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The macroscopic description of buoyancy-driven thermal convection in porous media is governed
by advection-diffusion processes, which in the presence of thermophysical heterogeneities fail to
predict the onset of thermal convection and the average rate of heat transfer. This work extends the
classical model of heat transfer in porous media by including a fractional-order advective-dispersive
term to account for the role of thermophysical heterogeneities in shifting the thermal instability
point. The proposed fractional-order model overcomes limitations of the common closure approaches
for the thermal dispersion term by replacing the diffusive assumption with a fractional-order model.
Through a linear stability analysis and Galerkin procedure, we derive an analytical formula for the
critical Rayleigh number as a function of the fractional model parameters. The resulting critical
Rayleigh number reduces to the classical value in the absence of thermophysical heterogeneities
when solid and fluid phases have similar thermal conductivities. Numerical simulations of the
coupled flow equation with the fractional-order energy model near the primary bifurcation point
confirm our analytical results. Moreover, data from pore-scale simulations are used to examine the
potential of the proposed fractional-order model in predicting the amount of heat transfer across
the porous enclosure. The linear stability and numerical results show that, unlike the classical
thermal advection-dispersion models, the fractional-order model captures the advance and delay in
the onset of convection in porous media and provides correct scalings for the average heat transfer
in a thermophysically heterogeneous medium.

I. INTRODUCTION

The dynamics of transport processes in porous media is
usually characterized by early/late arrivals (heavy tails)
in the breakthrough curves of the advective species [1]
and a nonlinear mean-squared displacement (MSD) for
the growth of the spreading entities in diffusive systems
[2–4]. These features of transport behaviors have been
observed in natural and engineered heterogeneous sys-
tems, including the transport of passive tracers in sub-
surface media [5, 6], diffusion in gels [7, 8], MRI diffu-
sion processes in biological tissues [9, 10], infiltration of
moisture in porous media [11–13], and Turing pattern
formation in reaction-diffusion systems [14–16]. The het-
erogeneous and disordered microstructure in these media
creates complex transport pathways, such as low mobility
zones, dead ends and preferential paths. The upscaling
of these localized retardation and enhancement transport
zones leads to anomalous transport behaviors that devi-
ate from the classical advection-dispersion regimes.
Heat transfer processes in porous media, such as forced

thermal convection and natural thermally-driven flows,
can also exhibit anomalous behaviors. In the former,
in analogy with solute transport in porous media, Con-
tinuous Time Random Walk (CTRW) models [17, 18]
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and fractional-order energy models [19, 20] have been
developed and tested for modeling the experimentally
and numerically observed heavy-tailed thermal break-
through curves due to structural heterogeneities. In
the buoyancy-driven thermal convection, also known as
Horton-Rogers-Lapwood convection [21, 22] (in short
HRL), the anomalous behavior, however, can occur even
in a ordered homogeneous and isotropic porous matrix
and it manifests itself in shifts for (1) the critical Rayleigh
number at the onset of thermal instability, and (2) the av-
erage heat transfer represented by the Nusselt-Rayleigh
number correlation [23, 24]. In the absence of an inclu-
sive model that can explain these two deviations from the
standard solution for HRL convection, Karani and Hu-
ber [25] argued for the need to revisit the closure of the
thermal dispersion term, which arises from upscaling of
the velocity and temperature fluctuation fields [26, 27].
Thermal dispersion is historically modeled as a diffusive
formulation (originally suggested by Taylor [28] and later
extended by Aris [29], Saffman [30, 31], Poreh [32]).
In analogy with the fractional-order advection-

dispersion models for anomalous solute transport regimes
in porous media [5, 33, 34], one can use a fractional-
order thermal advection-dispersion model for describing
HRL convection. The main difference is that, in solute
transport in porous media, the anomalous dispersion due
to the velocity and concentration fluctuations originates
from the structural disorder and heterogeneties, while in
HRL convection, the thermophysical heterogeneity, i.e.
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contrast in thermal conductivities of the solid and fluid
phases, can also be responsible for the resulting anoma-
lous thermal behaviors [25]. Thermophysical hetero-
geneities are ubiquitous in almost every multi-component
and multi-phase systems, and are responsible for parti-
tioning of energy among the different constituents.
The present study investigates how a fractional-order

energy model influences the onset of instability in HRL
convection. We perform a linear stability analysis and
derive an analytical expression for the critical Rayleigh
number as a function of the fractional-order parameters
that govern the conservation equation. We also solve nu-
merically the original nonlinear coupled equations of mo-
tion and fractional heat transfer and verify the robustness
of the linear stability results. The linear stability and
numerical results show that the fractional-order energy
formulation can be successfully and consistently used for
modeling the scatter of the onset of instability in HRL
convection observed experimentally in Cheng [23], Kla-
dias and Prasad [24] and reported from direct numerical
simulations by Karani and Huber [25].

