 47.27.em, 47.27.T-

I. INTRODUCTION

The modeling of Rayleigh–Taylor turbulent mixing
by eddy viscosity turbulence models, such as the two-
equation K–ǫ model, requires that the physics embod-
ied in the closures accurately reflect the complex flow
dynamics. A previous study[1] used a direct numerical
simulation (DNS) data set[2] corresponding to a model
of a water channel experiment[3] to investigate the mix-
ing physics and relative importance of terms in the exact
mean and turbulent transport equations. The details of
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the numerical simulation are discussed in these previous
studies. The present study examines a priori the appli-
cability of the eddy viscosity hypothesis used in transport
models for Rayleigh–Taylor turbulent mixing utilizing
this data set. Gradient-diffusion and similarity closures
in the turbulent kinetic energy K, turbulent kinetic en-
ergy dissipation rate ǫ, heavy-fluid mass fraction variance
S, and heavy-fluid mass fraction variance dissipation rate
χ transport equations are computed directly from the
DNS data by defining mean and fluctuating fields us-
ing averages in the periodic directions perpendicular to
gravity. While the focus of the present investigation is
a K–ǫ based model,[4, 5] this study has broader impli-
cations for other two-equation models, which also use
the same gradient-diffusion and similarity closures but
with a different turbulent viscosity constructed using K
and an auxiliary turbulent variable (such as a turbulent
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length scale L). Standard one-point, first-order closures
utilize constant model coefficients calibrated so that the
models well predict large Reynolds number experimen-
tal or simulation data. In applications of such models to
small-Reynolds-number flows such as wall-bounded chan-
nel flows, modifications are introduced to capture the
near-wall viscosity-dominated flow.[6, 7] This is typically
achieved in the context of a K–ǫ model[8] by introduc-
ing wall functions that effectively interpolate between the
near-wall region and the region far from the walls, keep-
ing the functional form of the closures the same.

Rayleigh–Taylor flows differ from shear-driven and
wall-bounded flows as they develop from a quiescent
state, transitioning to a fully-developed state at suffi-
ciently late times. Thus, the ‘quasi-universality’ of the
closure models assumed for such flows likely precludes
their applicability over the early-time linear and weakly-
nonlinear stages of Rayleigh–Taylor flow. It is shown
here that the variability of the flow physics prior to
the turbulent stage can nevertheless be well-captured by
such closures, provided that the coefficients are functions
of the Reynolds number in unsteady Reynolds-averaged
Navier–Stokes (RANS) modeling. It should be empha-
sized that the transitional behavior of Rayleigh–Taylor
flow also depends on the detailed structure of the initial
conditions. The present study utilizes data from a spe-
cific DNS, and does not investigate the role of variations
in the initial conditions on the modeling of this flow.

In the spirit of the DNS study of Chen et al.,[9] the un-
closed terms in the turbulence equations are compared
here with their respective closure models. The turbu-
lent viscosity coefficient is taken to be its canonical value
Cµ = 0.09 and all other model coefficients are deter-
mined self-consistently by minimizing the L2 norm be-
tween the exact and closed profile of each term across
the mixing layer, as a function of time. Correlation and
amplitude coefficients are also computed to quantify how
well the shape and magnitude of each term is captured
by its closure. The turbulence model coefficients ap-
proximately asymptote at the largest Reynolds numbers
achieved in the simulation, and vary before the onset of
turbulence. Using the optimized coefficients determined
this way, a three-equation (K–ǫ–S) or four-equation (K–
ǫ–S–χ) RANS model for transitional, small Atwood num-
ber, moderate Reynolds number Rayleigh–Taylor flow is
proposed. Here, S denotes the heavy-fluid mass fraction
variance (and not a turbulent length scale, for which this
symbol is often used) and χ denotes the heavy-fluid mass
fraction variance dissipation rate. These models are not
necessarily universal, as the behavior of Rayleigh–Taylor
flows is initial conditions-dependent.[10] It is important
to note that the present study is specific to one partic-
ular flow realization, with one set of initial conditions.
Application of the same (or a similar) procedure to other
Rayleigh–Taylor flows may give different results (partic-
ularly during the early-time, transitional flow stages).

This paper is organized as follows. An overview of
RANS models and of gradient-diffusion and similarity

approximations, as well as their limitations vis à vis
Rayleigh–Taylor flow, is presented in Sec. II. The terms
in the mean and turbulent transport equations are com-
pared at various evolution times with their respective op-
timized closure models constructed using the DNS data
in Sec. III. Correlation and magnitude coefficients are
computed for each closure to quantify the agreement be-
tween the models and data in the Appendix. Finally, a
summary of the principal findings of this a priori model
study, conclusions, and implications for RANS modeling
of transitional Rayleigh–Taylor flow are given in Sec. IV.
The models proposed herein will be applied in a com-
panion study to predict turbulent transport and mixing
in both small[3] and large Schmidt number[11] Rayleigh–
Taylor instability water channel experiments.

II. OVERVIEW OF REYNOLDS-AVERAGED

NAVIER–STOKES TURBULENCE MODELS

A. Eddy viscosity modeling and the

gradient-diffusion and similarity hypotheses

First-order, single-point RANS models require expres-
sions for correlations such as the Reynolds stress tensor

τij = ρũ′′
i u

′′
j and turbulent scalar fluxes φ̃′′u′′

j (overbars
and tildes denote Reynolds and Favre averages, and sin-
gle and double primes indicate fluctuations about the
Reynolds and Favre averages, respectively). Eddy (or
turbulent) viscosity closure formulations utilize the con-
cept that a turbulent flow enhances diffusion of mass, mo-
mentum, and energy compared to molecular processes.
Boussinesq thus related the Reynolds stress tensor[12]

τij ≡ τBij =
2

3
ρK δij − 2µt

(
S̃ij −

δij
3

∂ũk

∂xk

)
(1)

to the mean strain-rate tensor S̃ij =

(1/2)(∂ũi/∂xj + ∂ũj/∂xi), where K = ũ′′
i u

′′
i /2 is

the turbulent kinetic energy. The turbulent kinetic en-
ergy dissipation rate ǫ is used to construct the turbulent
viscosity

νt =
µt

ρ
= Cµ

K2

ǫ
, (2)

where Cµ is a dimensionless coefficient estimated using
experimental or simulation data.[8, 13]
While two-equation models based on a turbulent

length scale L are also used,[14] there is no unique def-
inition of L, and hence it is unclear which transport
equation should be examined. However, the exact turbu-
lent kinetic energy dissipation rate equation can be ana-
lyzed using DNS data[1] or potentially using experimen-
tal data. Furthermore, as L is typically of the same order
as the mixing layer width, it follows that the turbulent
length scale describes the large-scale properties of me-
chanical mixing. By contrast, turbulent dissipation rates
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Coefficient Term Shear flow value Rayleigh–Taylor flow value

Cµ turbulent viscosity 0.0845, 0.09 0.09
σρ, σm turbulent mass flux 0.50–0.90 0.60–1.48
σK turbulent flux of K′′ 0.72, 1.00 0.87–1.00
σǫ turbulent flux of ǫ′ 0.72, 1.30 1.30
σS turbulent flux of m′′2

1 0.70, 1.00 –
Cpu pressure flux 0.20 –
Cǫ0 buoyancy production of ǫ – 0.815–0.95
Cǫ1 shear production of ǫ 1.44 1.44–1.47
Cǫ2 turbulent dissipation of ǫ 1.68–1.92 1.90–1.92
Cχ turbulent dissipation of S 1.00 1.50

TABLE I: Coefficients for standardK, ǫ, and S transport models[8, 12, 13, 26, 28–31] and as used in Rayleigh–Taylor mixing.[32–
34]

describe small-scale properties of scalar mixing, which is
the reason why turbulent reacting flow and combustion
modeling utilize descriptions based on dissipation rates
rather than length scales.[15–17]
Turbulent fluxes in the mean and turbulent trans-

port equations must be modeled. The gradient-diffusion
hypothesis states that regions of large values of a

mean scalar φ̃ diffuse ‘down-gradient’ and proportional

to the intensity of turbulent fluctuations φ̃′′
αu

′′
i =

− (νt/σφ) ∂φ̃α/∂xi, where σφ is the dimensionless tur-
bulent Schmidt number. Additional closures are re-
quired for higher order correlations in the turbulent ki-
netic energy dissipation rate ǫ, heavy-fluid mass fraction

variance S ≡ m̃′′2
1 , and heavy-fluid mass fraction vari-

ance dissipation rate χ transport equations (the ‘heavy-
fluid’ designation will be omitted hereafter), e.g., the
buoyancy production and turbulent dissipation in the
ǫ transport equation[1] P ǫ

b = 2νgi(∂ρ′/∂xj)(∂u′
i/∂xj)

and Dǫ = 2µν(∂2u′
i/∂xj∂xk)

2
, respectively. While the

gradient-diffusion hypothesis relates turbulent fluxes to
mean field gradients, no such hypothesis exists for re-
lating the fluctuating velocity gradient–density gradient
correlation in P ǫ

b or higher-order correlations in Dǫ to
mean field gradients. Similarities between the K and ǫ
transport equations are invoked to construct similarity
closure hypotheses, in which a proportionality constant
relates the closures in the variance and corresponding
dissipation rate equations, e.g., P ǫ

b = Cǫ0 (ǫ/K)PK
b (the

terms in the ǫ equation are proportional to those in the K
equation and vary on the turbulent time scale τ = K/ǫ).

