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Abstract

In this article we present a numerical study of the dynamics of two disks sedimenting
in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle
dynamics are observed: (i) a periodic interaction between the two disks, and (ii) the
formation of a two disk chain. For the periodic interaction of the two disks, two different
motions are observed: (a) the two disks stay far apart and interact periodically, and
(b) the two disks interact closely and then far apart in a periodic way, like the drafting,
kissing and tumbling of two disks sedimenting in a Newtonian fluid, due to a weak
elastic force. Concerning the formation of two disk chain occurring at higher values
of the elasticity number, either a tilted chain or a vertical chain are observed. Our
simulations show that, as expected, the values of the elasticity and Mach numbers are
the determining factors concerning the particle chain formation and its orientation.

Keywords: Sedimentation, Particle chaining, Periodic motion, Oldroyd-B viscoelastic
fluids

1 Introduction

The motion of particles in non-Newtonian fluids is not only of fundamental theoretical
interest, but is also of importance in many applications to industrial processes involving
particle-laden materials (see, e.g., [1] and [2]). For example, during the hydraulic fracturing
operation used in oil and gas wells, suspensions of solid particles in polymeric solutions
are pumped into hydraulically-induced fractures. The particles must prop these channels
open to enhance the rate of oil recovery [3]. During the shut-in stage, proppant settling is
pronounced when the fluid pressure decreases due to the end of hydraulic fracturing process.
The study of particle chain during settling in vertical channel can help us to understand the
mechanism of proppant agglomeration in narrow fracture zones. There have been works on
the simulation of the sedimentation of particles in Oldroyd-B fluids in, e.g., [4], [5], [6], [7],
[8], [9], [10], further references being given in the review article [11]. Feng et al. [4] studied
numerically the two-dimensional sedimentation of circular particles in an Oldroyd-B fluid:
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these authors obtained chains of two particles aligned with the direction of sedimentation,
which are precisely the kind of micro-structures observed in actual experiments [12]. In
[6], an arbitrary Lagrangian-Eulerian (ALE) moving mesh technique (see [5]) was used
to investigate the cross-stream migration and orientations of elliptic particles in Oldroyd-
B fluids (with and without shear thinning). Huang et al. found that the orientation of
elliptic particles depends on two critical numbers, the elasticity and Mach numbers. In [7],
a fictitious domain/distributed Lagrange multiplier (FD/DLM) method for the numerical
simulation of particulate flow of Oldroyd-B fluids was developed: chains of two particles
aligned with the direction of sedimentation were obtained, and in the case of multiple
circular particles, many two particle chains were observed next to the channel walls. Yu et

al. [8] applied also a FD/DLM based methodology to study disk interactions in Oldroyd-
B fluids, preliminary results concerning the attraction of two disks being reported. They
obtained that two disks attract each other and form either a horizontal chain or tilted
chain quickly while settling in an Oldroyd-B fluid instead of repelling each other as in a
Newtonian fluid. Later on, Shao and Yu [9] used an improved FD/DLM method to show
that the stable configuration is the one where the particles are aligned parallel to the flow
direction when the Mach and elasticity numbers are in the range identified in [6].

In this article, we have further investigated the formation and orientation of two disk
chains versus the values of the elasticity and Mach numbers via direct numerical simulation.
Our results agree with those about the settling of an elliptic particle in Oldroyd-B fluids
obtained in [6]. This kind of particle behavior is not surprising since these two particle
chains behave as elongated bodies, despite the fact that the particles are loosely coupled.
However, we observed also that if the elasticity number is sufficiently small, there are two
new dynamical regimes, namely (i) the two disks stay far apart and their interaction is
periodical and (ii) the two disks draft, kiss and break away periodically. Concerning the
wall effect on the particle chains, we found that the formation of vertical chains can be
obtained in a narrower channel for lower elasticity numbers. Also it is easier for two disks
of slightly different sizes to form a chain when comparing to the case of two disks of same
sizes. But when comparing with the dynamics of two rigidly connected disks sedimenting
in an Oldroyd-B fluid, we have obtained that, as expected, the critical elasticity number for
having vertical chain of two disks is much higher than that for two rigidly connected disks
since the chain of two disks is not really a long rigid body. The article is organized as follows.
In Section 2, we present a FD/DLM formulation for Oldroyd-B particulate flows and briefly
discuss its space-time discretization by a methodology combining operator-splitting and
finite element methods. In Section 3, we present and comment the results of the numerical
experiments simulating the sedimentation of two disks.