II. MATHEMATICAL FORMULATION

We consider a two-dimensional fluid-saturated porous
square domain with dimensions 0 < x < H and 0 < y <
H , where H is the height/length of the porous enclosure.
While the linear stability analysis can be naturally ex-
ended to three-dimensions, in order to benefit from the
results of an equivalent pore-scale study [25], we limit
our analysis to two dimensions. Assuming a Darcian
regime, continuity and momentum equations of a Boussi-
nesq fluid in an isotropic porous medium are described,
at the continuum scale, by [35]:

∂u

∂x
+
∂v

∂y
= 0, (1)

u = −
K

µ

∂P

∂x
, (2)

v = −
K

µ

∂P

∂y
+
ρgβK

µ
(T − Tref ), (3)

where u and v are Darcy-scale macroscopic velocities
in the x- and y-directions, respectively. T and Tref are
local average-scale temperature and the reference tem-
perature for the fluid density, respectively. Also, ρ, β, K
and g are the fluid density, thermal expansion coefficient,
permeability of the porous medium and and acceleration
of gravity; P is pressure and µ is the dynamic viscosity
of the fluid.
Under the assumption of local thermal equilibrium be-

tween the solid and fluid phases, the average-scale energy
equation for HRL convection takes the following form:

(ρc)m
∂T

∂t
+(ρc)fV·∇T+(ρc)f∇·(< V

′T ′ >f ) = km∇
2T ,

(4)
where V is the velocity vector (u, v), c is the spe-

cific heat, km is the stagnant thermal conductivity of the
solid/fluid mixture. The subscripts m and f refer to the
properties of the solid/fluid mixture and the fluid, re-
spectively. The ∇·((ρc)f < V

′T ′ >f) term describes the
thermal dispersion term, with the primes indicating the
fluctuating fields with respect to the fluid-phase aver-
aged value of the local temperature and velocity fields
(for the detailed derivations, the reader is referred to
Refs. [26, 27]). Closure models for thermal dispersion
often assume a pseudo-diffusive behavior [28, 30–32], i.e.
∇·[(ρc)f < V

′T ′ >f ] = ∇·(−kdis∇T ). Here, kdis is the
dispersive conductivity of the porous media, which is gen-
erally a nonlinear function of the pore-scale Péclet or
Reynolds number based on the local average velocity of
the fluid [28, 30–32].
In the present study, in analogy with fractional-order

advective-dispersive solute transport equation, we re-
place Eq. 4 with the following energy equation with a
fractional-order advective term:

(ρc)m
∂T

∂t
+ (ρc)f ĈdisV · ∇

αT = km∇
2T . (5)

Ĉdis ([Lα−1]) is the dispersive coefficient and α is
the fractional-derivative index based on the Riemann-
Liouville definition [36]:

dαΦ

dzα
=

dn

dzn

∫ z

0

(z − ξ)n−α−1

Γ(n− α)
Φdξ, (6)

where n − 1 < α < n and n is the integer and Γ(.) is
the Gamma function.
The pore-scale modeling results in Karani and Hu-

ber [25] suggest that the thermal dispersion originates
from thermophysical heterogeneities in a porous medium
(i.e. differences in solid and fluid thermal conductivi-
ties). It exhibits some intermediate behaviors, which
cannot be fully taken into account as a pure diffusive
form. Karani and Huber [25] further suggested that the
diffusive nature of the often assumed thermal dispersion
term is responsible for the observed inconsistencies in
the thermal predictions for the onset of convection and
Nusselt-Rayleigh scalings. The rationale behind using a
fractional-order advective-dispersive equation is to relax
this a priori diffusive assumption for the thermal dis-
persion term. Accordingly, we assume that the contri-
bution of ∇·((ρc)f < V