B. Assumptions and limitations of eddy

viscosity-based closure models

Several assumptions embodied in eddy viscosity mod-
els are incompatible with Rayleigh–Taylor mixing. Thus,
models based on extensions of the K–ǫ model[8] are ex-
amined here. In the Boussinesq approximation (1), small
velocity gradients imply equipartition of the velocity vari-

ances ũ′′2 ≈ ṽ′′2 ≈ w̃′′2 ≈ 2K/3. This is not the
case in Rayleigh–Taylor mixing where turbulent trans-

port occurs primarily along the direction aligned with
gravity.[1] While Rayleigh–Taylor flows initialized with

isotropic perturbations approximately satisfy ũ′′2 ≈ ṽ′′2,
the flow considered here and initialized with anisotropic
perturbations does not, even at late times.
In the gradient-diffusion hypothesis, turbulent fluxes

are assumed to be aligned with their respective mean
field gradients, which is often incorrect.[12, 18–23] Mod-
eling Rayleigh–Taylor turbulence is further complicated
in that buoyancy is the dominant production mechanism,
while mean shear production is negligible.[1] Unless a
transport equation is solved for the turbulent mass flux,
this term must be modeled algebraically, as in the models
evaluated here.
Another limitation of eddy viscosity models is the re-

quirement that the flow be in a state of weak equilibrium,
i.e., the production-to-dissipation ratios remain close to
unity. The failure of RANS models in flows with large ex-
cursions of these ratios from unity is well known.[13, 24]
The requirement that PK/DK ≈ constant is partly
due to the large Reynolds number assumption used
to formulate similarity closures, where there is a suffi-
cient separation between the production and dissipation
scales to allow an inertial energy cascade. Rayleigh–
Taylor driven flows are initially quiescent and transi-
tion before reaching the Reynolds numbers needed for
scale separation. The production-to-dissipation ratios
are significantly larger than unity before transition to a
three-dimensional, weakly-turbulent state at dimension-
less time t/tc ≈ 17.3.[1] Thus, the model coefficients vary
at small and moderate Reynolds numbers until late-time
asymptotic values are approached when the flow achieves
a self-similar state.

III. A PRIORI ASSESSMENT AND

OPTIMIZATION OF CLOSURE MODELS

Gradient-diffusion and similarity closures of the tur-
bulent fluxes and higher order correlations in the trans-
port equations examined previously[1] are assessed a

priori [25] to examine the validity of Reynolds-averaged
closures for Rayleigh–Taylor turbulent mixing. While
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FIG. 1: Profiles of the turbulent viscosity νt (2) normalized
by νc = ℓ2c/tc at various dimensionless times.

RANS models using constant coefficients calibrated for
shear-driven flows have been applied to a variety of
steady turbulent flows,[8, 13, 26, 29] there has been
much less effort to develop RANS models for unsteady
Rayleigh–Taylor mixing.[14, 32–37] For K–ǫ models,
most of the previous calibration efforts have focused on
the coefficients in the buoyancy production terms. Self-
similar solutions were derived for small Atwood number
Rayleigh–Taylor flow[32, 33] to estimate the coefficient
in the buoyancy production term that best reproduced
the growth of a small Atwood number Rayleigh–Taylor
mixing layer. A self-similar analysis of the K–L–a BHR
model was performed, and coefficients applicable to ei-
ther a ǫ- or L-based model were estimated (the turbu-
lent length scale was denoted by S in this paper).[37]
Thus, the coefficients used in Rayleigh–Taylor mixing are
a combination of those used for shear-driven flows and
additional coefficients in the buoyancy production terms
obtained from an a posteriori comparison of model pre-
dictions to limited experimental data (e.g., the mixing
layer width and its growth rate). Coefficients in typical
transport models applied to shear and Rayleigh–Taylor
flows are summarized in Table I.

A different approach is used here: terms from the
transport equations are compared a priori with their re-
spective closures,[9, 38–40] where each modeled term is
constructed from Reynolds or Favre mean and fluctu-
ating fields calculated from the DNS, and the optimal
coefficients providing best agreement between the exact
profiles and their models are determined. In doing so,
a measure of the small-Reynolds-number applicability of
such models becomes apparent, which is closely related to
the open issue of RANS model initialization for Rayleigh–

Taylor flow. For all of the mean and turbulence budgets
presented, quantities will be nondimensionalized using
density, length, and time scales corresponding to linear
instability theory:[1]

ρc =
ρ1 + ρ2

2
, ℓc =

(
ν2

g A

)1/3

, tc =

(
ν

g2A2

)1/3

, (3)

which are ρc = 0.998 g/cm3, ℓc = 0.051 cm, and tc =
0.264 s for the flow considered here with g = 981 cm/s2

in the z-direction, ν = 0.01 cm2/s and A = 7.5 × 10−4.
The velocity scale is uc = ℓc/tc = 0.194 cm/s. Order of
magnitude estimates of the terms in the transport equa-
tions in Appendix B of Ref. 1 are used together with
similar estimates for the closures to determine any addi-
tional Reynolds and Schmidt number scalings.

A. Determination of optimal model coefficients

A priori optimal turbulence model coefficients are de-
termined using a methodology similar to the procedure
that provides an estimate of the minimal error that an
ideal subgrid-scale model will generate.[41] Consider the
exact DNS profile E(z, t) and modeled profile M(z, t;Cφ)
depending on a given model coefficient Cφ. The optimal
coefficient is determined by minimizing the L2-norm of
the difference between E(z, t) and M(z, t;Cφ) over the
mixing layer z ∈ [hs, hb],

L2(Cφ, t) =

∫ hb

hs

[E(z, t)−M(z, t;Cφ)]
2
dz , (4)

where hb(t) and hs(t) are the bubble and spike front
widths at time t. Algebraically solving for Cφ can pro-
duce singularities if E(z, t) or M(z, t;Cφ) change sign
(as in the case of turbulent fluxes). Most profiles ex-
tend somewhat beyond the mixing layer boundaries de-
termined by hs and hb; however, widening the integration
limits in Eq. (4) did not change the coefficient values.
Qualitative assessments are performed by comparison

of the profiles predicted by the optimized models with
the profiles constructed using the DNS data. As the ratio
multiplying each closed term is either of the form Cµ/σφ

or CZmCµ/σφ, where CZm is a coefficient in the transport
equation for the generic dissipation rate Z = (ǫ, χ), the
value of Cµ is fixed at 0.09and is not optimized.[42] In ad-
dition, the predicted self-similar spreading rate of a shear
mixing layer depends on this value as well as on Cǫ1–the
coefficient in the closure of the shear production in the
turbulent kinetic energy dissipation rate equation. Thus,
changing Cµ would entail changing other coefficients in
order to reproduce the experimental growth rate, e.g.,
Ref. 43. Profiles of the turbulent viscosity νt from the
DNS are shown in Fig. 1. Beyond t/tc ∼ 5.13, νt exceeds
the kinematic viscosity ν = 0.01 cm2/s; by the end of the
simulation, the peak value νt/ν ∼ 40 is reached near the
center plane z = 0. The peak turbulent Reynolds number
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reached is Ret = K2/(ǫ ν) = νt/(Cµν) ∼ 400; all values
of Ret are evaluated on the center plane.

The predictive capability of a model can be quantified
by the correlation coefficient[38]

r(Cφ, t) =

∫ hb

hs

[
E(z, t)− E(t)

][
M(z, t;Cφ)−M(Cφ, t)

]
dz

√∫ hb

hs

[
E(z, t)− E(t)

]
2 dz

∫ hb

hs

[
M(z, t;Cφ)−M(Cφ, t)

]2
dz

, (5)

where

E(t) =
1

h(t)

∫ hb

hs

E(z, t) dz , (6a)

M(Cφ, t) =
1

h(t)

∫ hb

hs

M(z, t;Cφ) dz (6b)

are the spatial averages of E(z, t) and M(z, t;Cφ) over
the mixing layer. An exact correlation between the model
and the DNS data gives r = 1, if there is no correla-
tion r = 0, and if the model and data are exactly anti-
correlated r = −1. However, r(Cφ, t) only determines
how well the model is correlated with the DNS data, but
does not determine how well the model compares in mag-

nitude to the DNS data. A ratio of the magnitude of the
model profile to the DNS profile is formulated as

a(Cφ, t) =

√√√√
∫ hb

hs

M(z, t;Cφ)2 dz
∫ hb

hs

E(z, t)2 dz
, (7)

so that the model over-predicts the data if a > 1, and
the model under-predicts the data if a < 1. Thus, r and
a provide measures of how well the model is correlated
with the data and how close the model is to the data
as the flow evolves through the linear, weakly-nonlinear,
nonlinear, and transitional stages.

B. The mean transport equations

The mean flow dynamics are determined by the mean
vertical momentum and mass fraction transport equa-
tions. The analysis of turbulent transport and mixing
processes is discussed in Ref. 1. For the small Atwood
number mixing layer considered here, the mean velocity
remains very small during the evolution of the Rayleigh–
Taylor flow. Thus, the mean advection terms are negli-
gible. For generality and potential applications to larger
Atwood number flows, both Reynolds and Favre fluctu-
ating quantities are used: for very small Atwood number,

φ̃α ≈ ρφα/ρ ≈ φα.
It was shown that the mean vertical momentum equa-

tion (6) of Ref. 1 reduces to generalized hydrostatic equi-
librium

ρ g ≈ − ∂

∂z
(p+ τ33) , (8)

where the Reynolds stress is τ33 = ρw̃′′2. Furthermore,
the Reynolds stress contribution ∂τ33/∂z is much smaller
than the mean pressure gradient contribution, indicat-
ing that turbulence has a relatively small influence on
the mean momentum evolution. However, the Reynolds
stress gradient may not be negligible for larger Atwood
number flows. The heavy-fluid mean mass fraction equa-
tion (7) of Ref. 1 reduces to

ρ
∂m̃1

∂t
≈ − ∂

∂z

(
ρ m̃′′

1 w
′′

)
(9)

as the molecular diffusion (µ/Sc) ∂m̃1/∂xj is negligible
compared to the turbulent transport.