2 Mathematical formulations and numerical methods

Although numerical methods for simulating particulate flows in Newtonian fluids have
been very successful (e.g., see [13], [14], and [15]), numerically simulating particulate flows in
viscoelastic fluids is a much more complicated and challenging issue. One of the difficulties
(e.g., see [16], [17]) concerning the simulation of viscoelastic flows is the breakdown of the
numerical methods. It is widely believed that the lack of positive definiteness preserving
property of the conformation tensor at the discrete level during the entire time integration
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is one of the reasons of this breakdown. To preserve the positive definiteness property of
the conformation tensor, several methods have been proposed recently, as in [18], [19], [20]
and [21]. In particular, Lozinski and Owens [21] factored the conformation tensor to get
σ = AAt and then wrote down the equations for A approximately at the discrete level,
forcing the positive definiteness of the conformation tensor. The methods developed in [21]
have been applied in [10] together with the FD/DLM method through operator splitting
for simulating particulate flows in Oldroyd-B fluids. In this article, we present the results
of numerical experiments concerning the simulation of two disks settling in an Oldroyd-B
fluid; these results have been obtained using the numerical methods developed in [10].

2.1 Governing equations and their FD/DLM formulation

Following reference [10], we will address first the models and computational methodolo-
gies to be used in this article. Let Ω be a bounded two-dimensional (2D) region and let Γ
be its boundary. We suppose that Ω is filled with a viscoelastic Oldroyd-B fluid of density
ρf and contains N moving rigid particles of density ρs (see Figure 1). Let B(t) = ∪N

i=1Bi(t)
where Bi(t) is the ith rigid particle in the fluid for i = 1, . . . , N . We denote by ∂Bi(t) the
boundary of Bi(t). For some T > 0, the governing equations for the fluid-particle system
are

ρf (
∂u

∂t
+ (u ·∇)u) = ρfg −∇p+ 2µ∇ ·D(u) +∇ · σp in Ω\B(t), t ∈ (0, T ), (1)

∇ · u = 0 in Ω\B(t), t ∈ (0, T ), (2)

u(x, 0) = u0(x), ∀x ∈ Ω\B(0), with∇ · u0 = 0, (3)

u = g0 on Γ× (0, T ), with

∫
Γ

g0 · n dΓ = 0, (4)

u = Vp,i + ωi
−−→
Gix

⊥

, ∀x ∈ ∂Bi(t), i = 1, · · · , N, (5)

∂C

∂t
+ (u ·∇) C− (∇u) C−C (∇u)t = − 1

λ1

(C− I) in Ω\B(t), t ∈ (0, T ), (6)

C(x, 0) = C0(x), x ∈ Ω\B(0), (7)

C = CL(t), on Γ−(t), (8)

where u is the flow velocity, p is the pressure, g denotes gravity, D(u) = (∇u+(∇u)t)/2 is
the rate of deformation tensor, µ = η1λ2/λ1 is the solvent viscosity of the fluid, η = η1 − µ
is the elastic viscosity of the fluid, η1 is the fluid viscosity, λ1 is the relaxation time of the
fluid, λ2 is the retardation time of the fluid, n is the outer normal unit vector at Γ, Γ−(t)
is the upstream part of Γ at time t. The polymeric stress tensor σ

p in (1) is given by

σ
p =

η

λ1

(C − I), where the conformation tensor C is symmetric and positive definite (see

[24]) and I is the identity tensor.
In (5), the no-slip condition holds on the boundary of the ith particle, Vp,i is the

translation velocity, ωi is the angular velocity, Gi = {Gi,1, Gi,2}t is the center of mass, and

finally
−−→
Gix

⊥

= {−(y − Gi,2), (x − Gi,1)}t for the rotation with respect to the mass center
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Figure 1: An example of a two-dimensional flow region with four circular particles.