′T ′ >f) is to enhance or impede
the overall average-scale advective thermal flux and is
modeled through a fractional-order index α, which can
conveniently range from advective to diffusive regimes
in a flexible manner. In light of the pore-scale results of
Karani and Huber [25], we argue that the fractional-order
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parameters Ĉdis and α are functions of the degree of ther-
mophysical heterogeneity, i.e. difference in solid-to-fluid
thermal conductivity ratio ks/kf , where ks and kf are
thermal conductivities of the solid and fluid phases, re-
spectively. Furthermore, Eq. 5 implies that the conduc-
tive part is consistently captured through the definition
of stagnant thermal conductivity of the medium km. This
allows Eq. 5 to successfully recover the exact conduction
solution for Rayleigh numbers below the critical value.
We define the following dimensionless variables in or-

der to recast the governing equations 1-5 in a dimension-
less form:

t∗ = t
αm

H2σ
, (u, v)∗ = (u, v)

H

αm

(x, y)∗ = (x, y)
1

H
,

σ =
(ρc)m
(ρc)f

, θ =
T − Tref
Th − Tc

,

(7)

where αm = km/(ρc)f is the thermal diffusivity of the
porous medium based on the stagnant thermal conduc-
tivity km. (ρc)f is the volumetric heat capacity (density
times specific heat) of the fluid phase. Also, H is the
characteristic height of the porous enclosure.
We use the stream function ψ and normalize lengths,

velocity, time and temperature based on the dimension-
less variables in Eq. 7 to retrieve the following dimension-
less momentum and energy equations (dropping asterisk
for simplicity):

∂2ψ

∂x 2
+
∂2ψ

∂y2
= Ra

∂θ

∂x
, (8)

∂θ

∂t
+ Cdis(u

∂αθ

∂xα
+ v

∂αθ

∂yα
) =

∂2θ

∂x 2
+
∂2θ

∂y2
, (9)

where

Cdis = Ĉdis

H2

H1+α

V = (u, v) = (−
∂ψ

∂y
,
∂ψ

∂x
),

(10)

and the Rayleigh number (Ra) is defined as:

Ra =
ρgβ∆TKH

µαm

. (11)

where ∆T = Th−Tc is the temperature difference across
the porous domain.
Without losing generality, we perform the linear stabil-

ity analysis of the fractional-order HRL convection for a
square box. Figure 1 shows the schematic of the problem.
The hydrodynamic and thermal boundary conditions are
as follows:

(u, v) = 0, θ = 1, for y = 0, for all x , (12)

x, u

y, v

0 1

1

θ=1

θ=0

∂θ
∂x
=0

∂θ
∂x
=0 ↓ g

FIG. 1: Schematic showing a saturated porous square
enclosure and the choice of thermal boundary

conditions. No-slip velocity i.e. (u, v=0) is applied at all
the walls.

(u, v) = 0, θ = 0, for y = 1, for all x , (13)

(u, v) = 0,
∂θ

∂x
= 0, for x = 0, 1, for all y. (14)

Fractional-order derivatives are nonlocal by essence
and in general, special treatments are needed when ap-
plying the boundary conditions. In the present model,
the fractional-order operator is applied on the advective
flux on the left-hand-side of the Eq. 5, while the diffu-
sive term on the right-hand-side is the normal integer-
order (∇2) spatial derivative. Since we imposed a no-
slip velocity on all the solid walls, the advective flux
(the fractional-order term) disappears at solid bound-
aries. Therefore, the constant temperature and zero-flux
boundary conditions are treated as in the normal diffu-
sion problem.
In addition to the linear stability analysis, we solve the

dimensionless coupled nonlinear Eqs. 8 and 9 numerically
to verify the linear stability analysis. For this purpose,
we use the numerical approach based on a fast Fourier
transform detailed in Karani and Huber [37]. For ψ, we
use a central finite difference scheme on space derivatives
and treat the source term in Eq. 8 explicitly. The same
procedure is used for the temperature field by treating
the advective terms in Eq. 9 explicitly and the diffusion
term implicitly. There are several ways to discretize the
fractional-order advective terms in Eq. 9. We employ
the Grünwald-Letnikov discretized representation of the
Riemann-Liouville operators in Eq. 9 [36]:

dαΦ

dxα
≈ ∆x−α

N
∑

l=0

ωlΦ(x− l∆x), (15)
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where ∆x is the spatial grid size, and the coefficients ωl

are calculated through the following formula [36]:

ωl =
(−1)lΓ(α + 1)

Γ(α − l + 1)l!
, l = 0, 1, 2, ..., N. (16)

Based on the resulting steady-state temperature and
velocity fields of the dimensionless equations 8 and 9 at
each Rayleigh number, we calculate the average amount
of heat transfer across the porous enclosure through the
dimensionless Nusselt number:

Nu =

∫ 1

0

−
∂T

∂y

∣

∣

∣

∣

wall

dx, (17)

where the partial derivatives are evaluated at the hor-
izontal bottom boundary of the porous domain.

III. LINEAR STABILITY ANALYSIS

For Rayleigh numbers below a critical value, only the
conduction solution with a linear temperature profile can
exist as a stable state in HRL problem (Fig. 2-(a)).
As the Rayleigh number goes beyond the critical value,
convection initiates (Fig. 2-(b) illustrates the 1st stable
convection mode). Similar to Rayleigh-Bénard convec-
tion, HRL convection allows multiplicity of stable states;
meaning that several stable convection states with dif-
ferent wave-modes can co-exist [37–42]. In the present
stability study of HRL convection, we are interested in
identifying the primary bifurcation point for the onset of
convection from the conduction state.

Linearization

In the absence of convection, Eqs. 8 and 9 admit the
following basic conduction solution:

ψ = 0, θ = 1− y. (18)

In order to investigate the onset of convection, we con-
sider the stability of the basic conduction solution with
respect to perturbations of the form:

ψ = Ψ, θ = 1− y +Θ. (19)

Inserting these perturbed velocity and temperature
fields into Eqs. 8-9 and linearizing the nonlinear advec-
tive terms gives the following set of linearized equations:

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= Ra

∂Θ

∂x
, (20)

∂Θ

∂t
− Cdis

∂Ψ

∂y

∂α(1− y)

∂xα
+ Cdis

∂Ψ

∂x

∂α(1− y)

∂yα

=
∂2Θ

∂x2
+
∂2Θ

∂y2
.

(21)

Compared with the classical integer-order counterpart,
introducing a Riemann-Liouville fractional-order advec-
tive term results in an additional linearized advective
term in Eq. 21. This is due to the fact that the fractional-
order derivative of a constant is not zero in the Riemann-
Liouville definition [36]; in other words, α− order deriva-
tive of a (1 − y) with respect to x has nonzero val-
ues. More specifically, the analytical relations for the
fractional-order derivative terms in Eq. 21 are [36]:

∂α(1 − y)

∂xα
= (1 − y)

x−α

Γ(1− α)
, (22)

∂α(1− y)

∂yα
=

y−α

Γ(1− α)
−

y−α+1

Γ(2− α)
. (23)

Galerkin method

We find the onset of the convective instability by solv-
ing for the eigenvalue of the coupled partial differential
equations 20 and 21. Because of the variable coefficients
for the advective terms in Eq. 21, we select the Galerkin
procedure to solve this eigenvalue problem [43, 44]. We
use the following trial functions for the velocity and tem-
perature fields, which automatically satisfy the thermal
and hydrodynamic boundary conditions in Eqs. 12-14:

Ψ =

M
∑

m=1

N
∑

n=1

amn sin(mπx) sin(nπy),

Θ =

M
∑

m=1

N
∑

n=1

bmn cos(mπx) sin(nπy).

(24)

We substitute these trial functions in the linearized
perturbation Eqs. 20 and 21 to find the residuals. We
then orthogonalize the residuals (in the spatial domain)
with respect to each trial functions, which provides the
generalized algebraic eigenvalue problem, where the low-
est eigenvalue is the critical Rayleigh number.
We initially limit the analysis to the first order approx-

imation of the Galerkin method, since it conveniently
provides a closed form relation for the critical Rayleigh
number. The details for the second order approximation
are provided in the Appendix. In the results section,
we will show that the first term approximation provides
accurate values.
Considering only the lowest order values for M and N

in Eq. 24 (M = N = 1), we retrieve:
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(a) conduction state: Ra < Racr (b) convection state: Ra > Racr

FIG. 2: Schematic showing the conduction (panel (a)) and convection stable states (panel (b)) for Rayleigh numbers
below and above the critical value, respectively.