C. The turbulent transport equations

The turbulent kinetic energy transport equation (14)
of Ref. 1 reduces to

ρ
∂K

∂t
≈ −w′′

∂p

∂z
− ρ ǫ− ∂

∂z

(
ρ K̃ ′′ w′′ + p′ w′′

)
(10)

as the mean shear production τij∂ũi/∂xj , viscous flux

σiju′′
i , and pressure–dilatation p′∂u′′

k/∂xk are very small.
The (incompressible) turbulent kinetic energy dissipation
rate transport equation (17) of Ref. 1 reduces to

ρ
∂ǫ

∂t
≈ −2 ν g

∂ρ′

∂xj

∂w′

∂xj
− 2µ

∂u′
i

∂xk

∂u′
i

∂xj

∂u′
k

∂xj
(11)

−2µν

(
∂2u′

i

∂xj∂xk

)2

− ∂

∂z

(
ρ ǫ′ w′ + 2 ν

∂p′

∂xk

∂w′

∂xk

)

as the mean shear production proportional to ∂ui/∂xj ,
curvature production proportional to ∂2ui/∂xj∂xk, and
molecular dissipation flux µ∂ǫ/∂xj are small. The mass
fraction variance transport equation (19) of Ref. 1 re-
duces to

ρ
∂S

∂t
≈ −2 ρ m̃′′

1 w
′′
∂m̃1

∂z
− 2 ρχ (12)

− ∂

∂z

(
ρ m̃′′2

1 w′′

)

as the molecular diffusion flux ρD∂S/∂xj is small. Fi-
nally, the mass fraction variance dissipation rate trans-
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FIG. 2: Profiles of the velocity variance ũ′′2 normalized by u2
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port equation (22) of Ref. 1 reduces to

ρ
∂χ

∂t
≈ −2Dρ

∂m′′
1

∂xi

∂m′′
1

∂xj

∂u′′
j

∂xi
(13)

−2D
2
ρ

(
∂2m′′

1

∂xi∂xj

)2

− ∂

∂z

(
ρ χ̃′′ w′′

)

as the terms proportional to the mean fields gradients
∂m̃1/∂xj, ∂ũj/∂xi, and ∂2m̃1/∂xi∂xj , and molecular

diffusion flux ρD∂χ/∂xj are small. Note that in the a pri-

ori analysis of turbulent transport performed here, there
is no loss of generality as a result of neglecting the mean
advection terms because they do not require closure.

D. Generalized Boussinesq Reynolds stress model

In shear-driven turbulent flows, accurate prediction of
the Reynolds stresses is crucial for modeling the mean
shear velocity. While the Boussinesq closure for τij is

sufficiently accurate for many flows,[6] it is generally in-
appropriate for Rayleigh–Taylor mixing due to the sus-
tained anisotropy of velocity fluctuations. While the

Boussinesq model predicts the shapes of ũ′′2
i , it does not

predict their magnitudes. While the mean momentum
equation and shear production rates of K and ǫ require
a model for τij , it was shown that the shear productions
PK
s and P ǫ

s are negligible compared to the buoyancy pro-
ductions PK

b and P ǫ
b , and the gradient of the Reynolds

stress is small compared to the mean pressure gradient
for the present flow.[1] Nevertheless, a complete RANS
model for Rayleigh–Taylor turbulence should include a
sufficiently accurate model for τij , irrespective of the At-
wood number.

Using the traceless, symmetric baroclinic tensor[45]

Aij =
∂ρ

∂xi

∂p

∂xj
+

∂ρ

∂xj

∂p

∂xi
− 2

3
δij

∂ρ

∂xk

∂p

∂xk
, (14)



7

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

0

0.1

0.2

0.3

0.4

0.5

0.6

ṽ
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FIG. 3: Profiles of the velocity variance ṽ′′2 normalized by u2
c and its Boussinesq and generalized Boussinesq gradient-diffusion

closures (1) (Model 1) and (15) (Model 2) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

a new model can be proposed as an extension of (1) as

τij = τBij − Cijkl
A νt

K

ρ ǫ
Akl , (15)

where the Cijkl
A = Cjikl

A are dimensionless tensor coeffi-

cients, and it is assumed here that Cijkl
A = C(ijkl)δikδjl.

Thus,

τ11 −→ 2

3

(
ρK + µt

∂w̃

∂z

)
(16)

+
2

3
C

(1111)
A νt

K

ρ ǫ

∂ρ

∂z

∂p

∂z
,

τ22 −→ 2

3

(
ρK + µt

∂w̃

∂z

)
(17)

+
2

3
C

(2222)
A νt

K

ρ ǫ

∂ρ

∂z

∂p

∂z
,

τ33 −→ 2

3

(
ρK − 2µt

∂w̃

∂z

)
(18)

−4

3
C

(3333)
A νt

K

ρ ǫ

∂ρ

∂z

∂p

∂z
,

τ12 = τ21 = 0 , (19)

τ13 = τ31 −→ −µt
∂ũ

∂z
, τ23 = τ32 −→ −µt

∂ṽ

∂z
, (20)

where C
(1111)
A ≈ C

(2222)
A 6= C

(3333)
A is expected if the flow

becomes nearly isotropic in the plane perpendicular to
gravity. This model generalizes the dependence of τij on
the mean velocity gradient to include the mean density
and pressure gradients, and reduces to the Boussinesq
model in the constant density limit. From Fig. 1 of Ref.
1, ∂ρ/∂z > 0 and ∂p/∂z < 0, so that A11, A22 > 0 and
A33 < 0.
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FIG. 4: Profiles of the velocity variance w̃′′2 normalized by u2
c and its Boussinesq and generalized Boussinesq gradient-diffusion

closures (1) (Model 1) and (15) (Model 2) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

The model (15) is inspired by the algebraic Reynolds
stress model (β = 1/T0)

v′i v
′
j =

2

3
K δij − 2 νt Sij (21)

+CT β
K

ǫ

(
gi T ′ u′

j + gj T ′ u′
i −

2

3
δij gk T ′ u′

k

)

previously used in transient-RANS and very large-eddy
simulation of incompressible turbulent convection.[46–
48] Here, density fluctuations are analogous to temper-
ature fluctuations. Thus, taking gi → (1/ρ) ∂p/∂xi and

βT ′u′
i → ρ′u′

i/ρ = − (νt/σρ) ∂ ln ρ/∂xi gives (15).
Requiring the orders of magnitude to agree for the ex-

act Reynolds stress and its closure

τzz ∼ 2

3
fρK − 2fµt

(
S̃zz −

1

3

∂ũk

∂xk

)
− e

K3

ρ ǫ2
Azz

∼ ρ0
(
fu2

h − fuhṽ + egh
)
,

so that f = 1 and e = u2
h/(gh) = Fr2h is the Froude num-

ber squared. At large Reynolds numbers, using the self-

similar growth of the mixing layer width, h(t) = αAgt2,
uh ∼ dh/dt ∼ 2αAgt. Thus, u2

h ∼ 4αAgh, and therefore

Frh ∼ 2
√
αA. Figures 2–4 show a comparison between

the Boussinesq model (1) and the new model (15) for the

diagonal components of ũ′′
i u

′′
j from the DNS. As expected

for Rayleigh–Taylor flow in which the mean strain-rate
is small, the Boussinesq model substantially overpredicts

ũ′′2 and ṽ′′2, and underpredicts w̃′′2. By contrast, the
new model very well matches the DNS at all times. The

optimal coefficients C
(iiii)
A shown in Fig. 5 begin to slowly

decrease following an initial transient. Table III gives

the values of C
(iiii)
A at various times. Note that beyond

t/tc ≈ 35 the limited resolution at late times in calcu-
lating gradients (as also seen in the oscillations in the
model profiles) would overestimate the values of these
coefficients.
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E. Gradient-diffusion closures

1. Buoyancy production of turbulent kinetic energy

The buoyancy production terms in the turbulent ki-
netic energy and turbulent kinetic energy dissipation rate
equations, PK

b and P ǫ
b , are the principal Rayleigh–Taylor

instability driving terms. The gradient-diffusion model of
the buoyancy production PK

b in the turbulent kinetic en-
ergy equation is given in terms of the density–velocity
correlation model[12, 49, 50]

u′′
j = −

ρ′ u′
j

ρ
=

νt
σρ ρ

∂ρ

∂xj
(22)

or

w′′ −→ νt
σρ ρ

∂ρ

∂z
, (23)

so that

PK
b = −u′′

j

∂p

∂xj
= − νt

σρ ρ

∂ρ

∂xj

∂p

∂xj
(24)

−→ − νt
σρ ρ

∂ρ

∂z

∂p

∂z
,

where σρ is a dimensionless turbulent Schmidt number.
Requiring the orders of magnitude to agree for the exact
buoyancy production and its closure

PK
b ∼ −f

νt
ρ

∂ρ

∂z

∂p

∂z
∼ f ∆ρ g uh

gives f = ρrms/∆ρ, so that no additional scalings are
expected in (24) (n.b., ρrms ∝ mrms changes slowly at
late times[1]). The gradient-diffusion closure of the aver-
aged Favre fluctuating velocity (23) is shown in Fig. 6,
where on average both the closure and DNS data agree
(with higher amplitude oscillations as time progresses).
On average, the DNS profiles are more symmetric than
the model profiles about the center plane. The closure
(22) has also been used for shock-driven flows[52]; a gen-
eralization of this expression to include the mean pres-
sure gradient (appropriate for shocked flows) was used
to model a broad set of reshocked Richtmyer–Meshkov
instability experiments.[53, 54]