Gi (for the 2D cases considered in this article). The motion of the particles is modeled by
Newton’s laws:

Mp,i
dVp,i

dt
= Mp,ig +Fi + Fr

i , (9)

Ip,i
dωi

dt
= F t

i , (10)

dGi

dt
= Vp,i, (11)

Gi(0) = G0

i ,Vp,i(0) = V0

p,i, ωi(0) = ω0

i , (12)

for i = 1, . . . , N , where in (9)-(12), Mp,i and Ip,i are the the mass and the inertia of the
ith particle, respectively, Fr

i is a short range repulsion force imposed on the ith particle by
other particles and the wall to prevent particle/particle and particle/wall penetration (see
[13] for details), and Fi and F t

i denote the hydrodynamic force and the associated torque
imposed on the ith particle by the fluid, respectively.

In order to avoid frequent re-meshing and the difficulties associated with mesh gener-
ation on a time varying domain when the particles are very close to each others (a very
common situation in 3D), we have used a fictitious domain approach extending the govern-
ing equations to the entire domain taken in [7, 13]. The basic idea of the fictitious domain
method is to imagine that the fluid fills the entire space inside as well as outside the par-
ticle boundary. The fluid–flow problem is then posed on a larger domain (the“fictitious
domain”). The fluid inside the particle boundary must exhibit a rigid–body motion. This
constraint is enforced using the distributed Lagrange multiplier, which represents the ad-
ditional body force per unit volume needed to maintain the rigid–body motion inside the
particle boundary, much like the pressure in incompressible fluid flow, whose gradient is the
force required to maintain the constraint of incompressibility.

The method of numerical solution is actually a combination of a distributed Lagrange
multiplier based fictitious domain method and an operator splitting method. For space
discretization, we use P1-iso-P2, P1 and P1 finite elements for the velocity field, conforma-
tion tensor and pressure, respectively. The details of numerical methods for simulating the
motion of disks sedimenting in Oldroyd-B fluids in a vertical two-dimensional channel are
given in [10]. Applying the Lie scheme to the discrete analogue of the DLM/FD formulation
obtained from (1)-(12), we have used a seven stage operator-splitting scheme reported in
[10] to obtain the numerical results reported here, namely: In Stage 1, we use a Neumann
preconditioned Uzawa/conjugate gradient algorithm to force (in a L2 sense) the incom-
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Figure 2: Histories of the two disk horizontal velocity (left) and vertical velocity (right)
obtained by different mesh sizes and time steps for ρs = 1.0025 and E=0.8.

pressibility condition, ∇ · u = 0, as discussed in [10] and [14]. In Stage 2, we combine two
advection steps: one for u and one for C, both are solved by a wave-like equation method
(see [14] and [25]) which is explicit and does not introduce numerical dissipation. In this
second stage, we have transformed the advection step for C into one for its Cholesky factor
A (as advocated by Lozinski and Owens in [21]), taking advantage thus of the relation
C = AAt. In Stage 3, we solve a diffusion step for u and then a step taking into account
the remaining operator in the transformed evolution equation verified by A. In Stage 4, we
update the position of the disk mass center G. In Stage 5, we force the rigid body motion
of the particle and update V and ω by a conjugate gradient method described in, e.g., [10]
and [14], and then impose the condition C = I inside the particle. In Stage 6, we correct
the position of G via the updated V and ω. Finally, Stage 7 is a diffusion step for the
velocity, driven by the updated polymeric stress tensor.

3 Numerical Results and discussion

In the following discussion, the particle Reynolds number is Re=
ρfUd

η1
and the Deborah

number is De=
λ1U

d
where U is the averaged terminal velocity speed of disks and d the

disk diameter. The important combinations of Re and De are, as in [6],

Mach number: M =
√
DeRe = U/(η1/λ1ρf )

1/2,

elasticity number: E = De/Re = λ1η1/d
2ρf .