Ψ = a11 sin(πx) sin(πy),

Θ = b11 cos(πx) sin(πy).
(25)

Inserting these relations into the linearized perturbed
equations and using their orthogonality property (details
can be found for example in [44]), we arrive at the fol-
lowing generalized eigenvalue problem:

(

2π2
−Raπ

C2π −2C1π
2

)(

a11
b11

)

=

(

0
0

)

, (26)

where

C1 =

∫ 1

0

∫ 1

0

(sin(πy) cos(πx))2dxdy = 1/4, (27)

C2 = Cdis

[

1

Γ(1 − α)

∫ 1

0

∫ 1

0

1− y

xα
(sin(πx) cos(πy))(sin(πy) cos(πx))dxdy

−
1

Γ(1− α)

∫ 1

0

∫ 1

0

1

yα
(sin(πy) cos(πx))2dxdy

+
1

Γ(2− α)

∫ 1

0

∫ 1

0

1

yα−1
(sin(πy) cos(πx))2dxdy

]

,

(28)

where C2 accounts for the influence of the nonlocal advective terms. For each value of the fractional-order
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derivative α, C2 can be calculated in a straight-forward
way.
The critical Rayleigh number can be determined by

setting the determinant of the matrix in Eq. 26 to zero,
which yields:

Racr =
C14π

2

C2

. (29)

The closed form relation for Racr in Eq. 29 allows us
to measure the effect of the fractional order of the ad-
vective operator on the onset of thermal convection and
compare it with 4π2, which is the Racr in the classical
HRL convection in a square box [21, 22, 42, 45].

IV. RESULTS

In Fig. 3, we compare the linear stability results of
HRL convection based on single- and two-term approx-
imations in the Galerkin procedure (Eqs. A2 and A3).
Having a maximum deviation of less than 1% confirms
that the formula for the critical Rayleigh number in Eq.
29 based on the single-term Galerkin approximation pro-
vides accurate results. In all the cases studied here for
HRL convection in a square box, the critical convection
mode was always observed to be the first mode, i.e. the
one shown schematically in Fig. 2-(b). Therefore, we
focus on the single-term Galerkin solution 29 as the lin-
ear stability result of the fractional-order HRL problem.
We notice in Fig. 3 that the fractional-order parameters
α and Cdis can significantly shift the bifurcation point
away from the 4π2 value of the classical HRL convection
in a square box, i.e for the case of Cdis = α = 1. This
is more clearly illustrated by Fig. 4 where we show the
map of Racr for a range of fractional-order parameters.
There is a general trend of increasing Racr as we move
to lower values of α for a given Cdis. A similar trend
occurs if α is fixed, and increasing values of Cdis result
in shifting the critical Rayleigh number to lower values.
As mentioned previously, experimental studies and

pore-scale numerical simulations have reported shifts in
the onset of convection (Racr) and the heat transfer pre-
dicted at a given Ra number. The pore-scale results in
[25] suggest that, for HRL convection in a homogeneous
and isotropic porous medium, α and Cdis are related to
the thermal conductivity difference between the solid and
fluid phases. Based on Fig. 4, one can get a similar Racr
at the onset of convection for different combinations of
fractional model parameters α and Cdis. However, we
can provide further insight into the valid ranges of these
parameters by solving numerically the coupled nonlinear
equations of motion and energy, i.e. Eqs. 8 and 9 (fol-
lowing the procedure outlined in Section II), and compar-
ing the resulting Nusselt number at each Ra with those
from the equivalent pore-scale observations [25]. Figure
5 shows the comparison of the critical Rayleigh numbers

obtained with linear stability with those retrieved nu-
merically. The maximum relative deviation of less than
3% between the critical Rayleigh numbers from the lin-
ear stability analysis and those from the numerical so-
lution confirms once more the accuracy of the first-term
Galerkin approximation.
We extend our numerical analysis to Rayleigh numbers