2. Turbulent fluxes

The turbulent fluxes have important dynamical effects
in Rayleigh–Taylor flow, e.g., the turbulent mass flux
controls both the spreading rate of the mixing layer in
the mean mass fraction transport and production rates
of turbulent kinetic energy and mass fraction variance.
Gradient-diffusion models for the turbulent fluxes are of
the form ρφ̃′′

αw
′′ = − (µt/σφ) ∂φ̃α/∂z and specifically

ρ m̃′′
1 w

′′ = − µt

σm

∂m̃1

∂z
, ρ K̃ ′′w′′ = − µt

σK

∂K

∂z
, (25)

ρ ǫ′ w′ = −µt

σǫ

∂ǫ

∂z
, ρ m̃′′2

1 w′′ = − µt

σS

∂S

∂z
, (26)

ρ χ̃′′ w′′ = − µt

σχ

∂χ

∂z
, (27)

where σm, σK , σǫ, σS , and σχ are dimensionless turbulent
Schmidt numbers. Consider the turbulent kinetic energy
flux: requiring the orders of magnitude to agree for the
exact flux and its closure

FK
t ∼ −f µt

∂K

∂z
∼ f ρ0 u

3
h

gives f = 1. More generally, a generic turbulent flux
corresponding to φ′′

α =
(
m′′

1 ,K
′′, ǫ′,m′′2

1 , χ′′
)
is ρφ′′

αw
′′

which is O(ρ0φα,rmsuh); its closure is

F
φ̃′′

α

t ∼ −f µt
∂φ̃′′

α

∂z
∼ f ρ0 uh φα,rms ,

so that f = 1 and no additional scalings are expected.
Comparisons of the gradient-diffusion models with the

exact fluxes are shown in Figs. 7–11. Each flux is shown
using the optimal turbulent Schmidt number at each time
σφ(Reh) calculated by minimizing the L2-norm difference
between the DNS and model profiles. The closures for the
mass fraction flux, mass fraction variance flux, and mass
fraction variance dissipation rate flux are analogous to
those used in turbulent nonpremixed combustion for the
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FIG. 6: Profiles of the averaged vertical Favre fluctuating velocity w′′ normalized by uc and its gradient-diffusion closure (23)
at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

mixture fraction, mixture fraction variance, and mixture
fraction variance dissipation rate fluxes.[55] Figures 8–11
(particularly at the latest two times) indicate that the
model and DNS do not predict the maxima and minima
of the fluxes at the same spatial locations within the mix-
ing layer, although the values of the maxima and minima
are in reasonable agreement on average.

The turbulent Schmidt numbers corresponding to each
flux shown in Fig. 12 exhibit some expected variability
at early times (t/tc < 17.3 or Reh < 500) as the mix-
ing evolves through the linear and transitional regimes.
Most decrease early in time and then grow after transi-
tion. However, σǫ and σχ both increase at early times,
reach maximum values at t/tc ≈ 12.6, and then rapidly
decrease. Once the mixing layer evolves beyond the tran-
sitional regime (Reh & 500), the turbulent Schmidt num-
bers relax to

σρ ≈ 0.08 , σK ≈ 0.09 , σǫ ≈ 0.10 , (28)

σm ≈ 0.08 , σS ≈ 0.07 , σχ ≈ 0.15 . (29)

The turbulent Schmidt numbers for the scalar fields ex-
hibit a greater dynamic range and are more sensitive to
Reh. Table III gives the values of σρ, σK , σǫ, σm, σS ,
and σχ at various times. Beyond t/tc ≈ 32.5 the lim-
ited resolution at late times in calculating gradients due
to the decreasing number of turbulent structures over
which averages are computed (as also seen in the oscil-
lations in the mean field gradients and model profiles)
would slightly overestimate these coefficients.
The turbulent Schmidt numbers are much smaller than

used in shear-driven flows. Applications of two-equation
K–ǫ models to Rayleigh–Taylor mixing have used larger
turbulent Schmidt numbers (see Table I). These studies
have either cited other buoyancy-driven applications[33]
or used an a posteriori determination of each turbulent
Schmidt number.[34, 35] The present work is the first
to directly and systematically calculate the turbulent
Schmidt numbers for a four-equation K–ǫ–S–χ model
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FIG. 7: Profiles of the vertical turbulent heavy-fluid mass fraction flux ρm̃′′
1w

′′ normalized by Fc = ρcuc and its gradient-
diffusion closure (25) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

and illustrate the dynamic behavior of the coefficients
in transitional Rayleigh–Taylor turbulent flow.

3. Pressure fluxes

The pressure flux p′w′′ is non-negligible, has a complex
shape, and bifurcates in its transport behavior at an early
time in the mixing layer evolution.[1] Most formulations
either neglect the pressure flux[27] or combine it with

the turbulent kinetic energy flux K̃ ′′u′′
i .[28] In the model

investigated here, the pressure flux is subtracted from the
overall flux of K,

p′ u′′
i = −Cpu ρ K̃ ′′ u′′

i (30)

or

p′ w′′ = −Cpu ρ K̃ ′′ w′′ , (31)

with a suggested value Cpu = 0.4 in homogeneous
turbulence.[28] Requiring the orders of magnitude to
agree for the exact pressure flux and its closure

FK
p ∼ −ρ K̃ ′′w′′ ∼ f µt

∂K

∂z
∼ f ρ0 u

3
h

gives f = ρrms/ρ0, so that the pressure flux decreases as
the root-mean-square density fluctuations decrease.
Profiles of the exact and closed vertical pressure flux

are shown in Fig. 13. At very small Reynolds num-
bers (Reh < 100), Eq. (31) does not correctly predict
the direction of the flux of K; this may be rectified
by a negative value of Cpu, as shown in the profile at
t/tc = 5.13. For small to moderate Reynolds numbers
(100 < Reh < 1500), the model correctly predicts the
flux direction within the mixing layer core |z/h| . 0.5.
However, this model does not predict the shape of the
profile well, nor does it capture the change in sign of the
flux at the boundaries of the layer (|z/h| & 0.5): this
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FIG. 8: Profiles of the vertical turbulent kinetic energy flux ρK̃′′w′′ normalized by Fc = ρcu
3
c and its gradient-diffusion closure

(25) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

has significant effects at the mixing layer boundaries and
must be captured by any realistic closure.
Similar to the pressure flux of K, ǫ is also transported

via pressure fluctuations. While the pressure flux of K
has received little attention, much less consideration has
been given to the pressure flux of ǫ: neither has been
previously examined for Rayleigh–Taylor flow. Using a
closure analogous to Eq. (31), consider the new model

F ǫ
p = 2 ν

∂p′

∂xj

∂u′
i

∂xj
= −Cǫ

pu ρ ǫ
′w′ . (32)

Requiring the orders of magnitude to agree for the ex-
act turbulent kinetic energy dissipation rate pressure flux
and its closure

F ǫ
p ∼ −ρ ǫ′ w′ ∼ f µt

∂ǫ

∂z
∼ f

µ u3
h

λ2

gives f = 1. The exact and closed ǫ pressure flux pro-
files are shown in Fig. 14. Similar to p′w′′, the pressure

flux of ǫ enhances the vertical turbulent flux ρǫ′w′ at
early times and then transitions to a profile that opposes
ρǫ′w′. Also, the pressure flux of ǫ exhibits the same com-
plex behavior as p′w′′, where ǫ is transported away from
the mixing layer core at the boundaries of the layer. How-
ever, this effect is much smaller than the transport of K
away from the mixing layer by pressure fluctuations. This
is expected as velocity fluctuations induced in the fluid
around the mixing layer remains essentially irrotational,
and hence, the dissipation rate of these fluctuations is
nearly negligible.

Figure 15 shows the evolution of the optimal coeffi-
cients Cpu and Cǫ

pu for the models (31) and (32). As the
pressure flux is non-negligible, even beyond the bound-
aries of the mixing layer, the L2-norm minimization was
modified such that the integration limits were changed
from [hs, hb] to [−Lz/2, Lz/2]. Both coefficients are neg-
ative before t/tc ≈ 10, when the mixing is entering a
nonlinear transitional regime. Negative values indicate
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FIG. 9: Profiles of the vertical turbulent kinetic energy dissipation rate flux ρǫ′w′ normalized by Fc = ρcu
3
c/tc and its gradient-

diffusion closure (26) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

that the pressure fluxes are aligned with the turbulent
fluxes ofK and ǫ. The maximum value of Cpu is attained
at t/tc ≈ 12.6, corresponding to the time at which the
molecular mixing parameter θ attains its minimum.[2]

Once a Reynolds number Reḣh ≈ 1, 500 has been attained,
the coefficient for the pressure flux of K approaches
Cpu ≈ 0.2. As shown in Fig. 9, the turbulent flux of

ǫ becomes more important with increasing Reḣh, while
the pressure flux of ǫ remains relatively unchanged in

magnitude. Thus, Cǫ
pu decreases with increasing Reḣh—

at sufficiently large Reynolds numbers, the pressure flux
of ǫ may be negligible compared with the turbulent flux.
Table III gives Cpu and Cǫ

pu at various times.

F. Similarity closures

Similarity closures used to phenomenologically model
the non-flux, higher order correlations in the turbulent
dissipation rate and scalar variance (ǫ, S, and χ) trans-
port equations are examined here.