The Mach number is the ratio of the terminal velocity to the shear wave speed c =
(η1/λ1ρf )

1/2. The elasticity number depends on material parameters and particle size but
is flow independent. It is the ratio of the elastic and inertia forces in the fluid. As discussed
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Figure 3: Positions of the two disks (left three) and trajectories of their centers (right) for
ρs = 1.0025 and E=0.8.

in [6] and [26], when the elasticity number E is larger than a critical value (O(1)), a long
body settling in Oldroyd-B fluids turns its broadside parallel to the flow direction. But for
elasticity numbers E less than the critical value, this long body falls steadily in a config-
uration in which the axis of the long body is at a fixed angle of tilt with the horizontal
direction. Also for larger Mach numbers, the long body flips into broadside on falling again.
Concerning the dynamics of two disks settling in Oldroyd-B fluid, these two disks can be
viewed as a long body if they form a chain. We intend to study the equilibrium orientation
of this two disk chain, acting as a long body, by varying the elasticity number. However,
since for E small enough the two disks may stay separated (no chain formation) ultimately,
it is interesting to investigate how the two disks interact and how close is their interaction
to the one of two disks settling in Newtonian fluid (exhibiting thus the drafting, kissing
and tumbling phenomenon [22]), other possible outcomes being time periodic or chaotic
interactions, as shown in [23]. We have used the numerical method developed in [10] to
obtain the numerical results reported in this section.

In this article, we have considered the settling of two disks in a vertical channel of
infinite length filled with an Oldroyd-B fluid as in [10]. We assume in this section that all
dimensional quantities are in the CGS units. The computational domain is Ω = (0, 1)×(0, 6)
initially and then moves vertically with the mass center of the lowest disk (see, e.g., [27]
and [28] and references therein for adjusting the computational domain according to the
particle position). The two disk diameters are d =0.125 and the initial position of the disk
centers are at (0.35, 2.5) and (0.65, 2.5), respectively. The disk density ρs is 1.0025 for the
first two cases considered in this section, the fluid density ρf being 1. The fluid viscosity
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Figure 4: Positions of the two disks interacting apart (left four) and trajectories of their
centers (right) for ρs = 1.0025 and E=0.16.
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Figure 5: Positions of the two disks forming a tilted chain (left four) and trajectories of
their centers (right) forρs = 1.0025 and E=0.256.
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Figure 6: Positions of the two disks forming a vertical chain (left four) and trajectories of
their centers (right) for ρs = 1.0025 and E=0.32.

η1 is 0.025. The relaxation time λ1 varies between 0.01 and 1.0 and the retardation time
λ2 is λ1/4. Then the associated elasticity number is E=1.6λ1. To validate the numerical
methods, the case of two disks sedimenting in a vertical channel for the relaxation time
λ1 = 0.5 has been tested. In Figs. 2 and 3, the velocity and center trajectories of the two
disks show that the convergence take place when reducing the mesh size and time step. The
positions of the two disks shown in Fig. 3 present a typical interaction, drafting, kissing
and chaining, for two disks settling in viscoelastic fluid.

For the following numerical results, the mesh sizes for the velocity field, conformation
tensor and pressure are h = 1/128, 1/128, and 1/64, respectively, the time step being
0.0004. In Figs. 4, 5 and 6, three typical motions of two disks settling in an Oldroyd-B fluid
are presented. For E=0.16 (λ1 = 0.1), the two disk interaction dynamics is characterized
by its periodical motion (of period 55.25 time units) as in Fig. 4, which is similar to the
one, obtained in [23], for the motions of two disks settling in a Newtonian fluid. For a
slightly higher value, E=0.256 (λ1 = 0.16), the two disks form a chain with a stable tilt
angle of 29.39 degrees (see Fig. 5), which is similar to the behavior of a long body when
the elasticity number is less than the critical value for turning its broadside parallel to the
flow direction. For E=0.32 (λ1 = 0.2), we observed that the two disks form a stable vertical
chain as shown in Fig. 6, which indicates that the critical value of the elasticity number for
having a vertical chain is somewhere between 0.256 and 0.32.