greater than Racr and observe how the fractional model
parameters α and Cdis influence the thermal behavior
represented by the Nusselt-Rayleigh curve. In Fig. 6-
(a), we compare the predictions from the fractional model
with those from the pore-scale analysis of [25] for three
different values of ks/kf . While the pore-scale results
for ks/kf = 1 recover the classical predictions of HRL
convection with α = Cdis = 1, the condition ks/kf > 1
shifts the onset of convection to higher Rayleigh numbers
than 4π2 and lower Nusselt numbers compared with the
classical predictions. In contrast, when ks/kf < 1 results
in earlier initiation of convection, i.e. Racr smaller than
4π2 and higher Nusselt numbers compared to the classi-
cal predictions. Figure 6-(a) shows these two features for
two sample sets of α and Cdis, each qualitatively agree-
ing with the corresponding pore-scale calculations. We
observed that among different combinations of fractional
model parameters, α < 1 and Cdis > 1 leads to thermal
behaviors which satisfy those observed for ks/kf > 1. On
the other hand, when α > 1 and Cdis < 1, the thermal
behavior for the onset of convection and Nusselt-Rayleigh
curve agrees with those cases where ks/kf < 1. We can
apply these constraints to identify the suitable ranges of
fractional model parameters α and Cdis for HRL con-
vection in a homogeneous and isotropic porous medium,
which is illustrated in Fig. 6-(b).
Based on the present linear stability and the numerical

results, we can summarize the variations of α and Cdis

with the thermal conductivity ratio in the following form:

α ∝ (ks/kf )
a,

Cdis ∝ (ks/kf )
b,

(30)

where a and b are exponents. Our current pore-scale data
suggest that a < 0 and b > 0. For ks/kf = 1, we will
have α = Cdis = ks/kf = 1 when solid and fluid phases
have similar thermal conductivities. In other words, the
fractional thermal model recovers the classical solution
of HRL convection when the contributions from the ther-
mal dispersion due to the thermophysical heterogeneities
disappear in HRL convection.

V. DISCUSSION

In the classical advection-diffusion formulation of con-
vection in porous media, the thermal dispersion term
∇·((ρc)f < V

′T ′ >f) in Eq. 4 appears as the byprod-
uct of the upscaling and homogenization of the advective
transport flux. Despite mathematically having an advec-
tive form, closure modeling of the thermal dispersion is
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0.7 0.8 0.9 1 1.1 1.2 1.3
α

20

40

60

80

100

120

↓ 4π2

FIG. 3: Comparison of the predicted Racr for different
values of α based on single-term (lines) and two-term
approximation (symbols) in the Galerkin procedure;
(—, �) for Cdis=1.0, and (−−,◦) for Cdis=0.8. The
horizontal dotted line indicates the classical value of

4π2 based on integer-order HRL problem.

FIG. 4: map showing the variation of Racr for different
values of α and Cdis

commonly based on a nonlinear diffusive term. It can be
easily shown that the contribution of a pseudo-diffusive
thermal dispersion disappears in the linear stability anal-
ysis, therefore it cannot influence the onset of convection
[46–48]. Also, the available closure formulations cannot
model the consistently lower/higher Nusselt numbers in
thermophysically heterogeneous media [47, 49].
The idea behind the fractional-order formulation in Eq.

5 is twofold: (1) we do not assume any a priori closure
nature to the macroscopic behavior of thermal disper-
sion, i.e neither pure advective nor pure diffusive but
rather a fractional-order term that models the intermedi-
ate behaviors in a flexible and consistent manner, and (2)

0.5 1 1.5 2 2.5 3
Cdis

20

40

60

80

100

R
a
cr

↑ 4π2

α=0.8, linear stability
α=0.8, numerical
α=1.1, linear stability
α=1.1, numerical

FIG. 5: Comparison of the predicted Racr for different
dispersivity Cdis based on linear stability analysis
(lines) and numerical solution of the nonlinear

equations (symbols)

we assume that the macroscopic contribution of thermal
dispersion in HRL convection, which originates from the
upscaling of the advective flux, is to enhance/retard the
total advective heat flux due to the thermophysical het-
erogeneities; a process which cannot be otherwise mod-
eled by the classical advection-diffusion formulation.
The present linear stability and numerical results con-

firm that including the contribution from the thermal
dispersion into a fractional-order advective term not only
enables us to model the shift in the onset of convec-
tion, but also it successfully provides correct Nusselt-
Rayleigh scalings in thermophysically heterogeneous me-
dia, in agreement with the pore-scale observations.
While the present linear stability study only accounts

for the role of thermophysical heterogeneities on the on-
set of HRL convection, subsurface systems also include
structural and geometrical heterogeneities such as frac-
ture networks. The combined effect of thermophysical
and structural heterogeneities will add complexity to the
nature of thermal dispersion in HRL convection. It is
therefore important to perform theoretical studies and
direct numerical simulations for cases where both per-
meability and thermophysical properties are varying over
space, and to investigate how this coupled spatial varia-
tion influences the dynamics of HRL convection.