1. The turbulent kinetic energy dissipation rate production

and destruction terms

The buoyancy production of ǫ is the dominant produc-
tion mechanism of ǫ for t/tc < 25.1 and is non-negligible
over the range of Reynolds numbers examined here[1];
this term is absent in constant density flows. The fluc-
tuating velocity gradient–density gradient correlation is
taken to be proportional to the buoyancy production of
K, analogous to the similarity closure for the shear pro-
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FIG. 10: Profiles of the vertical heavy-fluid mass fraction variance flux ρm̃′′2
1 w′′ normalized by Fc = ρcuc and its gradient-

diffusion closure (26) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

duction rate of ǫ,[24]

P ǫ
b = 2 ν gi

∂ρ′

∂xj

∂u′
i

∂xj
= Cǫ0

ǫ

K
PK
b . (33)

Requiring the orders of magnitude to agree for the exact
buoyancy production and its closure

P ǫ
b ∼ −f

νt
ρ

∂ρ

∂z

∂p

∂z

ǫ

K
∼ f

g∆ρ u2
h

h

gives f = ρrms/∆ρ. The comparison of the exact and
closed profiles of P ǫ

b in Fig. 16 shows that the buoy-
ancy production of ǫ is well-captured by similarity. How-
ever, because of the very small Atwood number, the
profile of the exact shear production P ǫ

s is very small
and oscillatory.[1] Therefore, it is not possible to opti-
mize the coefficient Cǫ1 in the standard similarity model
P ǫ
s = Cǫ1 (ǫ/K)PK

s using the present data set.

The turbulent production and destruction of ǫ include
triple fluctuating velocity gradient correlations and cor-
relations of higher-order derivatives. Adopting the large
Reynolds number closure,[8] the difference between the
viscous destruction and turbulent production is

Dǫ − P ǫ
t = 2µ

[
ν

(
∂2u′

i

∂xj∂xk

)2

+
∂u′

i

∂xk

∂u′
i

∂xj

∂u′
k

∂xj

]
(34)

= Cǫ2
ρ ǫ2

K
.

When there is no significant scale separation (as in the
case here), the scale δ is approximately δ ∼ O(λ) rather
than O(ℓd) (ℓd is the Kolmogorov dissipation scale), so
that requiring the orders of magnitude to agree for the
exact turbulent destruction and its closure

Dǫ ∼ f
ρ ǫ2

K
∼ f

µ ν u2
h

λ4
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FIG. 11: Profiles of the vertical heavy-fluid mass fraction variance dissipation rate flux ρχ̃′′w′′ normalized by Fc = ρcuc/tc and
its gradient-diffusion closure (27) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

gives f = 1. Similarly, at small Reynolds numbers, the
characteristic vortex stretching rate is h/uh, rather than
λ/uh, so that the exact turbulent production scales as

P ǫ
t ∼ ρ ǫ

τ
∼ µu3

h

λ2 h
,

where τ = h/uh. Thus, f = 1, and Dǫ−P ǫ
t ∼ ρǫ2/K, and

no additional scaling factors are expected in Eq. (34).
Profiles of the exact and modeled difference Dǫ − P ǫ

t are
shown in Fig. 17, where it is evident that the model
agrees well with the DNS on average.
The buoyancy production and turbulent produc-

tion/dissipation models in Figs. 16 and 17 are shown
using the optimal coefficients Cǫ0(Reh) and Cǫ2(Reh),
which are shown in Fig. 18. The coefficient Cǫ0

varies before t/tc = 25.1, after which a late-time steady
value Cǫ0 ≈ 1.43 is attained. This is larger than
the value Cǫ0 = 0.91 determined from an a posteri-
ori model evaluation[33] and Cǫ0 = 0.95 used to model

Rayleigh–Taylor and Richtmyer–Meshkov instability-
driven mixing.[34] However, these studies determined Cǫ0

a posteriori that gave predictions in accord with experi-
mental data and assumed values of the turbulent Schmidt
numbers, whereas the present work uses the ǫ transport
equation budget to directly determine Cǫ0 for the first
time.

The evolution of the coefficient for the combined tur-
bulent production/destruction of ǫ is also shown in Fig.
18, where Cǫ2 ≈ 2.8 when the mixing enters the transi-
tional regime at t/tc ≈ 12.6. As the Reynolds number
increases, this coefficient decreases to Cǫ2 ≈ 2.26 at the
latest time (t/tc = 37.9), larger than the standard shear
flow value 1.92. Thus, the Reynolds number may need to
be large enough that a sufficient scale separation exists
between the energy containing and dissipative scales for
Cǫ0 and Cǫ2 to asymptote. At the latest time, the peak of
the kinetic energy and dissipation spectra are only sepa-
rated by approximately one decade of wave numbers.[44].
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FIG. 12: Evolution of optimal (a) mechanical σρ, σK , and σǫ

and (b) scalar σm, σS, and σχ turbulent Schmidt numbers.

Thus, Cǫ2 is a weak function of Reh until a broader scale
separation is achieved. Both Cǫ0 and Cǫ2 attain maxima
at t/tc ≈ 17.3 and decrease thereafter. Table III gives
the values of the similarity coefficients Cǫ0 and Cǫ2 at
various times.

2. The heavy-fluid mass fraction variance dissipation rate

production and destruction terms

While similarity closures for the ǫ transport equa-
tion have been utilized for a large variety of flows,
the modeling of the S and χ transport equations has
been primarily relegated to reacting flow and combustion
applications.[51, 55, 56] The production of S, physically-
represented by the entrainment of unmixed fluid, is de-
termined by the product of the turbulent mass fraction

flux m̃′′
1w

′′ and the mean gradient ∂m̃1/∂xj . However,
the higher-order correlation of fluctuating mass fraction
gradients governing the destruction of S (represented by
molecular mixing of fluids across a species interface) does
not have a gradient-diffusion closure. Instead, the re-
lationship between the turbulent mechanical time scale
τm = K/ǫ and the scalar time scale τs = S/ǫS is used
to algebraically (rather than differentially) model the
heavy-fluid mass fraction variance dissipation rate

ǫS = 2χ = 2Cχ
ǫ

K
S , (35)

where Cχ is a dimensionless coefficient.[5, 55–58] Requir-
ing the orders of magnitude to agree for the mass fraction
variance dissipation rate and its closure

χ ∼ f
ǫ

K
S ∼ f

ν m2
rms

λ2

gives f = Sc−1 (λ/λm)
2
= 1. In combustion applica-

tions, the role of the mass fraction variance is played by
the mixture fraction variance. Using the time scale gen-
eralized by a Schmidt number-dependent contribution for
scalars[56]

τm =
3K

2 ǫ
+

√
ν

ǫ

ln Sc

2
(36)

instead of Eq. (35) results in the expression

ǫS = 2Cχ
S

3K
2 ǫ +

√
ν
ǫ

ln Sc
2

. (37)

Estimating
√
ν/ǫ lnSc/2 from the DNS values gives an ≈

5% correction to (3/2)K/ ǫ, so that such a generalization
is only significant for large Schmidt number mixing (and
the modification of the coefficient of τm by 3/2 would only
change the value of Cχ). The correction to (3/2)K/ ǫ for
the Sc = 620 case[11] is ≈ 10–25% depending on the time
and location within the mixing layer.

Profiles of the mechanical and scalar time scales across
the mixing layer are shown in Fig. 19. Once the mixing
layer transitions into the nonlinear phase (t/tc ≥ 12.6),
the mechanical time scale profiles are approximately con-
stant across the mixing layer (|z/h| < 0.5) for all times.
Similarly, the scalar time scale profiles are approximately
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FIG. 13: Profiles of the vertical pressure flux p′w′′ normalized by Fc = ρcu
3
c and the closure (31) at (a) t/tc = 5.13, (b) 12.6,

(c) 25.1, and (d) 37.9.

constant across the mixing layer only after the flow be-
comes transitional at t/tc ≈ 17.3. The mechanical-to-
scalar time scale ratio is[15, 56, 59]

R =
τm
τs

= 2
K

ǫ

χ

S
, (38)

where Eqs. (35) and (37) give Cχ = R/2 and Cχ =

R
(
3 +

√
νǫ ln Sc/K

)
/2, respectively. Profiles of R are

shown in Fig. 20: R is approximately constant across the
mixing layer except near the layer boundaries, indicating
that the algebraic closure (37) is a good approximation
for this flow.[60] The profiles in Fig. 20 show a contin-
uous increase in R with time (and Reh). Many mixing
models assume that this ratio is constant, with a value
R ≈ 2.[33, 46, 58] At the latest time in the simulation,
R ≈ 0.9–1.3 across the layer, which is considerably lower
than the predicted values R ≈ 2.0–2.2 using a spectral
relaxation model developed for reacting flows.[56] At ear-
lier times, the DNS gives 0.3 < R < 0.5.

Profiles of the exact and closed heavy-fluid mass frac-
tion variance destruction [using the algebraic model (37)]

DS = ρ ǫS = 2 ρχ = 2Cχ
ρ S

3K
2 ǫ +

√
ν
ǫ

ln Sc
2

(39)

are shown in Fig. 21. At early times (t/tc ≤ 12.6),
the model exhibits adequate agreement with the DNS
profiles. As the mixing layer becomes more turbulent,
the agreement improves, as seen at t/tc = 25.1 and 37.9.
The detailed structure is not well captured by the model,
except at t/tc = 25.1. Using the model (35) instead gives
similarly good agreement with the data. The evolution
of the coefficient Cχ(Reh) used to construct the model
profiles is shown in Fig. 25.
The fidelity of a RANS model may be improved by

solving a transport equation for χ, rather than using an
algebraic model (35), as adopted in many reacting flow
studies.[31, 51, 56, 61] The χ transport equation (like
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FIG. 14: Profiles of the pressure flux F ǫ
p normalized by Fc = ρcu

3
c/tc and the closure (32) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1,

and (d) 37.9.

that for ǫ) contains higher order correlations which can
not be closed by gradient-diffusion, and similarity must
again be invoked. The mean production of χ is closed
by[62, 63]

Pχ
m = −2Dρ

∂m′′
1

∂xi

∂u′′
j

∂xi

∂m̃1

∂xj
(40)

= Cχ0
µt√
Sc

ǫ

K

(
∂m̃1

∂xj

)2

−→ Cχ0
µt√
Sc

ǫ

K

(
∂m̃1

∂z

)2

,

where Cχ0 is a dimensionless coefficient and σm has been
absorbed into Cχ0. Using the estimate Dt ∼ νt, the
Schmidt number scaling follows from requiring the orders
of magnitude to agree for the exact mean production and

its closure

Pχ
m ∼ f ρDt

(
∂m̃1

∂z

)2
ǫ

K
∼ f

µ (∆m)2 uh

λ2 h

which gives f = Sc−1 (mrms/∆m)(λ/λm) =

(mrms/∆m) /
√
Sc. Profiles of the exact and mod-

eled heavy-fluid mean mass fraction variance gradient
production are shown in Fig. 22. The model agrees well
with the exact profiles, including the complex variations
in the spatial structure. The oscillations in the model at
later times are due to the gradient computed over the
wide mixing layer with low effective resolution.