To find more information about the two disk dynamics, we have varied the relaxation
time λ1 (resp., the elasticity number) from 0.01 to 1 (resp., from 0.016 to 1.6). For E between
0.016 (λ1=0.01) and 0.24 (λ1=0.15), the two disks stay separated and their interaction is
periodical. In the phase space, based on the distances between each disk mass center and
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the left sidewall, the attractor is a limit cycle for each value of the elasticity number shown
in Fig. 7. At E=0.208 (λ1=0.13), the limit cycle shrinks to about a point. Actually another
kind of limit cycle occurs for 0.208 < E ≤ 0.2288 (see Fig. 7). But for 0.2304 ≤ E ≤ 0.24,
the two disks settle without noticeable periodic motion and remain separated at a constant
distance. The gap between the two disk decreases when increasing the value of E from
0.2304 to 0.24. For E=0.256 (λ1 = 0.16) and 0.288 (λ1 =0.18), the two disks form a chain
with a stable tilt angle of 29.69 and 82.33 degrees, respectively (see Fig. 5 for E=0.256).
Finally, for E between 0.304 (λ1=0.19 ) and 1.6 (λ1=1), the two disks form a vertical chain.
Thus the critical value of the elasticity number for having the formation of a vertical chain
is somewhere in the interval [0.288, 0.304].

For the particles of density ρs=1.0015, similar particle motions are obtained. For E
≤ 0.2182, the two disks stay separated and interact periodically. This periodic motion is
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just like the one in Fig. 4 and its associated limit cycle is similar to those in the left plot
in Fig. 7. For E between 0.2424 and 1.0667, the orientation of the disk chain oscillates
first and then turns into the vertical direction after the oscillations damp out (e.g., see the
trajectories of two disks for E=0.2424 and 0.4848 shown in Fig. 9). For E between 1.2606
and 1.6, the two disks form a chain which turns its orientation into the falling direction
right away. No tilted chain is obtained for the values of the elasticity number considered
in the phase diagram presented in Fig. 8. The critical value of the elasticity number for
having a vertical chain formation is somewhere in the interval [0.2182, 0.2424].
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Figure 9: Trajectories of the two disk centers for ρs = 1.0015 at E=0.1393, 0.2424, 0.4848
and 0.12606 (from left to right).

For the particle densities ρs= 1.0035 and 1.005, we have also obtained similar kinds of
particle motion for various values of the elasticity number as shown for both ρs=1.0015 and
1.0025 in Fig. 8. However the elasticity number range for having a tilted chain is wider.
Also for these relatively heavier disks, besides the typical periodical motion discussed in the
above cases, there is another one which we call “drafting, kissing and non-chaining” (see
Fig. 10). The limit cycles of those two types of periodic motion for ρs=1.005 are shown
in Fig. 11. The limit cycles in the left plot in Fig. 11 are associated with a motion like
the one in Fig. 4 and those in the right plot are associated with the drafting, kissing and
non-chaining. The particle positions and trajectories for ρs=1.005 and E=0.4 shown in Fig.
10 tell us that every time a chain is about to be formed after drafting and kissing between
two disks, the two disk “long body” turns and then the two disks break away. We believe
that the inability of the two disks to form a chain is due to the weakness of the elastic
forces; indeed, for E = 0.56, a quasi horizontal and stable chain is formed (see Fig. 12).
By comparing the particle positions shown in Figs. 10 and 12, we observe that the two
particles touch (“kiss”) each other between t = 40 and 48 for E=0.4 and 0.56. Then the
pair in Fig. 10 breaks up at t = 52 for E=0.4, but the pair remains chained for E=0.56.
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Figure 10: Positions of the two disks drafting, kissing, and non-chaining for ρs = 1.005 and
E=0.4.
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Figure 11: The limit cycles for ρs = 1.005 in phase space: The periods of the two disks
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and the periods of two disks drafting, kissing, and not-chaining are 34.2, 38.45, 46.45 and
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Figure 12: Positions of two disks forming an almost horizontal chain for ρs = 1.005 at
E=0.56.
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Figure 13: Trajectories of the two disk centers forming vertical chains for E=1.6 and the
density ρs = 1.0015, 1.0025, 1.0035 and 1.0045 (from left to right).
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Figure 14: Positions of the two disks forming a tilted chain (left three) and trajectories
(right) of the two disks for ρs = 1.01 and E=1.6 and M=3.0784.