VI. CONCLUSION

This study introduces a fractional-order energy model
for studying heat transfer in a density-driven convection
in an isotropic and homogeneous porous medium. The
fractional-order closure model characterizes the interme-
diate behaviors between advective and diffusive regimes
and accounts for the complex macroscopic realization
of transport processes by the thermal dispersion term.
We conduct a linear stability analysis to show that the
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(a) (b)

FIG. 6: Panel (a): the dependency of the observed anomalous behaviors in Racr and Nusselt-Rayleigh curves on the
solid-to-fluid thermal conductivity ratio ks/kf . The solid line in Panel (a) is associated with the predictions based

on the classical HRL problem with Cdis = α = 1.0, agreeing with the pore-scale simulations for ks/kf = 1 (⋄
symbols) [25]. The dashed and dotted curves are the predictions of the fractional-order model qualitatively agreeing

with the anomalous behaviors observed in pore-scale results [25] for ks/kf < 1 (� symbols) and ks/kf > 1 (◦
symbols), respectively. Panel (b): valid ranges of Cdis and α for satisfying both aspects of anomalous behaviors

observed in the pore-scale results [25] for different solid-to-fluid thermal conductivity ratio ks/kf . The gray regions
in Panel (b) indicate the values of α and Cdis out of the suitable ranges for ks/kf < 1 and ks/kf > 1 cases.

fractional-order generalization of HRL convection is suit-
able for modeling the shift on the onset of convection
due to the thermophysical heterogeneities in a porous
medium; a feature that cannot be captured by the clas-
sical formulation of the energy equation. The numerical
solution of the complete nonlinear governing flow and
temperature equations confirm the validity of the criti-
cal Rayleigh numbers found through the linear stability
study. To the best of our knowledge, the present ther-
mal fractional-order model is the first of its kind that (1)
introduces a new formulation for the macroscopic charac-
terization of thermal dispersion in HRL convection and
(2) provides consistent predictions for both the critical
Rayleigh number and also Nusselt-Rayleigh scalings in

a thermophysically heterogeneous porous medium. The
proposed fractional-order thermal model and the linear
stability and numerical results suggest new pore-scale
simulations over a wide range of thermophysical con-
ditions that can help us to retrieve a meaningful and
quantitative relation between fractional-model parame-
ters and thermophysical properties of the medium.

Appendix A: Second approximation Galerkin

solution

For the second order approximation, the trial functions
take the following form:

Ψ = a11 sin(πx) sin(πy) + a21 sin(2πx) sin(πy) + a12 sin(πx) sin(2πy) + a22 sin(2πx) sin(2πy),

Θ = b11 cos(πx) sin(πy) + b21 cos(2πx) sin(πy) + b12 cos(πx) sin(2πy) + b22 cos(2πx) sin(2πy).
(A1)

We first insert the trial functions A1 in the linearized
perturbed equations 20 and 21 to develop the residual
equations. We then orthogonalize the residual equations
to solve the associated 8× 8 generalized eigenvalue prob-
lem. The first four equations from the velocity equation

are as follows:

(m2 + n2)π2amn = mπRabmn, m, n = 1, 2. (A2)

And the resulting four equations from the energy equa-
tion become:
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−bk,l
(k2 + l2)π2

4
+

Cdis

Γ(1− α)

2
∑

m=1

2
∑

n=1

nπamn

∫ 1

0

∫ 1

0

(1− y)x−α(sin(mπx) cos(nπy))(cos(kπx) sin(lπy))dxdy

−Cdis

kπ

2

2
∑

n=1

akn

∫ 1

0

(
y−α

Γ(1− α)
−

y−α+1

Γ(2− α)
) sin(lπy) sin(nπy), k, l = 1, 2.

(A3)

The set of equations in A2 and A3 results in an
8 × 8 generalized eigenvalue problem. We use a global

search minimization algorithm which identifies the small-
est eigenvalue corresponding to the critical Rayleigh
number for any specific set of parameters Cdis and α.
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