The mean production Pχ
m represents only a small frac-

tion of the production of χ, as the turbulent produc-
tion Pχ

t is the dominant production mechanism. Simi-
larly, the destruction of χ by molecular processes is also
attributed to the fine-scale velocity fluctuations driving
molecular mixing. In analogy with the closure of Dǫ−P ǫ

t ,
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the difference of the turbulent destruction and produc-
tion terms is modeled as[63, 64]

Dχ − Pχ
t = 2D

2
ρ

(
∂2m′′

1

∂xi∂xj

)2

(41)

+2Dρ
∂m′′

1

∂xj

∂m′′
1

∂xi

∂u′′
j

∂xi

=
√
Ret ρχ

(
Cχ2

χ

S
− Cχ3

ǫ

K

)
,

where Cχ2 and Cχ3 are associated with Dχ and Pχ
t , re-

spectively. The
√
Ret scaling follows from requiring that

the orders of magnitude agree for the exact turbulent
production and its closure

Pχ
t ∼ f

ρ χ2

S
∼ f

ρ0 D
2 m2

rms

λ4
m

,

so that f = ReλSc(λm/λ)
2 ∼

√
Ret. Similarly, requiring

the orders of magnitude to agree for the exact turbulent
destruction and its closure

Dχ ∼ f
ρ χ ǫ

K
∼ f

µDm2
rms

(λλm)
2

gives f ∼
√
Ret. Profiles of the modeled and exact Pχ

t

andDχ are shown in Figs. 23 and 24, respectively. While
the modeled DS shown in Fig. 21 is valid for t/tc > 5.13,
the turbulent production and destruction closures do not
capture the flow physics until the transition to a pre-
turbulent nonlinear stage at t/tc ≈ 12.6: both models
fail to reproduce the structure of the DNS profiles at

t/tc = 5.13. However, once turbulence ensues, the Pχ
t

and Dχ closures agree very well with the DNS.
The evolution of the similarity coefficients for the S

and χ transport equations is shown in Fig. 25. The
coefficient Cχ0 increases rapidly during the transient pe-
riod, reaching a maximum of ∼ 9.3 at t/tc ∼ 20, and
then decreases to ∼ 6.8 at the latest times. Both Cχ and
Cχ3 increase from small values and nearly plateau beyond
t/tc ∼ 20 at values ∼ 0.45 and ∼ 0.72, respectively. The
coefficient Cχ2 decreases from a large value and varies
relatively slowly beyond t/tc ∼ 20, attaining ∼ 1.30 at
the latest time. An implication of the time-evolution of
Cχ is that the quantity governing the mixing rate χ is
not steady, as often assumed.[34, 46, 58] Instead, there is
a Reynolds number dependence over the flow evolution.
Table III gives the values of the coefficients Cχ, Cχ0, Cχ2,
and Cχ3 at various times.

IV. DISCUSSION AND CONCLUSIONS

A 1152 × 760 × 1280 DNS dataset[2] corresponding
to a model of a water channel Rayleigh–Taylor mixing
experiment[3] was used to obtain and optimize coeffi-
cients for a three-equation K–ǫ–S or four-equation K–ǫ–
S–χRANS model that generally provides a high degree of
correlation between the exact terms and their gradient-
diffusion or similarity closures a priori. In this data-
driven approach, an L2-norm [see Eq. (4)] minimiza-
tion procedure between the exact and closed terms was
used to compute Reynolds number-dependent turbulent
Schmidt numbers and similarity coefficients. Correlation
and amplitude coefficients, r and a, [Eqs. (5) and (7)]
given in the Appendix were computed for each pair of ex-
act and closed terms to quantify how well the shapes and
the values of the profiles agreed, respectively. Profiles
were compared at dimensionless times, t/tc = 5.13, 12.6,

25.1, and 37.9 [corresponding to Reḣh = (h dh/dt)/ν = 47,
352, 1620, and 2666], representative of the linear, non-
linear transitional, strongly nonlinear, and weakly tur-
bulent flow regimes.[1, 2, 44] The model profiles ex-
hibited increasing intermittent spatial variations as the
Reynolds number increased, due to the decreasing num-
ber of turbulent structures over which averages are com-
puted. Only terms contributing significantly to the bud-
gets of the transport equations were examined.
An extension of the Boussinesq model that includes

contributions from mean density and pressure gradients
[Eq. (15)] was shown to adequately predict the diagonal
Reynolds stresses. Gradient-diffusion models for the ver-

tical turbulent fluxes ρφ̃′′
αw

′′ [Eqs. (25)–(27)] and pres-
sure fluxes [Eqs. (31) and (32)] in the turbulent transport
terms were examined with their corresponding turbulent
Schmidt numbers determined by the L2-norm minimiza-
tion. The shapes and magnitudes of the exact and closed
turbulent fluxes were in good agreement (modulo late-
time oscillations in the models). The locations of max-
ima and minima were also in good agreement, except
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FIG. 16: Profiles of the buoyancy production P ǫ
b normalized by Pc = ρcu

2
c/t

2
c and its similarity closure (33) at (a) t/tc = 5.13,

(b) 12.6, (c) 25.1, and (d) 37.9.

at the latest time. Over the times considered, σǫ and
σχ exhibited the most variation. On average, σρ, σK ,
σm, and σS varied the least over the evolution: follow-
ing the transient in σǫ (t/tc & 17.3), these coefficients
varied from ≈ 0.07–0.15. In general, both r and a in-
creased rapidly to near unity over t/tc ≈ 2.6–17.3 and
then slowly decreased to ≈ 0.8–0.95 for t/tc & 17.3 in-
dicating good agreement. The shapes and magnitudes
of the exact and closed pressure fluxes[28] were also in
generally good agreement, together with the locations of
the maxima and minima. The coefficients Cpu and Cǫ

pu

changed sign at t/tc ≈ 7.19 due to the qualitative change
in the flux profiles at this time[1]; Cpu attains a maxi-
mum at t/tc ≈ 12.6 and then decreases to ≈ 0.22 at late
time, while Cǫ

pu varies less with time. Both r and a are
small at early and intermediate times, reaching 0.9–1.0
for t/tc & 17.3 indicating that the pressure flux closure
is more applicable to the large Reynolds number regime.
The use of variable turbulent Prandtl and Schmidt num-

bers here is similar to the two-equation turbulence model
with variable turbulent Schmidt and Prandtl numbers for
scramjet supersonic mixing applications.[65–67]

Similarity models for the production and destruction
terms (33)–(35) and (39)–(41) in the dissipation rate
equations were examined with their coefficients deter-
mined by the L2-norm minimization. These models cap-
ture both the shapes and values of the production terms
P ǫ
b , P

χ
m, and Pχ

t quite well (except for Pχ
t at the earliest

time). Similarly, the shapes and values of Dǫ − P ǫ
t , D

S ,
and Dχ are also captured quite well by the models (ex-
cept for Dχ at the earliest time). The models capture the
maxima and other variations in the profiles accurately,
yielding r, a ≈ 1 for t/tc & 10.1. Both Cǫ0 and Cǫ2 in-
crease fairly rapidly to maximum values at t/tc ≈ 17.3
and then decrease relatively slowly. Both Cχ and Cχ2

increase from small values and nearly plateau beyond
t/tc ∼ 20. The coefficient Cχ0 increases rapidly, reach-
ing a maximum at t/tc ∼ 20, and then decreases. The
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FIG. 17: Profiles of the difference between the turbulent kinetic energy dissipation rate destruction and production Dǫ − P ǫ
t

normalized by Pc = ρcu
2
c/t

2
c and its similarity closure (34) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

coefficient Cχ3 decreases from a large value and varies rel-
atively slowly beyond t/tc ∼ 20, attaining ∼ 1.30 at the
latest time. This study does not provide an optimized
value of Cǫ1 in the similarity model P ǫ

s = Cǫ1 (ǫ/K)PK
s ;

however, a standard value Cǫ1 = 1.44 may be a reason-
able choice. A summary of the late-time coefficient values
is given in Table II, and the Reynolds number-dependent
coefficient values are given in Table III.