All the values of the Mach number associated with the different values of the particle
density ρs and elasticity number are presented in Fig. 8. For each fixed value of the elasticity
number E, when the particle is heavier, the Mach number is increased. For example, at
E=1.6, the two disks form a chain whose orientation turns vertical right away for the four
particle densities considered here (see Fig. 13). The associated values of the Mach number
for these four cases are 0.6697, 1.0582, 1.4004 and 1.8468 for ρs =1.0015, 1.0025, 1.0035 and
1.005, respectively. As discussed in [6], the long body flips falling broadside-on for Mach
number greater than its critical value (O(1)). To see the effect of the larger value of the
Mach number on the chain orientation, we have increased the particle density to ρs=1.01
so that the particle settling velocity becomes faster. For E=0.16, 0.32 and 0.48, two heavier
disks stay apart and interact periodically. But they form a tilted chain for E=0.64, 0.80 and
0.96. At E=1.12, a vertical chain is obtained and its associated Mach number is M=2.7343.
For E=1.28, 1.44 and 1.6, chains with the tilted angles 32.23, 31.59 and 32.63 degrees are
obtained and the associated values of the Mach number are 2.6879, 2.8660 and 3.0784,
respectively. The Mach number at E=1.28 is less than the one at E=1.2 since the titled
chain of two disks at E=1.28 has a slightly slower terminating settling speed than that of
the vertical chain at E=1.2. The particle position and trajectories for E=1.6 are shown in
Fig. 14. Thus a tilted chain can be obtained for the higher values of the Mach number while
for the cases of those lower particle densities at the same elasticity number, vertical chains
are obtained at E=1.28, 1.44 and 1.6 in Fig. 8. This result is consistent with those cases
where an elliptic particle is settling in an Oldroyd-B fluid, as shown in [6], even though the
chain of two disks is not a rigidly connected dipole. The values of the elasticity and Mach
numbers determine whether a two disk chain can be formed and the chain orientation.
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Figure 15: Phase diagram (left) and associated values of the Reynolds number (right) for
two disks interacting in a vertical channel with different confined ratios.

Concerning the wall effect on the formation of two disk chains, we have investigated the
cases of different values of the blockage ratio defined by K = H/d where d is the diameter
of the two same size disks and H is the width of the channel. For all aforementioned results,
the blockage ratio is K = 1/0.125 = 8. The particle density considered here is ρs = 1.0015.
All other parameters are the same with the exception of the disk diameter, fluid viscosity
and mesh size. The diameters are 1/12, 1/10, 1/8, and 1/5; the associated fluid viscosities
being 1/25, 1/40, 1/50 and 1/60 and the mesh size for the velocity field being 1/128, 1/128,
1/196 and 1/196, respectively. In order to reduce the effect of the particle Reynolds number
(i.e., of the terminal particle speed) on the formation of vertical chains, we have adjusted
the fluid viscosity so that the particle Reynolds numbers are about the same for those
cases having vertical chains formed (see Fig. 15). We have obtained the same types of
disk interaction when two disks sediment in the vertical channel for various values of the
relaxation time as shown in Fig. 15. The wall effect does help two disks to form a vertical
chain in a narrower channel at lower elasticity numbers; but the vertical chain is always
formed for those cases at higher elasticity numbers presented in Fig. 15. When two disks
have periodic interaction, the disk rotation synchronizes with its translation velocity. e.g.,
those of the case of K=10 at E=0.2 are shown in Fig. 16. When reducing the value of
blockage ratio K, the period of the two disk interaction at the lower elastic number is also
reduced, e.g., for the cases of E=0.2 shown in Fig. 15, the periods are 113.07, 100.2 and
91.29 for K=12, 10 and 8, respectively, and there is no periodic motion but a vertical chain
for K=5. When reducing the value of K, the rotating speed of the disk close to the right
wall is increasing slightly and the one in the middle of the channel does not change much
as shown in Fig. 16, .

Since having identical disks is never the case experimentally, we have varied the diameter
of one disk to find out its effect on the two disk interaction. The other one has a fixed
diameter 0.125. All other parameters are the same as those of the particle density ρs =
1.0035. As shown in Fig. 17, having a disk of 10% larger in diameter does increase the
range of having vertical chain and suppress the range of no chaining and periodic motion.
For the other case of having a 10 % smaller diameter, we have obtained almost the same
result. But for the cases of the 5% change in diameter, the effect is qualitatively the same
but weaker. The mass center of the relative larger disk is always lower than that of the
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disk has a fixed diameter of d = 0.125 and the other one has 0.9d, 0.95d, d, 1.05d and 1.1d
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smaller one during the interaction for all cases.
To compare the difference between the dynamics of two rigidly connected disks and