The present study suggests a RANS model for
small Atwood number, intermediate Reynolds number
Rayleigh–Taylor driven mixing based on the mean mo-
mentum and heavy-fluid mass fraction equations

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
ũi = ρ gi −

∂p

∂xi
+

∂σij

∂xj
− ∂τij

∂xj
, (42)

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
m̃1 =

∂

∂xj

[(
µ

Sc
+

µt

σm

)
∂m̃1

∂xj

]
(43)

coupled to the four turbulence equations

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
K = − νt

σρ ρ

∂ρ

∂xj

∂p

∂xj
− τij

∂ũi

∂xj
(44)

−ρ ǫ+
∂

∂xj

[(
µ+

µt

σ∗
K

)
∂K

∂xj

]
,

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
ǫ = −Cǫ0

ǫ

K

νt
σρ ρ

∂ρ

∂xj

∂p

∂xj
(45)

−Cǫ1
ǫ

K
τij

∂ũi

∂xj
− Cǫ2

ρ ǫ2

K

+
∂

∂xj

[(
µ+

µt

σ∗
ǫ

)
∂ǫ

∂xj

]
,
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ρ

(
∂

∂t
+ ũj

∂

∂xj

)
S = 2

µt

σm

(
∂m̃1

∂xj

)2

− 2 ρχ (46)

+
∂

∂xj

[(
µ

Sc
+

µt

σS

)
∂S

∂xj

]
,

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
χ = Cχ0

µt√
Sc

ǫ

K

(
∂m̃1

∂xj

)2

(47)

−
√
Ret ρχ

(
Cχ2

χ

S
− Cχ3

ǫ

K

)

+
∂

∂xj

[(
µ

Sc
+

µt

σχ

)
∂χ

∂xj

]

with coefficient values given in Table II, σ∗
K =

σK/(1− Cpu) = 0.17, and σ∗
ǫ = σǫ/

(
1− Cǫ

pu

)
= 0.11.

The turbulent viscosity is (2) and the Reynolds stress
is modeled using the buoyancy-generalized model in Eq.
(15). The pairs (K, ǫ) and (S, χ) provide a mixing
model describing both mechanical and scalar mixing, re-
spectively. A three-equation model in which χ is mod-
eled algebraically by Eq. (35) provides a simpler al-
ternative model. Such models are analogous to those
used in turbulent nonpremixed combustion, in which the
scalar progress variables are the mixture fraction vari-
ance and its dissipation rate.[51, 55] Equations (44) and
(45) were used in a reacting mixing layer study.[9] Equa-
tion (47) is similar to the equation used in the context of
a second-order closure for momentum and passive scalar
transport,[5, 15, 68] except that the gradient-diffusion
model is used here for the turbulent diffusion,[63] rather
than the generalized gradient-diffusion model, and the
shear production Pχ

s is neglected here. A K–ǫ–T ′2–

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

0

2

4

6

8

10

τ
m

t/tc = 5.13
t/tc = 12.6
t/tc = 25.1
t/tc = 37.9

(a)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

0

2

4

6

8

10

12

τ
s

t/tc = 5.13
t/tc = 12.6
t/tc = 25.1
t/tc = 37.9

(b)

FIG. 19: Profiles of the (a) mechanical time scale τm and (b)
scalar time scale τs at various dimensionless times.

ǫT model (where T ′2 and ǫT are the temperature vari-
ance and its dissipation rate) was formulated for tur-

bulent convection,[69, 70] and a K–ǫ–T ′2–ǫT model was
used to investigate turbulence effects in buoyant diffusion
flames.[71]

An important conclusion of this study is that, contrary
to the implicit assumption of large Reynolds number and
statistical isotropy embodied in gradient-diffusion and
similarity closure models, very large Reynolds numbers
are not required in Rayleigh–Taylor flows to achieve good
agreement with such models. It was also demonstrated
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FIG. 20: Profile of the mechanical-to-scalar time scale ratio
R (38) at various dimensionless times.

that standard gradient-diffusion and similarity closures
are remarkably accurate a priori at late times, provided
that turbulent Reynolds number scalings are incorpo-
rated into the closures of the turbulent production and
destruction in the mass fraction variance dissipation rate
equation.

The model equations proposed here are likely to apply
to other Rayleigh–Taylor unstable flows, but the opti-
mized model coefficients are specific to the DNS data
set analyzed here. For example, the early-time calibra-
tion of the model embodies the details of the initial con-
ditions particular to the experiment modeled using the
DNS.[2] The late-time calibration is also consistent with
the relatively large value of α measured in the experi-
ment, and will change if experiments with initial spec-
tra different from the ones considered here are modeled
(which may be consistent with a different late-time value
of α). While the coefficients vary most during early times
when the production-to-dissipation (and destruction) ra-
tios are largest, the closures nevertheless capture both
the shape and magnitude of the DNS profiles reasonably
well. As in the case of subgrid-scale model assessment
for large-eddy simulation, good a priori predictions of a
model do not necessarily imply equally good a posteri-

ori predictions: the a priori optimized models suggested
here are investigated a posteriori in a companion paper.
The DNS data presented here can be used to motivate
the development of small Reynolds number modifications
of the closures to further improve their early-time predic-
tions.
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Appendix: Correlation and amplitude coefficients

The correlation and amplitude coefficients correspond-
ing to each gradient-diffusion and similarity closure
model are given at various times in Tables IV and V,
respectively. The generalized Boussinesq model (15) gen-

erally captures the shape and magnitude of ũ′′2, ṽ′′2, and

w̃′′2 well, with the exception of the first time, as seen
in the evolution of the correlation and amplitude coeffi-

cients. Beyond t/tc ≈ 7.18, r ≈ 0.75–0.94 for C
(1111)
A ,

r ≈ 0.37–0.58 for C
(2222)
A , and r ≈ 0.84–0.95 for C

(3333)
A ,

showing that ũ′′2 and w̃′′2 correlate with the DNS rela-

tively well, while ṽ′′2 generally does not correlate as well.
Similar trends are seen in the amplitude coefficients, with

a ≈ 1.02–1.18 for C
(1111)
A , a ≈ 1.24–1.84 for C

(2222)
A , and

a ≈ 0.92–0.98 for C
(3333)
A for t/tc > 7.18.

The turbulent flux closures shown in Figs. 7–11 show
favorable agreement beyond t/tc > 5.13, with r, a > 0.9
at most times. At the latest times (t/tc & 29.8), r and a
decrease, which is attributable to the increase in oscilla-
tions in the profiles, and hence increased oscillations in
the profile gradients required to construct the closures.
To reduce these oscillations, a locally-weighted, linear,
least-squares regression[72, 73] was applied to a 51-point
stencil to filter the mean profiles before calculating gra-
dients.
Before the early-time nonlinear transition at t/tc ≈

12.6, both pressure flux closures shown in Figs. 13 and
14 capture the pressure transport given negative values
of Cpu and Cǫ

pu. During the nonlinear transition, t/tc ≈
7.18–10.1 forK and t/tc ≈ 10.1–14.9 for ǫ, the correlation
between the model and DNS substantially decreases. The
model for the pressure transport of K is adequate after
the transition, while the model for the pressure transport
of ǫ exhibits better agreement at t/tc > 25.1, due to the
negligible flux of ǫ away from the mixing layer boundaries
that the model must capture.
Similarity models for the buoyancy production and

turbulent production/destruction terms exhibit good
agreement with the DNS after t/tc = 5.13. The alge-
braic closure for χ agrees well with the DNS over all
times when using the time-dependent values of Cχ. Sim-
ilarly, Pχ

m shows excellent agreement with the DNS over
all Reynolds numbers. The turbulent production and
destruction terms poorly correlate with the DNS until
t/tc ≈ 12.6, after which turbulent fluctuations become
more important, and the closures accurately reflect the
flow physics.
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its similarity closure (40) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.
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FIG. 23: Profiles of the heavy-fluid mass fraction variance dissipation rate turbulent production Pχ
t normalized by Pc = ρc/t
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and its similarity closure at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.
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FIG. 24: Profiles of the heavy-fluid mass fraction variance dissipation rate destruction term Dχ normalized by Dc = ρc/t
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Coefficient Closure Value

Cµ turbulent viscosity 0.09

C
(1111)
A Reynolds stress τ11 2.02†

C
(2222)
A Reynolds stress τ22 3.02∗

C
(3333)
A Reynolds stress τ33 2.63†

σρ turbulent flux of ρ′ 0.08∗

σK turbulent flux of K′′ 0.09∗

σǫ turbulent flux of ǫ′ 0.10†

Cpu pressure flux of K′′ 0.23
Cǫ

pu pressure flux of ǫ′ 0.10†

σm turbulent flux of m′′
1 0.08∗

σS turbulent flux of m′′2
1 0.07∗

σχ turbulent flux of χ′′ 0.15∗

Cǫ0 buoyancy production of ǫ 1.44
Cǫ2 turbulent dissipation of ǫ 2.32†

Cχ turbulent dissipation of S 0.51∗

Cχ0 mean production of χ 6.77
Cχ2 turbulent dissipation of χ 1.30†

Cχ3 turbulent production of χ 0.72†

TABLE II: Constant coefficients for the a priori optimized K–
ǫ–S–χ transport model for Rayleigh–Taylor turbulence pro-
posed in the present study. An asterisk (∗) or dagger (†) in-
dicates that the coefficient is slightly increasing or decreasing
at late time, respectively.
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t/tc Reh Ret(z = 0) C
(1111)
A C

(2222)
A C

(3333)
A σρ σK σǫ Cpu Cǫ

pu σm σS σχ Cǫ0 Cǫ2 Cχ Cχ0 Cχ2 Cχ3

0 4.4 0.0 0.00 0.00 0.00 0.31 7.14 > 10 0 0 0.31 0.40 0.41 > 10 1.06 0.01 0.42 > 10.0 0
0.85 5.8 0.3 0.00 0.46 0.21 0.22 0.52 0.55 < −1 < −1 0.22 0.26 0.27 0.38 1.17 0.10 0.76 5.15 0.02
1.71 9.0 0.6 0.00 0.57 0.41 0.19 0.24 0.44 < −1 < −1 0.19 0.20 0.17 0.62 1.82 0.17 0.87 3.14 0.04
2.57 14 1 0.17 0.74 0.66 0.18 0.11 0.35 < −1 < −1 0.18 0.15 0.12 0.76 2.21 0.18 1.08 2.54 0.09
5.13 47 5 0.66 1.18 1.16 0.13 0.08 0.26 < −1 −0.87 0.13 0.10 0.13 0.99 2.42 0.15 2.33 2.71 0.24
7.18 104 13 0.87 1.33 1.42 0.11 0.10 0.30 −0.71 −0.1 0.11 0.08 0.19 1.09 2.44 0.14 3.63 2.42 0.35
10.1 222 38 1.12 1.48 1.86 0.09 0.12 0.34 0.30 0.08 0.09 0.08 0.29 1.26 2.54 0.18 5.06 2.23 0.55
12.6 352 62 1.21 1.77 2.28 0.08 0.11 0.25 0.49 0.12 0.08 0.07 0.25 1.46 2.66 0.24 6.18 1.93 0.66
14.9 508 69 1.33 2.61 2.90 0.08 0.09 0.17 0.44 0.14 0.08 0.06 0.17 1.65 2.74 0.31 7.48 1.73 0.70
17.3 706 76 1.70 4.77 3.59 0.07 0.08 0.12 0.31 0.15 0.07 0.06 0.13 1.70 2.80 0.38 8.95 1.69 0.72
20.0 948 90 2.57 5.16 4.30 0.06 0.08 0.10 0.24 0.17 0.06 0.05 0.10 1.61 2.77 0.40 9.34 1.78 0.71
22.5 1260 115 2.96 5.02 4.36 0.06 0.07 0.10 0.22 0.18 0.06 0.05 0.09 1.52 2.77 0.41 8.84 1.77 0.69
25.1 1620 154 2.88 4.42 4.00 0.06 0.07 0.09 0.21 0.19 0.06 0.06 0.09 1.45 2.66 0.42 8.19 1.71 0.71
27.4 1905 194 2.78 4.31 3.72 0.07 0.07 0.09 0.21 0.23 0.07 0.06 0.09 1.43 2.6 0.43 7.84 1.64 0.71
29.8 2190 260 2.60 3.49 3.42 0.07 0.08 0.09 0.22 0.13 0.08 0.07 0.09 1.42 2.59 0.45 7.45 1.54 0.72
32.5 2362 345 2.46 4.00 3.22 0.08 0.09 0.09 0.23 0.12 0.08 0.07 0.13 1.44 2.44 0.48 7.18 1.40 0.73
35.1 2507 414 2.02 3.02 2.63 0.08 0.09 0.10 0.23 0.10 0.08 0.07 0.15 1.44 2.32 0.51 6.77 1.30 0.72

TABLE III: Gradient-diffusion and similarity coefficients obtained from the optimization procedure applied to the turbulent
fluxes and higher order correlations from the DNS.

t/tc C
(1111)
A C

(2222)
A C

(3333)
A σρ σK σǫ Cpu Cǫ

pu σm σS σχ Cǫ0 Cǫ2 Cχ Cχ0 Cχ2 Cχ3

0 1.00 − 1.00 −0.18 0.12 0.02 − − −0.18 0.91 0.94 0.52 0.91 0.50 0.79 −0.12 −

0.85 0.25 −0.95 −0.72 0.49 0.56 0.94 0.59 0.017 0.49 0.95 0.99 0.70 0.48 0.69 0.90 −0.59 −0.62
1.71 −0.17 −0.96 −0.86 0.93 0.52 0.98 0.77 0.52 0.93 0.99 0.99 0.84 0.71 0.82 0.92 −0.80 −0.83
2.57 −0.87 −0.93 −0.69 1.00 0.78 0.96 0.83 0.76 1.00 1.00 0.97 0.91 0.88 0.94 0.94 −0.87 −0.87
5.13 −0.89 −0.50 0.74 0.99 0.99 0.93 0.83 0.90 0.99 0.98 0.81 0.98 0.99 0.89 0.98 −0.07 −0.86
7.18 −0.81 −0.52 0.86 0.98 0.98 0.88 0.63 0.89 0.98 0.95 0.72 0.98 1.00 0.86 0.99 0.51 −0.79
10.1 0.59 −0.59 0.88 0.94 0.98 0.90 0.54 0.73 0.94 0.90 0.68 0.98 1.00 0.88 0.95 0.74 0.33
12.6 0.85 0.41 0.89 0.87 0.98 0.96 0.84 0.37 0.87 0.93 0.85 0.96 0.99 0.91 0.96 0.93 0.96
14.9 0.92 0.53 0.94 0.90 0.98 0.96 0.86 0.72 0.90 0.95 0.93 0.97 0.98 0.92 0.96 0.97 0.99
17.3 0.93 0.48 0.95 0.95 0.97 0.97 0.83 0.83 0.95 0.96 0.93 0.98 0.99 0.96 0.99 0.98 0.99
20.0 0.94 0.43 0.95 0.93 0.92 0.96 0.85 0.91 0.93 0.97 0.96 0.99 0.98 0.98 0.98 0.98 0.99
22.5 0.91 0.37 0.92 0.89 0.93 0.93 0.89 0.95 0.88 0.97 0.97 1.00 0.98 0.99 0.98 0.98 0.99
25.1 0.81 0.38 0.88 0.86 0.94 0.93 0.89 0.97 0.86 0.96 0.95 1.00 0.98 0.99 0.96 0.98 0.99
27.4 0.77 0.39 0.88 0.87 0.93 0.94 0.89 0.97 0.87 0.93 0.97 1.00 0.98 0.99 0.97 0.97 0.99
29.8 0.80 0.36 0.91 0.91 0.90 0.95 0.89 0.98 0.91 0.95 0.97 1.00 0.98 0.98 0.95 0.98 0.99
32.5 0.86 0.43 0.94 0.93 0.87 0.95 0.87 0.97 0.93 0.96 0.85 0.99 0.96 0.96 0.97 0.96 0.99
35.1 0.74 0.47 0.84 0.86 0.87 0.95 0.87 0.98 0.86 0.88 0.85 0.98 0.96 0.94 0.93 0.96 0.99

TABLE IV: Correlation coefficients r for the generalized Boussinesq, turbulent flux, and similarity models.
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t/tc C
(1111)
A C

(2222)
A C

(3333)
A σρ σK σǫ Cpu Cǫ

pu σm σS σχ Cǫ0 Cǫ2 Cχ Cχ0 Cχ2 Cχ3

0 0.67 ∞ 0.67 0.74 0.07 0.19 − − 0.74 0.86 0.93 0.00 0.91 0.77 0.83 0.34 0.00
0.85 0.91 346 0.73 0.90 0.41 0.91 0.46 0.02 0.90 0.94 0.98 0.80 0.71 0.84 0.93 0.73 0.13
1.71 1.10 107 0.79 0.98 0.45 0.93 0.54 0.52 0.98 0.98 0.97 0.89 0.87 0.93 0.93 0.73 0.18
2.57 1.09 48.9 0.87 1.00 0.72 0.89 0.78 0.76 1.00 0.99 0.96 0.94 0.94 0.97 0.94 0.76 0.31
5.13 0.96 17.5 0.97 1.00 0.96 0.82 0.82 0.90 1.00 0.97 0.80 0.99 0.99 0.99 0.98 0.96 0.62
7.18 1.01 18.1 0.96 1.00 0.96 0.78 0.63 0.88 1.00 0.94 0.71 0.99 1.00 0.99 0.99 0.97 0.75
10.1 1.10 16.2 0.95 0.99 0.97 0.85 0.54 0.74 1.00 0.89 0.69 1.00 1.00 0.99 0.99 0.95 0.90
12.6 1.10 9.14 0.95 0.98 0.97 0.97 0.84 0.33 0.98 0.91 0.85 0.99 1.00 0.99 0.99 0.96 0.97
14.9 1.03 3.92 0.97 0.98 0.98 0.96 0.86 0.76 0.98 0.92 0.92 0.99 1.00 0.99 0.99 0.97 0.98
17.3 1.02 2.05 0.98 0.99 0.96 0.98 0.82 0.82 0.99 0.95 0.90 1.00 1.00 0.99 0.99 0.98 0.99
20.0 1.02 1.70 0.98 0.99 0.91 0.95 0.86 0.85 0.99 0.95 0.96 1.00 1.00 1.00 0.99 0.99 0.99
22.5 1.05 1.80 0.98 0.98 0.92 0.90 0.90 0.89 0.97 0.96 0.98 1.00 1.00 1.00 0.99 0.99 0.99
25.1 1.10 1.84 0.96 0.97 0.93 0.91 0.90 1.01 0.98 0.97 0.95 1.00 1.00 1.00 0.99 0.99 1.00
27.4 1.11 1.68 0.96 0.98 0.92 0.92 0.89 0.98 0.99 0.96 0.97 1.00 1.00 1.00 0.99 0.99 1.00
29.8 1.10 1.45 0.96 0.99 0.90 0.95 0.88 1.00 0.99 0.93 0.97 1.00 1.00 1.00 0.99 0.99 0.99
32.5 1.06 1.24 0.97 0.99 0.87 0.96 0.86 0.93 0.98 0.95 0.84 1.00 0.99 0.99 0.99 0.98 0.99
35.1 1.18 1.50 0.92 0.98 0.88 0.95 0.85 1.01 0.98 0.96 0.84 1.00 0.99 0.99 0.99 0.98 0.99

TABLE V: Amplitude coefficients a for the generalized Boussinesq, turbulent flux, and similarity models.
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[53] J. T. Morán-López and O. Schilling, High Energy Density

Phys. 9, 112 (2013).
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