that of two freely moving disks, we have considered the cases associated with the particle
density ρs = 1.0025 discussed at the beginning of the this Section (see Figs. 3–8). All the
parameters are the same except that the two disks are rigidly connected while settling in
the channel. The numerical results show that for E between 0.08 and 1.6, the orientation
of the long body of two rigidly connected disks is parallel to the direction of sedimentation.
The critical value of the elasticity number for having such orientation is much less than the
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one, E=0.304, for the case of two freely moving disks. This result is not surprising since
the chain of two freely moving disks is not really a long rigid body. For E between 0.04
and 0.07, a tilted orientation is obtained for the two rigidly connected disks. For E ≤ 0.03,
the two disk long body oscillates between two different orientations (e.g., see Fig. 18 for
E=0.02). This oscillation is not seen among the dynamics of two freely moving disks shown
in Figs. 3–8 also due to the fact that the chain of two freely moving disks is not really a
long rigid body.
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Figure 18: Positions and orientations of the two rigidly connected disks (left four) and
trajectory of the long body mass center (right) for ρs = 1.0025 and E=0.02.

Remark 3.1. In all simulations presented in this article, the two disks are initially located
at the same height. We believe that the results might be slightly different if using different
initial configurations and different blockage ratios. For example, in [12], two balls were
released at the same height with different distance between them in a quasi-two dimensional
channel to study the critical distance for having the formation of two ball chain. The effect
of the horizontal distance between two disks on the formation of two disk chain and the
effect of other initial positions are worth a further study. Concerning the interactions of
more than two settling disks in Oldroyd-B fluids, a recent study of multiple disk chains in
[29] indicates that the formation of three or more disk chains in Oldroyd-B fluids relies on
the elasticity number value. A next step would be to study the formation of long particle
chains in Oldroyd-B fluids versus the elasticity number.

Even in two dimensions, all numerical results in this article look like some of the interac-
tions of two balls in three dimensions and can help understanding how particle interact in a
three-dimensional channel. For example, it is known that the behavior of particles settling
in a Newtonian viscous fluid may be quite different from the one of particles settling in
a viscoelastic fluid. Indeed, a well-known behavior for two balls settling in a Newtonian
viscous fluid is the so-called drafting, kissing and tumbling phenomenon [22], while two

16



balls settling in an Oldroyd-B fluid exhibit the kissing, drafting and chaining phenomenon
[12]. The kissing, drafting and chaining of two disks obtained in this article looks like that
of two balls settling in a quasi-two-dimensional channel reported in [12]. The generalization
of the computational methodology used in this article to three-dimensions is in progress,
the investigation of the interaction of two and more balls settling in a vertical channel filled
with an Oldroyd-B fluid will be submitted for publication in a near future.

4 Conclusion

In this article we have presented a numerical study of the dynamics of two disks settling
in a narrow vertical channel filled with an Oldroyd-B fluid. For the cases considered in this
article, two kinds of particle dynamics were observed, namely: (i) a periodic interaction
between the two disks and (ii) the formation of a two disk chain. For the periodic interaction,
two different motions are observed: (a) the two disks stay far apart and their interaction
is periodical (as shown in Fig. 4), which is similar to one of the motions reported in [23],
and (b) the two disks draft, kiss and break away periodically, chains not being formed,
due to the weakness of the elastic forces. When, for larger values of E, a chain is forming,
it is either a tilted chain or a vertical one. A tilted chain can be obtained if either the
elasticity number value is less than the critical one associated with vertical chain formation,
or if the Mach number is greater than a critical value. Hence the values of the elasticity
number and the Mach number determine whether the chain of two disks can be formed and
its orientation. Numerical results also show that the wall effect enhances the formation of
the vertical chain of two disks in a narrower channel. For two disks of slightly different
sizes, it is easier for them to form a chain when comparing with the case of two identical
disks. When comparing with the dynamics of two rigidly connected disks sedimenting in
an Oldroyd-B fluid, the critical elasticity number for having vertical chains of two disks is
much higher than that for two rigidly connected disks since the chain of two disks is not
really a long rigid body.
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